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Abstract—Fast algorithms for computing the forward and 

inverse sequency-ordered complex Hadamard transforms 
(SCHT) in a sliding window are presented. The first algorithm 
consists of decomposing a length-N inverse SCHT (ISCHT) into 
two length-N/2 ISCHTs. The second algorithm, calculating the 
values of window i+N/4 from those of window i and one 
length-N/4 ISCHT and one length-N/4 modified ISCHT 
(MISCHT), is implemented by two schemes to achieve a good 
compromise between the computation complexity and the 
implementation complexity. The forward SCHT algorithm can be 
obtained by transposing the signal flow graph of the ISCHT. The 
proposed algorithms require O(N) arithmetic operations and thus 
are more efficient than the block-based algorithms as well as 
those based on the sliding FFT or the sliding DFT. The 
application of the sliding ISCHT in transform domain adaptive 
filtering (TDAF) is also discussed with supporting simulation 
results. 
 

Index Terms—Fast algorithm, sequency-ordered complex 
Hadamard transform, sliding algorithm 
 

I. INTRODUCTION 
HE discrete orthogonal transforms play an important role 
in the fields of digital signal processing, filtering and 
communications. In the past decades, various transforms 

including discrete Fourier transform (DFT) [1], discrete 
Hartley transform (DHT) [2], discrete cosine transform (DCT) 
and discrete sine transform (DST) [3], and Walsh-Hadamard 
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transform (WHT) [4], [5] have been introduced and found 
wide applications in many scientific and technological areas. 
Recently, Aung et al. introduced the sequency-ordered 
complex Hadamard transform (SCHT) [6], which can be an 
alternative of DFT in some applications requiring lower 
computational complexity such as spectrum analysis and 
image watermarking. It was shown that the SCHT performs 
better than the WHT in asynchronous CDMA system [7]. Two 
block-based algorithms including the radix-2 
decimation-in-time (DIT) [6] and decimation-in-sequency 
(DIS) [8] have been developed for fast computation of SCHT. 

An interesting case appears when the spectrum of a 
nonstationary process, such as speech, radar, biomedical, and 
communication signals, is required. This leads to the so-called 
sliding transform, also known as time-dependent or short-time 
transform [1], to determine the time-varying spectrum. 
Basically, the sliding transform means that the transform is 
computed on a fixed-length window of the signal, which is 
continuously updated with new samples as the oldest ones are 
discarded [9]. In such cases, the signal properties (amplitudes, 
frequencies, and phases) usually change with time, a single 
orthogonal transform is not sufficient to describe the entire 
signal [10], [11]. Assume that the window contains N complex 
values xi, xi+1, …, xi+N–1 at time instant i, then, the sliding 
orthogonal transform is defined by [10] 

,                                            

(1) 
where wm is a window function, and is an 

orthogonal basis set. YN(k, i) represent the orthogonal 
transform of the windowed signal around time i. 

In the past, the sliding orthogonal transforms have been 
investigated and found applications in spectrogram analysis 
and adaptive filter design. Since the computation of sliding 
transform at each position of a sliding window is an intensive 
task, many fast algorithms were proposed [9-24]. Among 
them, the sliding FFT [14-16] and the sliding DFT [17-19] 
have attracted many attentions due to their extensive 
applications. By applying a property of radix-2 DIT FFT 
algorithm, Farhang-Boroujeny et al. proposed an efficient 
sliding FFT algorithm, which needs 4N–8log2N real 
multiplications, log2N–1 multiplications with the imaginary 
number j and 4N–4log2N–2 real additions [14], [15]. The 
sliding FFT algorithm was then extended to other discrete 
orthogonal transforms such as DHT, DCT, DST and WHT 
[16]. Based on the circular shift property of DFT, Jacobsen 
and Lyons developed a fast sliding DFT algorithm, which 
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requires 4N–16 real multiplications, 2 multiplications with j 
and 4N–6 real additions [18], [19]. 

