
HAL Id: inserm-00502110
https://inserm.hal.science/inserm-00502110v1

Submitted on 18 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast algorithms for the computation of sliding
sequency-ordered complex Hadamard transform

Jiasong Wu, Huazhong Shu, Lu Wang, Lotfi Senhadji

To cite this version:
Jiasong Wu, Huazhong Shu, Lu Wang, Lotfi Senhadji. Fast algorithms for the computation of sliding
sequency-ordered complex Hadamard transform. IEEE Transactions on Signal Processing, 2010, 58
(11), pp.5901-5909. �10.1109/TSP.2010.2063026�. �inserm-00502110�

https://inserm.hal.science/inserm-00502110v1
https://hal.archives-ouvertes.fr

 1

Abstract—Fast algorithms for computing the forward and

inverse sequency-ordered complex Hadamard transforms
(SCHT) in a sliding window are presented. The first algorithm
consists of decomposing a length-N inverse SCHT (ISCHT) into
two length-N/2 ISCHTs. The second algorithm, calculating the
values of window i+N/4 from those of window i and one
length-N/4 ISCHT and one length-N/4 modified ISCHT
(MISCHT), is implemented by two schemes to achieve a good
compromise between the computation complexity and the
implementation complexity. The forward SCHT algorithm can be
obtained by transposing the signal flow graph of the ISCHT. The
proposed algorithms require O(N) arithmetic operations and thus
are more efficient than the block-based algorithms as well as
those based on the sliding FFT or the sliding DFT. The
application of the sliding ISCHT in transform domain adaptive
filtering (TDAF) is also discussed with supporting simulation
results.

Index Terms—Fast algorithm, sequency-ordered complex
Hadamard transform, sliding algorithm

I. INTRODUCTION
HE discrete orthogonal transforms play an important role
in the fields of digital signal processing, filtering and
communications. In the past decades, various transforms

including discrete Fourier transform (DFT) [1], discrete
Hartley transform (DHT) [2], discrete cosine transform (DCT)
and discrete sine transform (DST) [3], and Walsh-Hadamard

This work was supported by the National Natural Science Foundation of

China under Grant 60873048, by the National Basic Research Program of
China under Grant 2010CB732503, by a Program of Jiangsu Province under
Grant SBK200910055 and the Natural Science Foundation of Jiangsu
Province under Grant BK2008279. This work is also supported by the “Eiffel
Doctorate” excellence grant of the French Ministry of Foreign and European
Affairs.

J. Wu is with the Laboratory of Image Science and Technology, School
of Biological Science and Medical Engineering, Southeast University,
Nanjing 210096, China, the Centre de Recherche en Information Biomédicale
Sino-Français (CRIBs), Nanjing 210096, China, INSERM, U 642, 35000
Rennes, France, and the Laboratoire Traitement du Signal et de l’Image
(LTSI), Université de Rennes 1, 35000 Rennes, France (e-mail:
jswu@seu.edu.cn).

H. Shu and L. Wang are with the Laboratory of Image Science and
Technology, School of Computer Science and Engineering, Southeast
University, Nanjing 210096, China, and also with the Centre de Recherche en
Information Biomédicale Sino-Français (CRIBs), Nanjing 210096, China
(e-mail: shu. list@seu.edu.cn; wanglu@seu.edu.cn).

L. Senhadji is with INSERM, U 642, 35000 Rennes, France, with the
Laboratoire Traitement du Signal et de l’Image (LTSI), Université de Rennes
1, 35000 Rennes, France, and with the Centre de Recherche en Information
Biomédicale Sino–Français (CRIBs), 35000 Rennes, France (e-mail:
lotfi.senhadji@univ-rennes1.fr).

transform (WHT) [4], [5] have been introduced and found
wide applications in many scientific and technological areas.
Recently, Aung et al. introduced the sequency-ordered
complex Hadamard transform (SCHT) [6], which can be an
alternative of DFT in some applications requiring lower
computational complexity such as spectrum analysis and
image watermarking. It was shown that the SCHT performs
better than the WHT in asynchronous CDMA system [7]. Two
block-based algorithms including the radix-2
decimation-in-time (DIT) [6] and decimation-in-sequency
(DIS) [8] have been developed for fast computation of SCHT.

