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Cell morphogenesis is a complex process that depends on cytoskeleton and membrane 

organization, intracellular signalling and vesicular trafficking. The rod shape of the fission 

yeast Schizosaccharomyces pombe and the availability of powerful genetic tools make this 

species an excellent model to study cell morphology. Here we have investigated the function 

of the conserved Kin1 kinase. Kin1-GFP associates dynamically with the plasma membrane at 

sites of active cell surface remodeling and is present in the membrane fraction. Kin1Δ null 

cells show severe defects in cell wall structure and are unable to maintain a rod shape. To 

explore Kin1 primary function, we constructed an ATP analog-sensitive allele kin1-as1. Kin1 

inhibition primarily promotes delocalization of plasma membrane-associated markers of 

actively growing cell surface regions. Kin1 itself is depolarized and its mobility is strongly 

reduced. Subsequently amorphous cell wall material accumulates at the cell surface, a 

phenotype that is dependent on vesicular trafficking, and the Cell Wall Integrity (CWI) 

Mitogen Activated Protein Kinase (MAPK) pathway is activated. Deletion of CWI MAPK 

components reduces kin1Δ hypersensitivity to stresses such as those induced by Calcofluor 

white and SDS. We propose that Kin1 is required for a tight link between the plasma 

membrane and the cell wall. 
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The control of cell morphology is necessary for the correct execution of many cellular 

functions as well as for morphogenetic transitions during the life cycle. In metazoan 

organisms cell morphogenesis involves diverse mechanisms including cell adhesion, 

migration and proliferation. In addition, establishment and maintenance of cell morphology 

requires a complex coordination between cytoskeleton and plasma membrane organization, 

cell polarity and intracellular signalling cascades. Unicellular eukaryotes such as yeast 

constitute excellent model organisms to identify and study the regulatory mechanisms of cell 

morphogenesis. 

Among yeasts, the fission yeast Schizosaccharomyces pombe is a powerful model 

because cells exhibit a strict rod shape during their vegetative life cycle. The cell diameter 

remains constant and cells extend at only one cell end during early G2 but at both cell ends 

later in G2. This switch to a bipolar growth pattern is called “New End Take Off” (NETO). 

During interphase, microtubules (MTs) are organized along the main cell axis as longitudinal 

bundles with an anti-parallel configuration. The MT plus ends extend towards the cell ends 

where they contribute to the delivery of polarity factors at the cortex whereas the minus ends 

are in close contact with the nucleus (for reviews, La Carbona et al., 2006; Sawin and Tran, 

2006). During polarized growth, cell wall remodeling resumes in the cell ends where F-actin 

cables and patches are polymerized. The F-actin cytoskeleton shows a spatial and temporal 

relationship with proteins of the endocytic machinery (Galletta and Cooper, 2009). For3 is a 

formin responsible for the nucleation of interphase F-actin cables onto which exocytic 

vesicles are delivered (Feierbach and Chang, 2001). At mitotic onset, F-actin is reorganized 

with several other proteins as a contractile ring in the middle of the cell and cytoplasmic 

microtubules are depolymerized while a mitotic spindle is assembled within the nucleus.  
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At the plasma membrane, vesicular trafficking involves a balance between exocytosis 

and endocytosis. Several proteins regulate this balance. Molecular motors such as the type V 

myosin Myo4 are required for targeting of vesicles and cell wall-synthesizing enzymes to the 

plasma membrane along F-actin cables (Feierbach and Chang, 2001; Motegi et al., 2001; 

Mulvihill et al., 2006; Win et al., 2001). Sla2 is a transmembrane protein that regulates 

endocytosis and F-actin organization and controls plasma membrane internalization 

(Castagnetti et al., 2005; Iwaki et al., 2004). The psy1 gene encodes a syntaxin 1 homolog, a 

component of the docking/fusion system t-soluble N-ethylmaleimide-sensitive factor 

attachment protein receptor (SNARE), and is involved in sporulation mechanisms. Psy1 is 

essential for vegetative growth and is localized at the plasma membrane during the vegetative 

cell cycle, including the invaginating membranes during septum synthesis (Nakamura et al., 

2001). 