Recently, special attention has also been paid on the fast 
computation of sliding WHT [20-24] due to the real-time 
application requirement of pattern matching in many cases, 
such as video block motion estimation in H. 264 [21]. A fast 
algorithm, based on the radix-2 DIS WHT algorithm, which 
decomposes a length-N WHT into two length-N/2 WHTs plus 
2N–2 additions, for the sliding WHT was proposed in [22]. 
This algorithm was further improved by Ben-Artzi et al. [23], 
who proposed the gray code kernel algorithm that utilizes the 
previously computed values in the leaves of the tree structure. 
Ouyang and Cham [24] presented a more efficient algorithm 
to compute the sliding WHT, which computes the length-N 
WHT from two length-N/4 WHTs plus 3N/2+1 additions. 

Inspired by the research work presented in [22] and [24], 
we propose in this correspondence two fast algorithms for 
efficient computation of sliding SCHTs. The first algorithm 
consists of decomposing a length-N inverse SCHT (ISCHT) 
into two length-N/2 ISCHTs. The second algorithm, 
calculating the values of window i+N/4 from those of window 
i and one length-N/4 ISCHT and one length-N/4 Modified 
ISCHT (MISCHT), is implemented by two schemes to achieve 
a good compromise between the computation complexity and 
the implementation complexity. 

    The paper is organized as follows. In Section II, 
preliminaries about the forward and inverse sliding SCHTs are 
given. The proposed sliding ISCHT algorithms are described 
and the comparison results with other algorithms are provided 
in Section III. Transform domain adaptive filtering is given in 
Section IV to illustrate the potential application of sliding 
ISCHT. Section V concludes the paper. 

II. PRELIMINARY 
In this section, we first give the definition of sliding SCHT 
based on the general sliding transform given in (1) and SCHT 
in [6]. Consider M input signal elements xi where i = 0, 1, …, 
M–1, which is divided into overlapping windows of size N (M 
> N). Let XN(i) = [xi, xi+1, …, xi+N–1]T and YN(i) = [yi, yi+1, …, 
yi+N–1]T be respectively the complex input vector and the 
transformed complex vector of the ith window, where T 
denotes the transposition, and let N = 2n, n ≥ 1, the length-N 
forward and inverse sliding SCHTs are defined as [6] 

                                                             

(2) 
                                                                 

(3) 
where the superscript H denotes the Hermitian transposition, 
HN is the order-N ISCHT matrix whose elements are given by 

                                              (4) 

where 
                                    (5) 

                                (6) 

                                   (7) 

    (8) 

From (4) to (8), we have 

      

                              

(9) 
If we ignore the normalization factor 1/N in (2), it can be 

seen that the implementation of the forward sliding SCHT can 
be obtained by transposing the signal flow graph of the sliding 
ISCHT. Therefore, for simplicity, we take the sliding ISCHT 
into consideration. Let 

                                         
(10) 

                  

(11) 
where HN(k), k = 0, 1, …, N–1, is the kth column of ISCHT 

matrix . , k = 0, 1, …, N–1, is the kth row of 

. Note that the matrix  verifies the symmetry 

property, that is, . 
Let xN(k, i) be the kth ISCHT projection value for the ith 
window, that is 

 
  for k = 0, 1, …N–1; i = 0, 1, …, M–N,                       (12) 

Let us also define 
  

for k=1, 3, …, N–1; i = 0, 1, …, M–N; N = 2n, n ≥ 2.    
(13) 
Equation (3) can then be rewritten as 

 (14) 
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III. FAST ALGORITHMS FOR SLIDING ISCHT 
In this section, we derive two fast algorithms for computing 
the sliding ISCHT. 
 