An interesting case appears when the spectrum of a
nonstationary process, such as speech, radar, biomedical, and
communication signals, is required. This leads to the so-called
sliding transform, also known as time-dependent or short-time
transform [1], to determine the time-varying spectrum.
Basically, the sliding transform means that the transform is
computed on a fixed-length window of the signal, which is
continuously updated with new samples as the oldest ones are
discarded [9]. In such cases, the signal properties (amplitudes,
frequencies, and phases) usually change with time, a single
orthogonal transform is not sufficient to describe the entire
signal [10], [11]. Assume that the window contains N complex
values xi, xi+1, …, xi+N–1 at time instant i, then, the sliding
orthogonal transform is defined by [10]

,

(1)
where wm is a window function, and is an

orthogonal basis set. YN(k, i) represent the orthogonal
transform of the windowed signal around time i.

In the past, the sliding orthogonal transforms have been
investigated and found applications in spectrogram analysis
and adaptive filter design. Since the computation of sliding
transform at each position of a sliding window is an intensive
task, many fast algorithms were proposed [9-24]. Among
them, the sliding FFT [14-16] and the sliding DFT [17-19]
have attracted many attentions due to their extensive
applications. By applying a property of radix-2 DIT FFT
algorithm, Farhang-Boroujeny et al. proposed an efficient
sliding FFT algorithm, which needs 4N–8log2N real
multiplications, log2N–1 multiplications with the imaginary
number j and 4N–4log2N–2 real additions [14], [15]. The
sliding FFT algorithm was then extended to other discrete
orthogonal transforms such as DHT, DCT, DST and WHT
[16]. Based on the circular shift property of DFT, Jacobsen
and Lyons developed a fast sliding DFT algorithm, which

Fast algorithms for the computation of sliding
sequency-ordered complex Hadamard transform

Jiasong Wu, Member, IEEE, Huazhong Shu, Senior Member, IEEE, Lu Wang and Lotfi Senhadji,
Senior Member, IEEE

T

 2

requires 4N–16 real multiplications, 2 multiplications with j
and 4N–6 real additions [18], [19].

Recently, special attention has also been paid on the fast
computation of sliding WHT [20-24] due to the real-time
application requirement of pattern matching in many cases,
such as video block motion estimation in H. 264 [21]. A fast
algorithm, based on the radix-2 DIS WHT algorithm, which
decomposes a length-N WHT into two length-N/2 WHTs plus
2N–2 additions, for the sliding WHT was proposed in [22].
This algorithm was further improved by Ben-Artzi et al. [23],
who proposed the gray code kernel algorithm that utilizes the
previously computed values in the leaves of the tree structure.
Ouyang and Cham [24] presented a more efficient algorithm
to compute the sliding WHT, which computes the length-N
WHT from two length-N/4 WHTs plus 3N/2+1 additions.

Inspired by the research work presented in [22] and [24],
we propose in this correspondence two fast algorithms for
efficient computation of sliding SCHTs. The first algorithm
consists of decomposing a length-N inverse SCHT (ISCHT)
into two length-N/2 ISCHTs. The second algorithm,
calculating the values of window i+N/4 from those of window
i and one length-N/4 ISCHT and one length-N/4 Modified
ISCHT (MISCHT), is implemented by two schemes to achieve
a good compromise between the computation complexity and
the implementation complexity.

 The paper is organized as follows. In Section II,
preliminaries about the forward and inverse sliding SCHTs are
given. The proposed sliding ISCHT algorithms are described
and the comparison results with other algorithms are provided
in Section III. Transform domain adaptive filtering is given in
Section IV to illustrate the potential application of sliding
ISCHT. Section V concludes the paper.

