H Shu

L Wang
email: wanglu@seu.edu.cn

Keywords: Fast algorithm, sequency-ordered complex Hadamard transform, sliding algorithm I

Fast algorithms for computing the forward and inverse sequency-ordered complex Hadamard transforms (SCHT) in a sliding window are presented. The first algorithm consists of decomposing a length-N inverse SCHT (ISCHT) into two length-N/2 ISCHTs. The second algorithm, calculating the values of window i+N/4 from those of window i and one length-N/4 ISCHT and one length-N/4 modified ISCHT (MISCHT), is implemented by two schemes to achieve a good compromise between the computation complexity and the implementation complexity. The forward SCHT algorithm can be obtained by transposing the signal flow graph of the ISCHT. The proposed algorithms require O(N) arithmetic operations and thus are more efficient than the block-based algorithms as well as those based on the sliding FFT or the sliding DFT. The application of the sliding ISCHT in transform domain adaptive filtering (TDAF) is also discussed with supporting simulation results.

transform (WHT) [START_REF] Boussakta | Fast algorithm for calculation of both Walsh-Hadamard and Fourier transforms (FWFTs)[END_REF], [START_REF] Arambepola | Walsh-Hadamard transform for complex-valued signal[END_REF] have been introduced and found wide applications in many scientific and technological areas. Recently, Aung et al. introduced the sequency-ordered complex Hadamard transform (SCHT) [START_REF] Aung | Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications[END_REF], which can be an alternative of DFT in some applications requiring lower computational complexity such as spectrum analysis and image watermarking. It was shown that the SCHT performs better than the WHT in asynchronous CDMA system [START_REF] Aung | Performance of SCHT sequences in asynchronous CDMA system[END_REF]. Two block-based algorithms including the radix-2 decimation-in-time (DIT) [START_REF] Aung | Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications[END_REF] and decimation-in-sequency (DIS) [START_REF] Bi | Pipelined hardware structure for sequency-ordered complex Hadamard transform[END_REF] have been developed for fast computation of SCHT.

An interesting case appears when the spectrum of a nonstationary process, such as speech, radar, biomedical, and communication signals, is required. This leads to the so-called sliding transform, also known as time-dependent or short-time transform [START_REF] Ersoy | A comparative review of real and complex Fourier-related transforms[END_REF], to determine the time-varying spectrum. Basically, the sliding transform means that the transform is computed on a fixed-length window of the signal, which is continuously updated with new samples as the oldest ones are discarded [START_REF] Macias | Recursive formulation of short-time discrete trigonometric transforms[END_REF]. In such cases, the signal properties (amplitudes, frequencies, and phases) usually change with time, a single orthogonal transform is not sufficient to describe the entire signal [START_REF] Kober | Fast algorithms for the computation of sliding discrete sinusoidal transforms[END_REF], [START_REF] Kober | Fast algorithms for the computation of sliding discrete Hartley transforms[END_REF]. Assume that the window contains N complex values x i , x i+1 , …, x i+N-1 at time instant i, then, the sliding orthogonal transform is defined by [START_REF] Kober | Fast algorithms for the computation of sliding discrete sinusoidal transforms[END_REF] , [START_REF] Ersoy | A comparative review of real and complex Fourier-related transforms[END_REF] where w m is a window function, and is an orthogonal basis set. Y N (k, i) represent the orthogonal transform of the windowed signal around time i.