Algorithm 1: Decomposing a length-N ISCHT into two 
length-N/2 ISCHTs 
By performing a similar strategy as presented in [22], and by 
utilizing a property of radix-2 DIS ISCHT algorithm, we 
extend the algorithm proposed in [8] to the sliding ISCHT 
algorithm. By performing the radix-2 DIS method on HN [8], 
we have 

                         

(15) 
where IN is the identity matrix of order N, 

                                                     (16) 

and PN is the permutation matrix such that for the input vector 
YN(i): 

 (17) 
Equation (15) can be rewritten as 

    

(18) 

                           

(19) 
where  is the Kronecker product and  denotes the lower 
integer part of x. The starting point is 

. 
The tree structure of ISCHT matrix construction is shown in 
Fig. 1. Using the projection relationships in (12) and (13), (18) 
and (19) can be equivalently expressed as their projection 
values: 

  

(20) 

                 (21) 

The starting point is .                                                        
So far, the algorithm in [8] has been extended to the 

sliding ISCHT. The main difference between (18) and (20) is 
that the latter computes the current projection values from 
those of the last layer in the tree structure shown in Fig. 1. 
Using a similar analysis of the computational complexity and 

memory storage requirement reported in [14-16] and [22], it 
can be seen that N/2–1 multiplications with j, 2(N–1) complex 
additions, and 2N(log2N–1) words of memory are needed for 
computing the length-N = 2n sliding ISCHT. Note that the 
multiplication by j or –j can be realized by switching the real 
and imaginary parts of the input with one sign changing, so 
that there is no memory storage requirement. As stated in [8], 
the operations of swapping and subtraction can be jointly 
performed with the help of the 2:1 complex multiplexers to 
accomplish the multiplications with –j. The proposed 
Algorithm 1 is similar to the algorithm reported in [22], but 
slightly different from the sliding FFT algorithms [14-16] 
since the latter are based on the radix-2 DIT FFT algorithm. 
Note that if we extend the radix-2 DIT ISCHT algorithm [6] to 
sliding algorithm, we obtain exactly the same algorithm as 
those presented in [14-16].  
 
Algorithm 2: Computing the values of window i+N/4 from 
those of window i and one length-N/4 ISCHT and one 
length-N/4 MISCHT 
Inspired by a research work presented in [24], we propose 
another algorithm which computes the values of length-N 
sliding ISCHT of window i+N/4 from those of window i. 
A. Fast algorithm for N = 4 
The proposed algorithm is shown in Table I, from which we 
have 

    

(22) 
where 

                                             

(23) 
                                                                 (24) 

 
B. Fast algorithm for N = 8 
The proposed algorithm is shown in Table II, from which we 
have 

 

                                                                                            (25) 
where 

              (26) 

                                              
(27) 

where S2 and P4 are respectively defined in (16) and (17). 
 
C. Fast algorithm for N = 2n, n ≥ 3 
Using the same strategy as for N = 4 and N = 8, we have 

  

(28) 
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                  (29) 

,                  
(30) 

where SN and PN are given in (16) and (17). 
The derivation of (28) is given in Appendix. Fig. 2 shows the 
signal graph of the proposed Algorithm 2, whose 
computational complexity and memory storage requirement 
are analyzed as follows (assuming that the algorithm is 
implemented in parallel): 
1) The computation of (30) for u = N/4–1 needs 1 complex 

addition. Note that the values of dN(i+u), u = 0, 1, …, N/4–2, 
have already been obtained during the computation of xN(k, 
i+v), v = 1, 2, …, N/4–1. Memory size of N/2 is required for 
storing dN(i+u), u = 0, 1, …, N/4–1. The input yi+u and yi+N+u 
for u = 0, 1, …, N/4–1, needs N memory, which can be 
released after performing (30) since it will not be used in the 
following steps. 