II. PRELIMINARY
In this section, we first give the definition of sliding SCHT
based on the general sliding transform given in (1) and SCHT
in [6]. Consider M input signal elements xi where i = 0, 1, …,
M–1, which is divided into overlapping windows of size N (M
> N). Let XN(i) = [xi, xi+1, …, xi+N–1]T and YN(i) = [yi, yi+1, …,
yi+N–1]T be respectively the complex input vector and the
transformed complex vector of the ith window, where T
denotes the transposition, and let N = 2n, n ≥ 1, the length-N
forward and inverse sliding SCHTs are defined as [6]

(2)

(3)
where the superscript H denotes the Hermitian transposition,
HN is the order-N ISCHT matrix whose elements are given by

 (4)

where
 (5)

 (6)

 (7)

 (8)

From (4) to (8), we have

(9)
If we ignore the normalization factor 1/N in (2), it can be

seen that the implementation of the forward sliding SCHT can
be obtained by transposing the signal flow graph of the sliding
ISCHT. Therefore, for simplicity, we take the sliding ISCHT
into consideration. Let

(10)

(11)
where HN(k), k = 0, 1, …, N–1, is the kth column of ISCHT

matrix . , k = 0, 1, …, N–1, is the kth row of

. Note that the matrix verifies the symmetry

property, that is, .
Let xN(k, i) be the kth ISCHT projection value for the ith
window, that is

 for k = 0, 1, …N–1; i = 0, 1, …, M–N, (12)

Let us also define

for k=1, 3, …, N–1; i = 0, 1, …, M–N; N = 2n, n ≥ 2.
(13)
Equation (3) can then be rewritten as

 (14)

 3

III. FAST ALGORITHMS FOR SLIDING ISCHT
In this section, we derive two fast algorithms for computing
the sliding ISCHT.

Algorithm 1: Decomposing a length-N ISCHT into two
length-N/2 ISCHTs
By performing a similar strategy as presented in [22], and by
utilizing a property of radix-2 DIS ISCHT algorithm, we
extend the algorithm proposed in [8] to the sliding ISCHT
algorithm. By performing the radix-2 DIS method on HN [8],
we have

(15)
where IN is the identity matrix of order N,

 (16)

and PN is the permutation matrix such that for the input vector
YN(i):

 (17)
Equation (15) can be rewritten as

(18)

(19)
where is the Kronecker product and denotes the lower
integer part of x. The starting point is

.
The tree structure of ISCHT matrix construction is shown in
Fig. 1. Using the projection relationships in (12) and (13), (18)
and (19) can be equivalently expressed as their projection
values:

(20)

 (21)

The starting point is .
So far, the algorithm in [8] has been extended to the

sliding ISCHT. The main difference between (18) and (20) is
that the latter computes the current projection values from
those of the last layer in the tree structure shown in Fig. 1.
Using a similar analysis of the computational complexity and

memory storage requirement reported in [14-16] and [22], it
can be seen that N/2–1 multiplications with j, 2(N–1) complex
additions, and 2N(log2N–1) words of memory are needed for
computing the length-N = 2n sliding ISCHT. Note that the
multiplication by j or –j can be realized by switching the real
and imaginary parts of the input with one sign changing, so
that there is no memory storage requirement. As stated in [8],
the operations of swapping and subtraction can be jointly
performed with the help of the 2:1 complex multiplexers to
accomplish the multiplications with –j. The proposed
Algorithm 1 is similar to the algorithm reported in [22], but
slightly different from the sliding FFT algorithms [14-16]
since the latter are based on the radix-2 DIT FFT algorithm.
Note that if we extend the radix-2 DIT ISCHT algorithm [6] to
sliding algorithm, we obtain exactly the same algorithm as
those presented in [14-16].

Algorithm 2: Computing the values of window i+N/4 from
those of window i and one length-N/4 ISCHT and one
length-N/4 MISCHT
Inspired by a research work presented in [24], we propose
another algorithm which computes the values of length-N
sliding ISCHT of window i+N/4 from those of window i.
A. Fast algorithm for N = 4
The proposed algorithm is shown in Table I, from which we
have

(22)
where

(23)
 (24)

B. Fast algorithm for N = 8
The proposed algorithm is shown in Table II, from which we
have

 (25)
where

 (26)

(27)

where S2 and P4 are respectively defined in (16) and (17).