In the past, the sliding orthogonal transforms have been investigated and found applications in spectrogram analysis and adaptive filter design. Since the computation of sliding transform at each position of a sliding window is an intensive task, many fast algorithms were proposed [START_REF] Macias | Recursive formulation of short-time discrete trigonometric transforms[END_REF][START_REF] Kober | Fast algorithms for the computation of sliding discrete sinusoidal transforms[END_REF][START_REF] Kober | Fast algorithms for the computation of sliding discrete Hartley transforms[END_REF][START_REF] Liu | Running DHT and real-time DHT analyzer[END_REF][START_REF] Jarmasz | Simple design for a fast sliding DFT computer[END_REF][START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF][START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF][START_REF] Farhang-Boroujeny | Order of N complexity transform domain adaptive filters[END_REF][START_REF] Papoulis | Signal analysis[END_REF][START_REF] Jacobsen | The sliding DFT[END_REF][START_REF] Jacobsen | An update to the sliding DFT[END_REF][START_REF] Mozafari | An efficient recursive algorithm and an explicit formula for calculating update vectors of running Walsh-Hadamard transform[END_REF][START_REF] Moshe | Video block motion estimation based on gray-code kernels[END_REF][START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF][START_REF] Ben-Artzi | The gray-code filter kernels[END_REF][START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF]. Among them, the sliding FFT [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF][START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF][START_REF] Farhang-Boroujeny | Order of N complexity transform domain adaptive filters[END_REF] and the sliding DFT [START_REF] Papoulis | Signal analysis[END_REF][START_REF] Jacobsen | The sliding DFT[END_REF][START_REF] Jacobsen | An update to the sliding DFT[END_REF] have attracted many attentions due to their extensive applications. By applying a property of radix-2 DIT FFT algorithm, Farhang-Boroujeny et al. proposed an efficient sliding FFT algorithm, which needs 4N-8log 2 N real multiplications, log 2 N-1 multiplications with the imaginary number j and 4N-4log 2 N-2 real additions [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF], [START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF]. The sliding FFT algorithm was then extended to other discrete orthogonal transforms such as DHT, DCT, DST and WHT [START_REF] Farhang-Boroujeny | Order of N complexity transform domain adaptive filters[END_REF]. Based on the circular shift property of DFT, Jacobsen and Lyons developed a fast sliding DFT algorithm, which

Fast algorithms for the computation of sliding sequency-ordered complex Hadamard transform

Jiasong Wu, Member, IEEE, Huazhong Shu, Senior Member, IEEE, Lu Wang and Lotfi Senhadji, Senior Member, IEEE T requires 4N-16 real multiplications, 2 multiplications with j and 4N-6 real additions [START_REF] Jacobsen | The sliding DFT[END_REF], [START_REF] Jacobsen | An update to the sliding DFT[END_REF].

Recently, special attention has also been paid on the fast computation of sliding WHT [START_REF] Mozafari | An efficient recursive algorithm and an explicit formula for calculating update vectors of running Walsh-Hadamard transform[END_REF][START_REF] Moshe | Video block motion estimation based on gray-code kernels[END_REF][START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF][START_REF] Ben-Artzi | The gray-code filter kernels[END_REF][START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF] due to the real-time application requirement of pattern matching in many cases, such as video block motion estimation in H. 264 [START_REF] Moshe | Video block motion estimation based on gray-code kernels[END_REF]. A fast algorithm, based on the radix-2 DIS WHT algorithm, which decomposes a length-N WHT into two length-N/2 WHTs plus 2N-2 additions, for the sliding WHT was proposed in [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF]. This algorithm was further improved by Ben-Artzi et al. [START_REF] Ben-Artzi | The gray-code filter kernels[END_REF], who proposed the gray code kernel algorithm that utilizes the previously computed values in the leaves of the tree structure. Ouyang and Cham [START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF] presented a more efficient algorithm to compute the sliding WHT, which computes the length-N WHT from two length-N/4 WHTs plus 3N/2+1 additions.

Inspired by the research work presented in [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF] and [START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF], we propose in this correspondence two fast algorithms for efficient computation of sliding SCHTs. The first algorithm consists of decomposing a length-N inverse SCHT (ISCHT) into two length-N/2 ISCHTs. The second algorithm, calculating the values of window i+N/4 from those of window i and one length-N/4 ISCHT and one length-N/4 Modified ISCHT (MISCHT), is implemented by two schemes to achieve a good compromise between the computation complexity and the implementation complexity.

The paper is organized as follows. In Section II, preliminaries about the forward and inverse sliding SCHTs are given. The proposed sliding ISCHT algorithms are described and the comparison results with other algorithms are provided in Section III. Transform domain adaptive filtering is given in Section IV to illustrate the potential application of sliding ISCHT. Section V concludes the paper.