2) The computation of (29) needs a length-N/4 ISCHT (HN/4) 
and a length-N/4 MISCHT (HN/4SN/4). Memory size of N is 
needed for storing the values tN/2(i+u), u = 0, 1, …, N/2 – 1. 
We also assume that the computation of length-N/4 ISCHT 
and length-N/4 modified ISCHT needs and 

memory, respectively. 
3) The computation of (28) needs N/2 multiplications with j 

and N complex additions. The values of xN(k, i+v), v = 0, 1, 
…, N/4–1, can be obtained by zero padding method reported 
in [21]. For the implementation, we first distribute 2N 
memory for xN(k, i), k = 0, 1, …, N–1, which is then overlaid 
by xN(k, i+N/4), k = 0, 1, …, N–1 after performing (28). 

Thus, the computational complexity and memory storage 
requirement of Algorithm 2 are given by 

                (31) 

 (32) 

Note that the additions shown in (31) are complex additions. 
In the following, we discuss the way to compute HN/4 and 

HN/4SN/4 appearing in (29). For the length-N/4 MISCHT 
HN/4SN/4, the input data is first multiplied by SN/4, resulting in 
the change of the two inputs: dN(i) replaced by jdN(i+N/4) and 
jdN(i+N/8) by dN(i+N/8). This change makes the 
implementation of HN/4SN/4 not exactly the same as that of 
HN/4. So algorithm 1 is used for the implementation of 
HN/4SN/4. On the contrary, the length-N/4 ISCHT HN/4 can be 
implemented by either algorithm 1 or algorithm 2. Therefore, 
two schemes are presented in the following. 
 

Scheme 1: Implementing the length-N/4 ISCHT by algorithm 2 
and length-N/4 MISCHT by algorithm 1. 
In this case, (31) becomes 
 

           (33) 

with the initial value  and 

 
The memory complexity in (32) becomes 

 

(34) 

with the initial values  and . 
Scheme 2: Implementing both length-N/4 ISCHT and MISCHT 
by algorithm 1 
In this case, the computational complexity in (31) becomes 

   

 for N = 2m, m ≥ 4.              (35) 
From (32), the memory storage requirement is given by 

             (36) 
It should be noted that the above algorithm can not be simply 
obtained from the existing sliding DFT and related algorithms. 
Generally speaking, the sliding DFT utilizes the first-order 
shift property [17-19] to establish the relationship between 
xN(k, i+1) and xN(k, i), and other discrete orthogonal transforms 
(DCT, DST, DHT) use the first-order shift property [12] or the 
second-order shift property [9-11] to establish the relationship 
between xN(k, i+1), xN(k, i) and xN(k, i-1). However, the 
proposed Algorithm 2 establishes the relationship between xN(k, 
i+N/4) and xN(k, i). 

When using the algorithms in [6] and [8], N(log2N–1)/4 
multiplications with j, Nlog2N complex additions and 2N 
memory are needed for length-N ISCHT. The comparison 
results are shown in Table III. It can be seen from this table 
that the proposed algorithms reduce significantly the real 
additions compared to the algorithms reported in [6] and [8], 
but at the cost of a little more memory storage requirement. 
The computational complexity and the memory storage 
requirement of the sliding FFT in [14-16] and sliding DFT in 
[17-19] are shown in Table IV. For comparison purpose, 
Tables III and IV give the real multiplications, multiplications 
with j and real additions where one complex multiplication is 
implemented by four real multiplications and two real 
additions. Note also that when analyzing the complexity of the 
sliding FFT and the sliding DFT, the savings of the special 
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twiddle factors ( ) 
have been taken into account. As can be seen from Tables III 
and IV, the proposed algorithms are also more efficient than 
the algorithms shown in [14-19]. This is because the proposed 
algorithms only need the multiplications with j and real 
additions, and can save the memory for storing the twiddle 
factors. 

The computation of the forward SCHT, if ignoring the 
normalization factor 1/N, can be simply realized by replacing j 

by –j in (16), HN by  in (18)-(21) and x by y in (28)-(30). 