C. Fast algorithm for N = 2n, n ≥ 3
Using the same strategy as for N = 4 and N = 8, we have

(28)

 4

 (29)

,
(30)

where SN and PN are given in (16) and (17).
The derivation of (28) is given in Appendix. Fig. 2 shows the
signal graph of the proposed Algorithm 2, whose
computational complexity and memory storage requirement
are analyzed as follows (assuming that the algorithm is
implemented in parallel):
1) The computation of (30) for u = N/4–1 needs 1 complex

addition. Note that the values of dN(i+u), u = 0, 1, …, N/4–2,
have already been obtained during the computation of xN(k,
i+v), v = 1, 2, …, N/4–1. Memory size of N/2 is required for
storing dN(i+u), u = 0, 1, …, N/4–1. The input yi+u and yi+N+u
for u = 0, 1, …, N/4–1, needs N memory, which can be
released after performing (30) since it will not be used in the
following steps.

2) The computation of (29) needs a length-N/4 ISCHT (HN/4)
and a length-N/4 MISCHT (HN/4SN/4). Memory size of N is
needed for storing the values tN/2(i+u), u = 0, 1, …, N/2 – 1.
We also assume that the computation of length-N/4 ISCHT
and length-N/4 modified ISCHT needs and

memory, respectively.
3) The computation of (28) needs N/2 multiplications with j

and N complex additions. The values of xN(k, i+v), v = 0, 1,
…, N/4–1, can be obtained by zero padding method reported
in [21]. For the implementation, we first distribute 2N
memory for xN(k, i), k = 0, 1, …, N–1, which is then overlaid
by xN(k, i+N/4), k = 0, 1, …, N–1 after performing (28).

Thus, the computational complexity and memory storage
requirement of Algorithm 2 are given by

 (31)

 (32)

Note that the additions shown in (31) are complex additions.
In the following, we discuss the way to compute HN/4 and

HN/4SN/4 appearing in (29). For the length-N/4 MISCHT
HN/4SN/4, the input data is first multiplied by SN/4, resulting in
the change of the two inputs: dN(i) replaced by jdN(i+N/4) and
jdN(i+N/8) by dN(i+N/8). This change makes the
implementation of HN/4SN/4 not exactly the same as that of
HN/4. So algorithm 1 is used for the implementation of
HN/4SN/4. On the contrary, the length-N/4 ISCHT HN/4 can be
implemented by either algorithm 1 or algorithm 2. Therefore,
two schemes are presented in the following.

Scheme 1: Implementing the length-N/4 ISCHT by algorithm 2
and length-N/4 MISCHT by algorithm 1.
In this case, (31) becomes

 (33)

with the initial value and

The memory complexity in (32) becomes

(34)

with the initial values and .
Scheme 2: Implementing both length-N/4 ISCHT and MISCHT
by algorithm 1
In this case, the computational complexity in (31) becomes

 for N = 2m, m ≥ 4. (35)
From (32), the memory storage requirement is given by

 (36)
It should be noted that the above algorithm can not be simply
obtained from the existing sliding DFT and related algorithms.
Generally speaking, the sliding DFT utilizes the first-order
shift property [17-19] to establish the relationship between
xN(k, i+1) and xN(k, i), and other discrete orthogonal transforms
(DCT, DST, DHT) use the first-order shift property [12] or the
second-order shift property [9-11] to establish the relationship
between xN(k, i+1), xN(k, i) and xN(k, i-1). However, the
proposed Algorithm 2 establishes the relationship between xN(k,
i+N/4) and xN(k, i).

When using the algorithms in [6] and [8], N(log2N–1)/4
multiplications with j, Nlog2N complex additions and 2N
memory are needed for length-N ISCHT. The comparison
results are shown in Table III. It can be seen from this table
that the proposed algorithms reduce significantly the real
additions compared to the algorithms reported in [6] and [8],
but at the cost of a little more memory storage requirement.
The computational complexity and the memory storage
requirement of the sliding FFT in [14-16] and sliding DFT in
[17-19] are shown in Table IV. For comparison purpose,
Tables III and IV give the real multiplications, multiplications
with j and real additions where one complex multiplication is
implemented by four real multiplications and two real
additions. Note also that when analyzing the complexity of the
sliding FFT and the sliding DFT, the savings of the special

 5

twiddle factors ()
have been taken into account. As can be seen from Tables III
and IV, the proposed algorithms are also more efficient than
the algorithms shown in [14-19]. This is because the proposed
algorithms only need the multiplications with j and real
additions, and can save the memory for storing the twiddle
factors.