II. PRELIMINARY

In this section, we first give the definition of sliding SCHT based on the general sliding transform given in [START_REF] Ersoy | A comparative review of real and complex Fourier-related transforms[END_REF] and SCHT in [START_REF] Aung | Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications[END_REF]. Consider M input signal elements x i where i = 0, 1, …, M-1, which is divided into overlapping windows of size N (M > N). Let X N (i) = [x i , x i+1 , …, x i+N-1] T and Y N (i) = [y i , y i+1 , …, y i+N-1] T be respectively the complex input vector and the transformed complex vector of the ith window, where T denotes the transposition, and let N = 2 n , n ≥ 1, the length-N forward and inverse sliding SCHTs are defined as [START_REF] Aung | Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications[END_REF] (2)

(3) where the superscript H denotes the Hermitian transposition, H N is the order-N ISCHT matrix whose elements are given by (4) where (5)

(6) (7) (8)
From (4) to (8), we have [START_REF] Macias | Recursive formulation of short-time discrete trigonometric transforms[END_REF] If we ignore the normalization factor 1/N in (2), it can be seen that the implementation of the forward sliding SCHT can be obtained by transposing the signal flow graph of the sliding ISCHT. Therefore, for simplicity, we take the sliding ISCHT into consideration. Let (10) [START_REF] Kober | Fast algorithms for the computation of sliding discrete Hartley transforms[END_REF] where

H N (k), k = 0, 1, …, N-1, is the kth column of ISCHT matrix . , k = 0, 1, …, N-1, is the kth row of
. Note that the matrix verifies the symmetry property, that is, . Let x N (k, i) be the kth ISCHT projection value for the ith window, that is 13) Equation (3) can then be rewritten as [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF] III. FAST ALGORITHMS FOR SLIDING ISCHT In this section, we derive two fast algorithms for computing the sliding ISCHT.

for k = 0, 1, …N-1; i = 0, 1, …, M-N, (12
) Let us also define for k=1, 3, …, N-1; i = 0, 1, …, M-N; N = 2 n , n ≥ 2. (

Algorithm 1: Decomposing a length-N ISCHT into two length-N/2 ISCHTs

By performing a similar strategy as presented in [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF], and by utilizing a property of radix-2 DIS ISCHT algorithm, we extend the algorithm proposed in [START_REF] Bi | Pipelined hardware structure for sequency-ordered complex Hadamard transform[END_REF] to the sliding ISCHT algorithm. By performing the radix-2 DIS method on H N [START_REF] Bi | Pipelined hardware structure for sequency-ordered complex Hadamard transform[END_REF], we have [START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF] where I N is the identity matrix of order N, [START_REF] Farhang-Boroujeny | Order of N complexity transform domain adaptive filters[END_REF] and P N is the permutation matrix such that for the input vector Y N (i): [START_REF] Papoulis | Signal analysis[END_REF] Equation (15) can be rewritten as (18) [START_REF] Jacobsen | An update to the sliding DFT[END_REF] where is the Kronecker product and denotes the lower integer part of x. The starting point is .

The tree structure of ISCHT matrix construction is shown in Fig. 1. Using the projection relationships in (12) and (13), (18) and (19) can be equivalently expressed as their projection values:

(20) (21)
The starting point is .

So far, the algorithm in [START_REF] Bi | Pipelined hardware structure for sequency-ordered complex Hadamard transform[END_REF] has been extended to the sliding ISCHT. The main difference between [START_REF] Jacobsen | The sliding DFT[END_REF] and (20) is that the latter computes the current projection values from those of the last layer in the tree structure shown in Fig. 1. Using a similar analysis of the computational complexity and memory storage requirement reported in [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF][START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF][START_REF] Farhang-Boroujeny | Order of N complexity transform domain adaptive filters[END_REF] and [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF], it can be seen that N/2-1 multiplications with j, 2(N-1) complex additions, and 2N(log 2 N-1) words of memory are needed for computing the length-N = 2 n sliding ISCHT. Note that the multiplication by j or -j can be realized by switching the real and imaginary parts of the input with one sign changing, so that there is no memory storage requirement. As stated in [START_REF] Bi | Pipelined hardware structure for sequency-ordered complex Hadamard transform[END_REF], the operations of swapping and subtraction can be jointly performed with the help of the 2:1 complex multiplexers to accomplish the multiplications with -j. The proposed Algorithm 1 is similar to the algorithm reported in [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF], but slightly different from the sliding FFT algorithms [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF][START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF][START_REF] Farhang-Boroujeny | Order of N complexity transform domain adaptive filters[END_REF] since the latter are based on the radix-2 DIT FFT algorithm. Note that if we extend the radix-2 DIT ISCHT algorithm [START_REF] Aung | Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications[END_REF] to sliding algorithm, we obtain exactly the same algorithm as those presented in [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF][START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF][START_REF] Farhang-Boroujeny | Order of N complexity transform domain adaptive filters[END_REF].