IV. AN APPLICATION EXAMPLE 
In this section, we gave an example of ISCHT domain 

least-mean-square (LMS) adaptive filter with supporting 
simulation result to illustrate the potential application. 

Transform domain LMS adaptive filters (TDLMSAF) 
introduced by Narayan et al.[25], exploit the de-correlation 
properties of some well-known signal transforms such as DFT, 
DCT, DHT and WHT, in order to pre-whiten the input data 
and speed up filter convergence [p413, 26]. For a given 
process x(n), the performance of the TDLMSAF algorithm 
may vary significantly depending on the selection of the 
transformation matrix T. A transform which performs well for 
a given input process may perform poorly once the statistics of 
the input change [p210-p211, 27]. 

  Similar to the DFT domain LMS adaptive filter [25-28], 
the ISCHT domain LMS adaptive filter algorithm, shown in 
Fig. 3, is described as follows: 

The input signal vector  is first transformed into 
ISCHT domain by 

  (37) 

Then, is multiplied by the ISCHT domain adaptive 
weight vector 

                 (38) 
to obtain the filter output 

                                                  (39) 
The output error is given by 

                                                       (40) 
where d(i) denotes the desired response. 
The weight vector WN(i) is updated by the power-normalized 
LMS algorithm 

                       
(41) 

where µ is a positive step-size, e(i) is the output error and D(i) 
is a diagonal matrix of the estimated input powers which is 
defined by 

  (42) 

The aforementioned transform domain LMS adaptive 
filters with the proposed sliding ISCHT algorithms, sliding 
FFT [14-16] and sliding DFT [17-19] have been implemented 
using “C++” programming language. The execution time 

comparison and signal-to-noise ratio (SNR) analysis between 
the proposed algorithms and sliding FFT and sliding DFT are 
carried out on a PC machine, which has an AMD single core 
CPU with speed of 3200MHz and 4096MB RAM. The run 
time of these algorithms have been calculated using GNU 
GCC complier version 3.4.5. 

In this example, a 7 Hz sinusoid with 1024 samples per 
second corrupted by additive Gaussian white noise with SNR 
equal to 0dB is processed through the 32-tap filter. The 
parameters are set as µ = 0.01 and β = 0.9. The resulting SNRs 
of filtered signals by TDLMSAF using sliding ISCHT, sliding 
FFT, and sliding DFT are exactly the same (6.98dB). Fig. 4 
shows the desired signal, corrupted signal and the filtered 
signals processed by TDLMSAF. Table V shows the 
execution time of sliding transforms and their corresponding 
TDLMSAFs. The execution times represent the average 
obtained by repeating the execution of the algorithms. It can 
be seen from this table that the proposed sliding ISCHT saves 
10.0%-13.9% compared to sliding DFT, and saves 
22.4%-25.8% compared to sliding FFT in the execution of 
sliding transformations. While the TDLMSAF with proposed 
sliding ISCHT is 3.3%-4.1% faster than TDLMSAF with 
sliding DFT, and 6.4%-7.3% faster than TDLMSAF with 
sliding FFT. 

V. CONCLUSION 
In this correspondence, we have presented two fast 

algorithms for computing the forward and inverse sliding 
SCHT. The arithmetic complexity order of the proposed 
algorithms is N, a factor of log2N improvement is made over 
the block-based algorithm for the length-N SCHT. The 
proposed algorithms are also more efficient than that of the 
sliding FFT algorithm and the sliding DFT algorithm. The 
application of sliding ISCHT to transform domain adaptive 
filtering (TDAF) has been discussed. Note that the proposed 
algorithms can be easily extended to multidimensional case. 