The computation of the forward SCHT, if ignoring the
normalization factor 1/N, can be simply realized by replacing j

by –j in (16), HN by in (18)-(21) and x by y in (28)-(30).

IV. AN APPLICATION EXAMPLE
In this section, we gave an example of ISCHT domain

least-mean-square (LMS) adaptive filter with supporting
simulation result to illustrate the potential application.

Transform domain LMS adaptive filters (TDLMSAF)
introduced by Narayan et al.[25], exploit the de-correlation
properties of some well-known signal transforms such as DFT,
DCT, DHT and WHT, in order to pre-whiten the input data
and speed up filter convergence [p413, 26]. For a given
process x(n), the performance of the TDLMSAF algorithm
may vary significantly depending on the selection of the
transformation matrix T. A transform which performs well for
a given input process may perform poorly once the statistics of
the input change [p210-p211, 27].

 Similar to the DFT domain LMS adaptive filter [25-28],
the ISCHT domain LMS adaptive filter algorithm, shown in
Fig. 3, is described as follows:

The input signal vector is first transformed into
ISCHT domain by

 (37)

Then, is multiplied by the ISCHT domain adaptive
weight vector

 (38)
to obtain the filter output

 (39)
The output error is given by

 (40)
where d(i) denotes the desired response.
The weight vector WN(i) is updated by the power-normalized
LMS algorithm

(41)

where µ is a positive step-size, e(i) is the output error and D(i)
is a diagonal matrix of the estimated input powers which is
defined by

 (42)

The aforementioned transform domain LMS adaptive
filters with the proposed sliding ISCHT algorithms, sliding
FFT [14-16] and sliding DFT [17-19] have been implemented
using “C++” programming language. The execution time

comparison and signal-to-noise ratio (SNR) analysis between
the proposed algorithms and sliding FFT and sliding DFT are
carried out on a PC machine, which has an AMD single core
CPU with speed of 3200MHz and 4096MB RAM. The run
time of these algorithms have been calculated using GNU
GCC complier version 3.4.5.

In this example, a 7 Hz sinusoid with 1024 samples per
second corrupted by additive Gaussian white noise with SNR
equal to 0dB is processed through the 32-tap filter. The
parameters are set as µ = 0.01 and β = 0.9. The resulting SNRs
of filtered signals by TDLMSAF using sliding ISCHT, sliding
FFT, and sliding DFT are exactly the same (6.98dB). Fig. 4
shows the desired signal, corrupted signal and the filtered
signals processed by TDLMSAF. Table V shows the
execution time of sliding transforms and their corresponding
TDLMSAFs. The execution times represent the average
obtained by repeating the execution of the algorithms. It can
be seen from this table that the proposed sliding ISCHT saves
10.0%-13.9% compared to sliding DFT, and saves
22.4%-25.8% compared to sliding FFT in the execution of
sliding transformations. While the TDLMSAF with proposed
sliding ISCHT is 3.3%-4.1% faster than TDLMSAF with
sliding DFT, and 6.4%-7.3% faster than TDLMSAF with
sliding FFT.

V. CONCLUSION
In this correspondence, we have presented two fast

algorithms for computing the forward and inverse sliding
SCHT. The arithmetic complexity order of the proposed
algorithms is N, a factor of log2N improvement is made over
the block-based algorithm for the length-N SCHT. The
proposed algorithms are also more efficient than that of the
sliding FFT algorithm and the sliding DFT algorithm. The
application of sliding ISCHT to transform domain adaptive
filtering (TDAF) has been discussed. Note that the proposed
algorithms can be easily extended to multidimensional case.