Algorithm 2: Computing the values of window i+N/4 from those of window i and one length-N/4 ISCHT and one length-N/4 MISCHT

Inspired by a research work presented in [START_REF] Ouyang | Fast algorithm for Walsh Hadamard transform on sliding windows[END_REF], we propose another algorithm which computes the values of length-N sliding ISCHT of window i+N/4 from those of window i.

A. Fast algorithm for N = 4

The proposed algorithm is shown in Table I, from which we have [START_REF] Hel-Or | Real time pattern matching using projection kernels[END_REF] where (

23) (24)

B. Fast algorithm for N = 8

The proposed algorithm is shown in Table II, from which we have [START_REF] Narayan | Transform domain LMS algorithm[END_REF] where (26) [START_REF] Farhang-Boroujeny | Adaptive Filters: Theory and Applications[END_REF] where S 2 and P 4 are respectively defined in (16) and [START_REF] Papoulis | Signal analysis[END_REF].

C. Fast algorithm for N = 2 n , n ≥ 3 Using the same strategy as for N = 4 and N = 8, we have [START_REF] Shynk | Frequency-domain and multirate adaptive filtering[END_REF] (29) , (30) where S N and P N are given in (16) and [START_REF] Papoulis | Signal analysis[END_REF]. The derivation of (28) is given in Appendix. Fig. 2 shows the signal graph of the proposed Algorithm 2, whose computational complexity and memory storage requirement are analyzed as follows (assuming that the algorithm is implemented in parallel):

1) The computation of (30) for u = N/4-1 needs 1 complex addition. Note that the values of d N (i+u), u = 0, 1, …, N/4-2, have already been obtained during the computation of

x N (k, i+v), v = 1, 2, …, N/4-1. Memory size of N/2 is required for storing d N (i+u), u = 0, 1, …, N/4-1.
The input y i+u and y i+N+u for u = 0, 1, …, N/4-1, needs N memory, which can be released after performing (30) since it will not be used in the following steps.

2) The computation of (29) needs a length-N/4 ISCHT (H N/4) and a length-N/4 MISCHT (H N/4 S N/4). Memory size of N is needed for storing the values t N/2 (i+u), u = 0, 1, …, N/2 -1.

We also assume that the computation of length-N/4 ISCHT and length-N/4 modified ISCHT needs and memory, respectively.

3) The computation of (28) needs N/2 multiplications with j and N complex additions. The values of x N (k, i+v), v = 0, 1, …, N/4-1, can be obtained by zero padding method reported in [START_REF] Moshe | Video block motion estimation based on gray-code kernels[END_REF]. For the implementation, we first distribute 2N memory for x N (k, i), k = 0, 1, …, N-1, which is then overlaid by x N (k, i+N/4), k = 0, 1, …, N-1 after performing [START_REF] Shynk | Frequency-domain and multirate adaptive filtering[END_REF]. Thus, the computational complexity and memory storage requirement of Algorithm 2 are given by (31) (32) Note that the additions shown in are complex additions.

In the following, we discuss the way to compute H N/4 and H N/4 N/4 appearing in (29). For the length-N/4 MISCHT H N/4 S N/4 , the input data is first multiplied by S N/4 , resulting in the change of the two inputs: d N (i) by jd N (i+N/4) and jd N (i+N/8) by d N (i+N/8). This change makes the implementation of H N/4 S N/4 not exactly the same as that of H N/4 . So algorithm 1 is used for the implementation of H N/4 S N/4 . On the contrary, the length-N/4 ISCHT H N/4 can be implemented by either algorithm 1 or algorithm 2. Therefore, two schemes are presented in the following. with the initial values and .

Scheme 2: Implementing both length-N/4 ISCHT and MISCHT by algorithm 1

In this case, the computational complexity in (31) becomes for N = 2 m , m ≥ 4.