Fission yeast cell shape also depends on the composition and the polarized synthesis 

of the cell wall, a complex, rigid and dynamic polysaccharide structure that overlays the 

plasma membrane (Perez and Ribas, 2004). This structure is composed of cross-linked 

polysaccharides and glycoproteins. An essential function of the cell wall is to provide 

mechanoresistance to abrupt changes in environmental conditions. Cell wall synthesis and 

remodeling during the cell cycle are tightly regulated and require oriented intracellular 

trafficking to target cell wall-synthesizing enzymes to polarized growth sites. As a 

consequence, cell wall structure could be affected by mutants for functions in transport, 

trafficking, glycosylation or cell cycle control. In S. pombe, various glucan synthases have 

been identified. For example, Ags1 is necessary for α1,3-glucan synthesis (Hochstenbach et 

al., 1998; Katayama et al., 1999). Bgs1, Bgs2, Bgs3 and Bgs4 are the β1,3-glucan synthases 

involved, respectively, in septum formation (Cortes et al., 2002; Liu et al., 2002), cell 

sporulation (Martin et al., 2000), elongation (Martin et al., 2003) and cell wall growth and 
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prevention of cell lysis during cytokinesis (Cortes et al., 2005). The stability of Bgs1 at the 

plasma membrane depends on the regulatory factor Cfh3 (Sharifmoghadam and Valdivieso, 

2009). 
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Fission yeast morphology mutants have been isolated using genetic screens. Molecular 

cloning of the corresponding genes has revealed distinct regulatory mechanisms involving cell 

wall assembly, F-actin polarization, polarity factors and interphase microtubule functions. 

Some mutants such as those of the orb class are unable to establish a rod shape whereas 

another group called tea mutants are defective in restricting opposite growth zones (for a 

review, Hayles and Nurse, 2001). Yeast mutants defective in general cell wall metabolism 

also show extensive cell shape defects (for a review see Ishiguro, 1998). 

Mitogen Activated Protein Kinase (MAPK) signalling cascades convert a stimulus 

detected at the cell surface (after a change in environmental conditions) to an intracellular 

signal to promote an adapted cellular response (Waskiewicz and Cooper, 1995). MAPK 

cascades are composed of a core kinase module which includes a MAPK kinase kinase 

(MAPKKK), a MAPK kinase (MAPKK) and a MAPK. The MAPK pathway is activated by 

upstream regulators such as protein kinases, small Rho GTPases and transmembrane protein 

sensors. Activation of MAPK promotes a transcriptional response as well as cytoplasmic 

responses such as cytoskeletal reorganization and cell cycle delay. In fission yeast, three 

MAPK signalling cascades have been described. These include the mating pheromone-

responsive Spk1 pathway, the stress-activated protein kinase (SAPK) Sty1 pathway and the 

Cell Wall Integrity (CWI) Pmk1 pathway. When the cell wall is damaged, for instance by 

chemicals or by abrupt modification of the osmotic pressure, the CWI MAPK pathway is 

activated (Barba et al., 2008; Levin, 2005). The fission yeast CWI pathway is composed of 

the MAPKKK Mkh1, the MAPKK Pek1 and the MAPK Pmk1 (Loewith et al., 2000; Madrid 

et al., 2006; Sengar et al., 1997; Sugiura et al., 1999; Toda et al., 1996; Zaitsevskaya-Carter 
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and Cooper, 1997). Ultimately, the transcription factor Atf1 is a major downstream Pmk1 

target for stress response (Takada et al., 2007). Pmk1 activity is also dependent on the cell 

cycle and peaks at the time of cell separation during cytokinesis (Madrid et al., 2007). Fission 

yeast CWI components are detected within the cytoplasm and the nucleus throughout the cell 

cycle and at the septum during cell division (Madrid et al., 2006). This pathway is partially 

activated by  Pck2, a protein kinase C,  and the small GTPase Rho2 (Barba et al., 2008; Ma et 

al., 2006). Various molecular mechanisms for CWI MAPK regulation have been reported in 

fission yeast, including MAPK phosphatases, mRNA stability, phosphorylation-dependent 

inhibition and the Sty1/Spc1 SAPK pathway (Madrid et al., 2007; Sugiura et al., 1998; 

Sugiura et al., 1999; Sugiura et al., 2003). The fission yeast Pck1 and Pck2 protein kinase C 

homologs also regulate cell wall integrity but this  function may be partially independent of  

the CWI MAPK pathway (Barba et al., 2008; Toda et al., 1996). 