APPENDIX
To prove (28), we need first the following lemma:

Lemma 1: Let hN(k, l) be the (kth, lth) element of the
matrix HN, then we have

Proof: By the definition of hN(k, l) given in (4), we have

(A1)
where

(A2)
Using (7), (6) becomes

 6

 (A3)

On the other hand, it can be deduced from (8) that

 (A4)

 (A5)

Using (6), (A4) and (A3), we have

 (A6)

Substituting (A6) into (A1) leads to

 (A7)

The proof of can be
done in a similar way by using the relationship (A5).
Lemma 2: The following relationship holds for k = 0, 1, …,
N/2 – 1, l = 0, 1, …, N/4 – 1

 . (A8)
Proof: Letting m = 2k, m and m+1 can then be expressed in
binary representation as

 (A9)

 (A10)
Thus

(A11)

 (A12)

Since 0 ≤ l ≤ N/4–1, we have , it can be deduced

from (6) and (8) that

 (A13)

The proof has been completed.
Based on the above two lemma, we provide the derivation of
(28) in the following.
Equation (12) can be written as

 (A14)

Similarly,

 (A15)
Using Lemma 1, (A14) and (A15) become

(A16)

 (A17)

(A16) can be rewritten as

(A18)
Substituting (A18) into (A17), we have

 (A19)
where

 , l = 0, 1, …, N/4–1, (A20)

 k = 0, 1, …, N–1. (A21)

 7

From (18), we have
 , k = 0, 1, …, N/2–1, l = 0, 1, …,

N/4–1. (A22)
Using Lemma 2 and (A22), we obtain

(A23)
The above equation can be expressed in matrix representation
as

 (A24)

Using the relationship and (15), we

obtain

(A25)
The proof of (28) has been completed.

ACKNOWLEDGMENT
The authors would like to thank the reviewers and Associate Editor Dr.
Gross for their insightful suggestions for improving the manuscript. We
are also thankful to Dr. Aung for providing his MATLAB code
constructing the SCHT matrix and Dr. Ouyang for helpful discussion.

REFERENCES
[1] O.K. Ersoy, “A comparative review of real and complex Fourier-related

transforms,” Proc. IEEE, vol. 82, pp. 429-447, 1994..
[2] N.C. Hu, H. I. Chang, and O. K. Ersoy, “Generalized discrete Hartley

transforms,” IEEE Trans. Signal Process., vol. 40, no. 12, pp.
2931-2940, 1992.

[3] A.K. Jain, “A sinusoidal family of unitary transforms,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 1, no. 10, pp. 356-365, 1979.

[4] S. Boussakta and A.G.J. Holt, “Fast algorithm for calculation of both
Walsh-Hadamard and Fourier transforms (FWFTs),” Electron. Lett., vol.
25, no. 20, pp. 1352–1354, 1989.

[5] B. Arambepola and K. Partington, “Walsh-Hadamard transform for
complex-valued signal,” Electron. Lett., vol. 28, no. 3, pp. 259-261,
1992.

[6] A. Aung, B.P. Ng, and S. Rahardja, “Sequency-ordered complex
Hadamard transform: Properties, computational complexity and
applications,” IEEE Trans. Signal Process., vol. 56, no. 8, pp.
3562–3571, Aug. 2008.

[7] A. Aung, B.P. Ng, and S. Rahardja, “Performance of SCHT sequences
in asynchronous CDMA system,” IEEE Commun. Lett., vol. 11, pp.
641–643, 2007.

[8] G. Bi, A. Aung, and B.P. Ng, “Pipelined hardware structure for
sequency-ordered complex Hadamard transform,” IEEE Signal Process.
Lett., vol. 15, pp. 401–404, 2008.

[9] J.A.R. Macias and A.G. Exposito, “Recursive formulation of short-time
discrete trigonometric transforms,” IEEE Trans. Circuits.Syst. II, vol. 45,
no. 4, pp. 525–527, Apr. 1998.

[10] V. Kober, “Fast algorithms for the computation of sliding discrete
sinusoidal transforms,” IEEE Trans. Signal Process., vol. 52, no. 6, pp.
1704–1710, Jun. 2004.

[11] V. Kober, “Fast algorithms for the computation of sliding discrete
Hartley transforms,” IEEE Trans. Signal Process., vol. 55, no. 6, pp.
2937–2944, Jun. 2007.

[12] J.-C. Liu and T.-P. Lin, “Running DHT and real-time DHT analyzer,”
Electron. Lett., vol. 24, no. 12, pp. 762–763, 1988.

[13] M. Jarmasz and G.A. Martens, “Simple design for a fast sliding DFT
computer,” IEEE ICASSP’82. vol. 7, May 1982, pp. 502 – 505.