APPENDIX 
To prove (28), we need first the following lemma: 

Lemma 1: Let hN(k, l) be the (kth, lth) element of the 
matrix HN, then we have 

 

Proof: By the definition of hN(k, l) given in (4), we have 

                     

(A1) 
where 

                

(A2) 
Using (7), (6) becomes 
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                                 (A3) 

On the other hand, it can be deduced from (8) that 

                               (A4) 

                    (A5) 

Using (6), (A4) and (A3), we have 

          (A6) 

Substituting (A6) into (A1) leads to 

                      (A7) 

The proof of  can be 
done in a similar way by using the relationship (A5). 
Lemma 2: The following relationship holds for k = 0, 1, …, 
N/2 – 1, l = 0, 1, …, N/4 – 1 

  .                                         (A8) 
Proof: Letting m = 2k, m and m+1 can then be expressed in 
binary representation as 

                                            (A9) 

                              (A10) 
Thus 

   

(A11) 

                (A12) 

Since 0 ≤ l ≤ N/4–1, we have , it can be deduced 

from (6) and (8) that 

                                (A13) 

The proof has been completed. 
Based on the above two lemma, we provide the derivation of 
(28) in the following. 
Equation (12) can be written as 

     (A14) 

Similarly, 

                 (A15) 
Using Lemma 1, (A14) and (A15) become 

     

(A16) 

                  (A17) 

(A16) can be rewritten as 

                     

(A18) 
Substituting (A18) into (A17), we have 

  

 (A19) 
where 

   ,    l = 0, 1, …, N/4–1,          (A20) 

    

 k = 0, 1, …, N–1.  (A21) 
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From (18), we have 
   ,    k = 0, 1, …, N/2–1, l = 0, 1, …, 

N/4–1.           (A22) 
Using Lemma 2 and (A22), we obtain 

         

(A23) 
The above equation can be expressed in matrix representation 
as 

                 (A24) 

Using the relationship  and (15), we 

obtain 

             

(A25) 
The proof of (28) has been completed. 
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Fig.1 Tree structure for the ISCHT matrix construction 

 
Fig. 2 Signal flow graph of the length-N sliding ISCHT transform (algorithm 2) 

 
Fig.3 Block diagram of ISCHT domain adaptive filtering 

 

 
Fig. 4 Transform domain adaptive filtering using sliding ISCHT and sliding DFT 
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Table I Fast algorithm for length-4 ISCHT 
 yi yi+1 yi+2 yi+3 yi+4 Proposed algorithm 2 
x4(0,i) 
x4(0,i+1)  

1           1          1          1 
             1          1          1          1 x4(0,i+1)= x4(0,i)-(yi-yi+4) 

x4(1,i) 
x4(1,i+1) 

1            j          -1         -j 
1          j          -1          -j x4(1,i+1)=-j[x4(1,i)-(yi-yi+4)] 

x4(2,i) 
x4(2,i+1) 

1           -1         1          -1 
              1        -1           1         -1 x4(2,i+1)=-[x4(2,i)-(yi-yi+4)] 

x4(3,i) 
x4(3,i+1) 

1             -j        -1          j 
1          -j         -1          j x4(3,i+1)=j[x4(3,i)-(yi-yi+4)] 

 
Table II Fast algorithm for length-8 ISCHT 

 yi yi+1 yi+2 yi+3 yi+4 yi+5 yi+6 yi+7 yi+8 yi+9 Proposed algorithm 2 
x8(0,i) 
x8(0,i+2) 

1         1         1          1         1         1         1        1 
1          1          1         1         1        1          1        1 

x8(0,i+2)=  
x8(0,i)–[( yi - yi+8)+( yi+1- yi+9)]  

x8(1,i) 
x8(1,i+2) 

1         1          j           j        -1        -1        -j        -j 
1          1          j           j        -1       -1         -j        -j 

x8(1,i+2)=  
-j{x8(1,i)-[( yi - yi+8)+( yi+1- yi+9)]}  

x8(2,i) 
x8(2,i+2) 

1           j       -1          -j         1          j         -1      -j 
1           j         -1         -j         1        j         -1       -j 

x8(2,i+2)=  
–{x8(2,i)–[( yi–yi+8)+j( yi+1–yi+9)]}  

x8(3,i) 
x8(3,i+2) 