(35) From (32), the memory storage requirement is given by (36)

It should be noted that the above algorithm can not be simply obtained from the existing sliding DFT and related algorithms. Generally speaking, the sliding DFT utilizes the first-order shift property [START_REF] Papoulis | Signal analysis[END_REF][START_REF] Jacobsen | The sliding DFT[END_REF][START_REF] Jacobsen | An update to the sliding DFT[END_REF] to establish the relationship between x N (k, i+1) and x N (k, i), and other discrete orthogonal transforms (DCT, DST, DHT) use the first-order shift property [START_REF] Liu | Running DHT and real-time DHT analyzer[END_REF] or the second-order shift property [START_REF] Macias | Recursive formulation of short-time discrete trigonometric transforms[END_REF][START_REF] Kober | Fast algorithms for the computation of sliding discrete sinusoidal transforms[END_REF][START_REF] Kober | Fast algorithms for the computation of sliding discrete Hartley transforms[END_REF] to establish the relationship between x N (k, i+1), x N (k, i) and x N (k, i-1). However, the proposed Algorithm 2 establishes the relationship between x N (k, i+N/4) and x N (k, i).

When using the algorithms in [START_REF] Aung | Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications[END_REF] and [START_REF] Bi | Pipelined hardware structure for sequency-ordered complex Hadamard transform[END_REF], N(log 2 N-1)/4 multiplications with j, Nlog 2 N complex additions and 2N memory are needed for length-N ISCHT. The comparison results are shown in Table III. It can be seen from this table that the proposed algorithms reduce significantly the real additions compared to the algorithms reported in [START_REF] Aung | Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications[END_REF] and [START_REF] Bi | Pipelined hardware structure for sequency-ordered complex Hadamard transform[END_REF], but at the cost of a little more memory storage requirement. The computational complexity and the memory storage requirement of the sliding FFT in [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF][START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF][START_REF] Farhang-Boroujeny | Order of N complexity transform domain adaptive filters[END_REF] and sliding DFT in [START_REF] Papoulis | Signal analysis[END_REF][START_REF] Jacobsen | The sliding DFT[END_REF][START_REF] Jacobsen | An update to the sliding DFT[END_REF] are shown in Table IV. For comparison purpose, Tables III and IV give the real multiplications, multiplications with j and real additions where one complex multiplication is implemented by four real multiplications and two real additions. Note also that when analyzing the complexity of the sliding FFT and the sliding DFT, the savings of the special twiddle factors () have been taken into account. As can be seen from Tables III and IV, the proposed algorithms are also more efficient than the algorithms shown in [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF][START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF][START_REF] Farhang-Boroujeny | Order of N complexity transform domain adaptive filters[END_REF][START_REF] Papoulis | Signal analysis[END_REF][START_REF] Jacobsen | The sliding DFT[END_REF][START_REF] Jacobsen | An update to the sliding DFT[END_REF]. This is because the proposed algorithms only need the multiplications with j and real additions, and can save the memory for storing the twiddle factors.

The computation of the forward SCHT, if ignoring the normalization factor 1/N, can be simply realized by replacing j by -j in (16), H N by in (18)-(21) and x by y in (28)-(30).

IV. AN APPLICATION EXAMPLE

In this section, we gave an example of ISCHT domain least-mean-square (LMS) adaptive filter with supporting simulation result to illustrate the potential application.

Transform domain LMS adaptive filters (TDLMSAF) introduced by Narayan et al. [START_REF] Narayan | Transform domain LMS algorithm[END_REF], exploit the de-correlation properties of some well-known signal transforms such as DFT, DCT, DHT and WHT, in order to pre-whiten the input data and speed up filter convergence [p413, 26]. For a given process x(n), the performance of the TDLMSAF algorithm may vary significantly depending on the selection of the transformation matrix T. A transform which performs well for a given input process may perform poorly once the statistics of the input change [p210-p211, 27].