[14] B. Farhang-Boroujeny and Y.C. Lim, “A comment on the computational
complexity of sliding FFT,” IEEE Trans. Circuits Syst., vol. 39, no. 12,
pp. 875-876, Dec. 1992.

[15] B. Farhang-Boroujeny and S. Gazor, “Generalized sliding FFT and its
application to implementation of block LMS adaptive filters,” IEEE
Trans. Signal Process., vol. 42, no. 3, pp. 532-538, Mar. 1994.

[16] B. Farhang-Boroujeny, “Order of N complexity transform domain
adaptive filters,” IEEE Trans. Circuits.Syst. II, vol. 42, no. 7, pp.
478–480, Jul. 1995.

[17] A. Papoulis, Signal analysis. New York: McGraw-Hill, 1977.
[18] E. Jacobsen and R. Lyons, “The sliding DFT,” IEEE Signal Process.

Mag., vol. 20, no. 2, pp. 74–80, Mar. 2003.
[19] E. Jacobsen and R. Lyons, “An update to the sliding DFT,” IEEE Signal

Process. Mag., vol. 21, no. 1, pp. 110–111, Jan. 2004.
[20] B. Mozafari and M.H. Savoji, “An efficient recursive algorithm and an

explicit formula for calculating update vectors of running
Walsh-Hadamard transform,” IEEE ISSPA’07, Feb. 2007, pp. 1-4.

[21] Y. Moshe and H. Hel-Or, “Video block motion estimation based on
gray-code kernels,” IEEE Trans. Image Process., vol. 18, no. 10, pp.
2243-2254, Oct. 2009.

[22] Y. Hel-Or and H. Hel-Or, “Real time pattern matching using projection
kernels,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 9, pp.
1430-1445, Sept. 2005.

[23] G. Ben-Artzi, H. Hel-Or, and Y. Hel-Or, “The gray-code filter kernels,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 3, pp.382-393, Mar.
2007.

[24] W. Ouyang and W.K. Cham, “Fast algorithm for Walsh Hadamard
transform on sliding windows,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 1, pp. 165-171, 2009.

[25] S.S. Narayan, A.M. Peterson, and M.J. Narashima, “Transform domain
LMS algorithm,” IEEE Trans. Acoust., Speech, Signal Process., vol. 31,
no. 3, pp. 609-615, Jun. 1983.

[26] A.H. Sayed, Adaptive Filters. New York: Wiley, 2008.
[27] B. Farhang-Boroujeny, Adaptive Filters: Theory and Applications. New

York: Wiley, 1998.
[28] J.J. Shynk, “Frequency-domain and multirate adaptive filtering,” IEEE

Signal Process. Mag., vol. 9, no. 1, pp. 14-37, Jan. 1992.

 8

Fig.1 Tree structure for the ISCHT matrix construction

Fig. 2 Signal flow graph of the length-N sliding ISCHT transform (algorithm 2)

Fig.3 Block diagram of ISCHT domain adaptive filtering

Fig. 4 Transform domain adaptive filtering using sliding ISCHT and sliding DFT

 9

Table I Fast algorithm for length-4 ISCHT
 yi yi+1 yi+2 yi+3 yi+4 Proposed algorithm 2
x4(0,i)
x4(0,i+1)

1 1 1 1
 1 1 1 1 x4(0,i+1)= x4(0,i)-(yi-yi+4)

x4(1,i)
x4(1,i+1)

1 j -1 -j
1 j -1 -j x4(1,i+1)=-j[x4(1,i)-(yi-yi+4)]

x4(2,i)
x4(2,i+1)

1 -1 1 -1
 1 -1 1 -1 x4(2,i+1)=-[x4(2,i)-(yi-yi+4)]

x4(3,i)
x4(3,i+1)

1 -j -1 j
1 -j -1 j x4(3,i+1)=j[x4(3,i)-(yi-yi+4)]

Table II Fast algorithm for length-8 ISCHT

 yi yi+1 yi+2 yi+3 yi+4 yi+5 yi+6 yi+7 yi+8 yi+9 Proposed algorithm 2
x8(0,i)
x8(0,i+2)