1          j        -j          1         -1         -j         j       -1 
1          j          -j          1        -1       -j         j        -1 

x8(3,i+2)=  
j{x8(3,i)–[( yi–yi+8)+j( yi+1–yi+9)]}  

x8(4,i) 
x8(4,i+2) 

1         -1        1         -1         1         -1        1       -1 
1         -1          1         -1        1       -1        1        -1 

x8(4,i+2)= 
x8(4,i)–[( yi–yi+8)–( yi+1–yi+9)]  

x8(5,i) 
x8(5,i+2) 

1          -1        j         -j         -1          1        -j         j 
1        -1           j           -j       -1        1        -j         j 

x8(5,i+2)=  
–j{x8(5,i)–[( yi–yi+8)–( yi+1- yi+9)]}  

x8(6,i) 
x8(6,i+2) 

1          -j       -1         j           1          -j       -1        j 
1        -j          -1           j         1       -j        -1         j 

x8(6,i+2)=  
–{x8(6,i)–[( yi–yi+8)–j( yi+1–yi+9)]}  

x8(7,i) 
x8(7,i+2) 

1          -j       -j        -1          -1          j          j        1 
1         -j          -j         -1        -1        j          j        1 

x8(7,i+2)=  
j{x8(7,i)–[( yi–yi+8) –j( yi+1–yi+9)]}  

 
Table III Comparison results of the proposed algorithms with the block-based ones in [6] and [8]. “Muls (j)” means multiplication with j, “Adds” means real 

additions, “Me” denotes memory (words) 
Algorithm 2 Algorithms in [6] and 

[8] 
Algorithm 1 

Scheme 1 Scheme 2 N 
Muls 

(j) Adds Me Muls(j) Adds Me Muls (j) Adds Me Muls (j) Adds Me 

4 1 16 8 1 12 8 2 10 10 2 10 10 
8 4 48 16 3 26 32 5 26 28 5 26 28 

16 12 128 32 7 60 96 13 56 56 13 58 56 
32 32 320 64 15 124 256 28 120 112 27 122 112 

N 
(≥16) 

N(log2N 
–1)/4 

2N 
log2N 2N N/2–1 4N–4 2N(log2N 

–1) 

N-log4N- 1 
or 

N-log4(N/2) –2 

4N-2log4N-4 
or 

4N-2log4(N/2) –4 

N/2+max{3N, 
+ 

N(log2N–3)} 
7N/8–1 4N–6 N/2+max{3N,  

N(log2N–3)} 

 
Table IV The computational complexity and the memory complexity of the sliding FFT in [14]-[16] and sliding DFT in [17]- [19]. “Muls” represents real 
multiplications, “Muls (j)” means multiplication with j , “Adds” means real additions. “Me” denotes memory (words) 

Sliding FFT  
Algorithms in [14]-[16] 

Sliding DFT 
[17]-[19] N 

Muls Muls (j) Adds Me Muls Muls (j) Adds Me 
4 0 1 6 8 0 2 10 10 
8 8 2 18 40 16 2 26 26 

16 32 3 46 120 48 2 58 58 
32 88 4 106 312 112 2 122 122 

N (≥4) 4N–8log2N log2N–1 4N–4log2N-2 2Nlog2N-8 4N-16 2 4N-6 4N-6 

 
Table V Comparison of execution time on an AMD single core CPU using the GCC complier  

 Execution time of sliding 
transformation (ms) 

Complete execution time of 
filtering (ms) 

Algorithm 1 2.2771 12.1219 
Algorithm 2 (scheme 1) 2.3377 12.1945 

 
Sliding ISCHT 

Algorithm 2 (scheme 2) 2.3813 12.2297 
Sliding FFT [14]-[16] 3.0681 13.0721 
Sliding DFT [17]-[19] 2.6437 12.6426 

 
 