Similar to the DFT domain LMS adaptive filter [START_REF] Narayan | Transform domain LMS algorithm[END_REF][START_REF] Sayed | Adaptive Filters[END_REF][START_REF] Farhang-Boroujeny | Adaptive Filters: Theory and Applications[END_REF][START_REF] Shynk | Frequency-domain and multirate adaptive filtering[END_REF], the ISCHT domain LMS adaptive filter algorithm, shown in Fig. 3, is described as follows:

The input signal vector is transformed into ISCHT domain by (37) Then, is multiplied by the ISCHT domain adaptive weight vector (38) to obtain the filter output (39) The output error is given by (40) where d(i) denotes the desired response. The weight vector W N (i) is updated by the power-normalized LMS algorithm (41) where µ is a positive step-size, e(i) is the output error and D(i) is a diagonal matrix of the estimated input powers which is defined by

The aforementioned transform domain LMS adaptive filters with the proposed sliding ISCHT algorithms, sliding FFT [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF][START_REF] Farhang-Boroujeny | Generalized sliding FFT and its application to implementation of block LMS adaptive filters[END_REF][START_REF] Farhang-Boroujeny | Order of N complexity transform domain adaptive filters[END_REF] and sliding DFT [START_REF] Papoulis | Signal analysis[END_REF][START_REF] Jacobsen | The sliding DFT[END_REF][START_REF] Jacobsen | An update to the sliding DFT[END_REF] have been implemented using "C++" programming language. The execution time comparison and signal-to-noise ratio (SNR) analysis between the proposed algorithms and sliding FFT and sliding DFT are carried out on a PC machine, which has an AMD single core CPU with speed of 3200MHz and 4096MB RAM. The run time of these algorithms have been calculated using GNU GCC complier version 3.4.5.

In this example, a 7 Hz sinusoid with 1024 samples per second corrupted by additive Gaussian white noise with SNR equal to 0dB is processed through the 32-tap filter. The parameters are set as µ = 0.01 and β = 0.9. The resulting SNRs of filtered signals by TDLMSAF using sliding ISCHT, sliding FFT, and sliding DFT are exactly the same (6.98dB). Fig. 4 shows the desired signal, corrupted signal and the filtered signals processed by TDLMSAF. Table V shows the execution time of sliding transforms and their corresponding TDLMSAFs. The execution times represent the average obtained by repeating the execution of the algorithms. It can be seen from this table that the proposed sliding ISCHT saves 10.0%-13.9% compared to sliding DFT, and saves 22.4%-25.8% compared to sliding FFT in the execution of sliding transformations. While the TDLMSAF with proposed sliding ISCHT is 3.3%-4.1% faster than TDLMSAF with sliding DFT, and 6.4%-7.3% faster than TDLMSAF with sliding FFT.

V. CONCLUSION

In this correspondence, we have presented two fast algorithms for computing the forward and inverse sliding SCHT. The arithmetic complexity order of the proposed algorithms is N, a factor of log 2 N improvement is made over the block-based algorithm for the length-N SCHT. The proposed algorithms are also more efficient than that of the sliding FFT algorithm and the sliding DFT algorithm. The application of sliding ISCHT to transform domain adaptive filtering (TDAF) has been discussed. Note that the proposed algorithms can be easily extended to multidimensional case.

APPENDIX

To prove [START_REF] Shynk | Frequency-domain and multirate adaptive filtering[END_REF], we need first the following lemma: Lemma 1: Let h N (k, l) be the (kth, lth) element of the matrix H N , then we have Proof: By the definition of h N (k, l) given in (4), we have (A1) where (A2) Using (7), (6) becomes