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

x8(0,i+2)=
x8(0,i)–[(yi - yi+8)+(yi+1- yi+9)]

x8(1,i)
x8(1,i+2)

1 1 j j -1 -1 -j -j
1 1 j j -1 -1 -j -j

x8(1,i+2)=
-j{x8(1,i)-[(yi - yi+8)+(yi+1- yi+9)]}

x8(2,i)
x8(2,i+2)

1 j -1 -j 1 j -1 -j
1 j -1 -j 1 j -1 -j

x8(2,i+2)=
–{x8(2,i)–[(yi–yi+8)+j(yi+1–yi+9)]}

x8(3,i)
x8(3,i+2)

1 j -j 1 -1 -j j -1
1 j -j 1 -1 -j j -1

x8(3,i+2)=
j{x8(3,i)–[(yi–yi+8)+j(yi+1–yi+9)]}

x8(4,i)
x8(4,i+2)

1 -1 1 -1 1 -1 1 -1
1 -1 1 -1 1 -1 1 -1

x8(4,i+2)=
x8(4,i)–[(yi–yi+8)–(yi+1–yi+9)]

x8(5,i)
x8(5,i+2)

1 -1 j -j -1 1 -j j
1 -1 j -j -1 1 -j j

x8(5,i+2)=
–j{x8(5,i)–[(yi–yi+8)–(yi+1- yi+9)]}

x8(6,i)
x8(6,i+2)

1 -j -1 j 1 -j -1 j
1 -j -1 j 1 -j -1 j

x8(6,i+2)=
–{x8(6,i)–[(yi–yi+8)–j(yi+1–yi+9)]}

x8(7,i)
x8(7,i+2)

1 -j -j -1 -1 j j 1
1 -j -j -1 -1 j j 1

x8(7,i+2)=
j{x8(7,i)–[(yi–yi+8) –j(yi+1–yi+9)]}

Table III Comparison results of the proposed algorithms with the block-based ones in [6] and [8]. “Muls (j)” means multiplication with j, “Adds” means real

additions, “Me” denotes memory (words)
Algorithm 2 Algorithms in [6] and

[8]
Algorithm 1

Scheme 1 Scheme 2 N
Muls

(j) Adds Me Muls(j) Adds Me Muls (j) Adds Me Muls (j) Adds Me

4 1 16 8 1 12 8 2 10 10 2 10 10
8 4 48 16 3 26 32 5 26 28 5 26 28

16 12 128 32 7 60 96 13 56 56 13 58 56
32 32 320 64 15 124 256 28 120 112 27 122 112

N
(≥16)

N(log2N
–1)/4

2N
log2N 2N N/2–1 4N–4 2N(log2N

–1)

N-log4N- 1
or

N-log4(N/2) –2

4N-2log4N-4
or

4N-2log4(N/2) –4

N/2+max{3N,
+

N(log2N–3)}
7N/8–1 4N–6 N/2+max{3N,

N(log2N–3)}

Table IV The computational complexity and the memory complexity of the sliding FFT in [14]-[16] and sliding DFT in [17]- [19]. “Muls” represents real
multiplications, “Muls (j)” means multiplication with j , “Adds” means real additions. “Me” denotes memory (words)

Sliding FFT
Algorithms in [14]-[16]

Sliding DFT
[17]-[19] N

Muls Muls (j) Adds Me Muls Muls (j) Adds Me
4 0 1 6 8 0 2 10 10
8 8 2 18 40 16 2 26 26

16 32 3 46 120 48 2 58 58
32 88 4 106 312 112 2 122 122

N (≥4) 4N–8log2N log2N–1 4N–4log2N-2 2Nlog2N-8 4N-16 2 4N-6 4N-6

Table V Comparison of execution time on an AMD single core CPU using the GCC complier

 Execution time of sliding
transformation (ms)

Complete execution time of
filtering (ms)

Algorithm 1 2.2771 12.1219
Algorithm 2 (scheme 1) 2.3377 12.1945

Sliding ISCHT

Algorithm 2 (scheme 2) 2.3813 12.2297
Sliding FFT [14]-[16] 3.0681 13.0721
Sliding DFT [17]-[19] 2.6437 12.6426