,i) x4(0,i+1) 1 1 1 1 1 1 1 1 x4(0,i+1)= x4(0,i)-(yi-yi+4) x4(1,i) x4(1,i+1) 1 j -1 -j 1 j -1 -j x4(1,i+1)=-j[x4(1,i)-(yi-yi+4)] x4(2,i) x4(2,i+1) 1 -1 1 -1 1 -1 1 -1 x4(2,i+1)=-[x4(2,i)-(yi-yi+4)] x4(3,i) x4(3,i+1) 1 -j -1 j 1 -j -1 j x4(3,i+1)=j[x4(3,i)-(yi-yi+4)]
,i) x8(0,i+2) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 x8(0,i+2)= x8(0,i)-[(yi -yi+8)+(yi+1-yi+9)] x8(1,i) x8(1,i+2) 1 1 j j -1 -1 -j -j 1 1 j j -1 -1 -j -j x8(1,i+2)= -j{x8(1,i)-[(yi -yi+8)+(yi+1-yi+9)]} x8(2,i) x8(2,i+2) 1 j -1 -j 1 j -1 -j 1 j -1 -j 1 j -1 -j x8(2,i+2)= -{x8(2,i)-[(yi-yi+8)+j(yi+1-yi+9)]} x8(3,i) x8(3,i+2) 1 j -j 1 -1 -j j -1 1 j -j 1 -1 -j j -1 x8(3,i+2)= j{x8(3,i)-[(yi-yi+8)+j(yi+1-yi+9)]} x8(4,i) x8(4,i+2) 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 x8(4,i+2)= x8(4,i)-[(yi-yi+8)-(yi+1-yi+9)] x8(5,i) x8(5,i+2) 1 -1 j -j -1 1 -j j 1 -1 j -j -1 1 -j j x8(5,i+2)= -j{x8(5,i)-[(yi-yi+8)-(yi+1-yi+9)]} x8(6,i) x8(6,i+2) 1 -j -1 j 1 -j -1 j 1 -j -1 j 1 -j -1 j x8(6,i+2)= -{x8(6,i)-[(yi-yi+8)-j(yi+1-yi+9)]} x8(7,i) x8(7,i+2) 1 -j -j -1 -1 j j 1 1 -j -j -1 -1 j j 1 x8(7,i+2)= j{x8(7,i)-[(yi-yi+8) -j(yi+1-yi+9)]}
Table III Comparison results of the proposed algorithms with the block-based ones in [START_REF] Aung | Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications[END_REF] and [START_REF] Bi | Pipelined hardware structure for sequency-ordered complex Hadamard transform[END_REF]. "Muls (j)" means multiplication with j, "Adds" means real additions, "Me" denotes memory (words) Algorithm 2 Algorithms in [START_REF] Aung | Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications[END_REF] and [START_REF] Bi | Pipelined hardware structure for sequency-ordered complex Hadamard transform[END_REF] Algorithm Table IV The computational complexity and the memory complexity of the sliding FFT in [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF]- [START_REF] Farhang-Boroujeny | Order of N complexity transform domain adaptive filters[END_REF] and sliding DFT in [START_REF] Papoulis | Signal analysis[END_REF]- [START_REF] Jacobsen | An update to the sliding DFT[END_REF]. "Muls" represents real multiplications, "Muls (j)" means multiplication with j , "Adds" means real additions. "Me" denotes memory (words) Sliding FFT Algorithms in [START_REF] Farhang-Boroujeny | A comment on the computational complexity of sliding FFT[END_REF]- [START_REF] Farhang-Boroujeny | Order of N complexity transform domain adaptive filters[END_REF] Sliding DFT [START_REF] Papoulis | Signal analysis[END_REF]

Scheme 1 :

 1 Scheme 1: Implementing the length-N/4 ISCHT by algorithm 2 and length-N/4 MISCHT by algorithm 1. In this case, (31) becomes

Fig. 1 Fig. 3

 13 Fig.1 Tree structure for the ISCHT matrix construction

Table I

 I

			Fast algorithm for length-4 ISCHT
	yi	yi+1	yi+2	yi+3	yi+4	Proposed algorithm 2
	x4(0					

ACKNOWLEDGMENT

The authors would like to thank the reviewers and Associate Editor Dr. Gross for their insightful suggestions for improving the manuscript. We are also thankful to Dr. Aung for providing his MATLAB code constructing the SCHT matrix and Dr. Ouyang for helpful discussion.

This work was supported by the National Natural Science Foundation of China under Grant 60873048, by the National Basic Research Program of China under Grant 2010CB732503, by a Program of Jiangsu Province under Grant SBK200910055 and the Natural Science Foundation of Jiangsu Province under Grant BK2008279. This work is also supported by the "Eiffel Doctorate" excellence grant of the French Ministry of Foreign and European Affairs.

J.

(A3)

On the other hand, it can be deduced from (8) that (A4) (A5) Using (6), (A4) and (A3), we have

The proof of can be done in a similar way by using the relationship (A5). Lemma 2: The following relationship holds for k = 0, 1, …, , it can be deduced from (6) and (8) that (A13)

The proof has been completed. Based on the above two lemma, we provide the derivation of (28) in the following. Equation (12) can be written as