The fission yeast kin1 gene encodes an evolutionarily conserved serine/threonine 

protein kinase of the KIN1/PAR-1/MARK family (for a review, Tassan and Le Goff, 2004). 

Studies using disrupted kin1::LEU2 (Levin and Bishop, 1990) or complete null kin1Δ 

(Drewes and Nurse, 2003; La Carbona et al., 2004) alleles reported a role for Kin1 in 

maintenance of a regular rod shape. However, cells were still able to establish a longitudinal 

axis. A systematic characterization of the phenotypes of non-essential kinase deletion strains 

(Bimbo et al., 2005) revealed specific stress sensitivities for the kin1 mutant, including 

sensitivity to excess chloride ion and SDS. Kin1 mutant cells show an abnormally enlarged 

new cell end, initially referred to as the “ice-cream cone” phenotype (Levin and Bishop, 

1990). In addition, Kin1 is involved in cell separation, interphase F-actin polarization and 

nuclear centering, and is important for completion of cytokinesis in a specific set of polarity 

mutants (Cadou et al., 2009; La Carbona and Le Goff, 2006). The Kin1 kinase associates 

dynamically with the cell cortex at the cell ends during interphase in an F-actin and 
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microtubule independent manner. Kin1 also colocalizes with the contractile ring at mitosis 

and on both sides of the septum during cytokinesis (Cadou et al., 2009). 

Here we have investigated the role of Kin1 in the regulation of the cell surface. Kin1-

GFP dynamically associates with the plasma membrane at sites of active cell wall growth. 

Kin1 is present in the sterol-rich fraction of membranes and its polarized localization is 

dependent on intact vesicular trafficking. We show that kin1Δ cells exhibit a thicker cell wall 

than wild type cells with delocalized β-glucan-containing deposits on the lateral cortex. To 

characterize the primary function of Kin1, we produced kin1-as1, an ATP analog-sensitive 

allele of Kin1. We show that inactivation of Kin1 triggers a rapid delocalization of plasma 

membrane markers of actively growing cell surface regions, including Kin1 itself. This 

phenotype is followed by the formation of localized Cell Wall Deposits (CWD). CWD 

formation is suppressed by perturbation of membrane trafficking but it is exacerbated in a 

sla2 endocytic mutant. Inhibition of Kin1 also leads to the activation of the CWI MAPK 

module that ultimately exacerbates CWD formation. Consistent with abnormalities in the cell 

wall, kin1Δ cells are hypersensitive to various stresses. This sensitivity is alleviated by 

deletion of either Pck2 or any of the core CWI MAPK components. Cell Wall Deposits are 

partially dependent on a hyperactivated CWI MAPK pathway. We propose that the dynamic 

association of Kin1 with the plasma membrane is required for a robust and tight link between 

plasma membrane and the cell wall during vegetative growth. This function contributes to 

proper cell morphogenesis and tolerance to stress. 

 

RESULTS 

 

1) Kin1 is a plasma membrane associated protein kinase 
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We have previously shown that Kin1 exhibits a cell-cycle regulated and polarized localization 

at the cell cortex. Kin1 accumulates at the cell ends during interphase and is a component of 

the Contractile Actomyosin Ring (CAR) at mitosis. At septation, Kin1 is present on both sides 

of the septum, corresponding  to new ends of  the presumptive daughter cells  (Cadou et al., 

2009). 

Here, we have examined how Kin1 interacts with the cortex using sub-cellular 

fractionation. Integral plasma membrane GFP-Bgs4 was used as a control (Cortes et al., 2002; 

Liu et al., 2002). We observed that Kin1, like GFP-Bgs4, is present in the insoluble fraction 

after ultracentrifugation of a preclearing protoplast lysate obtained under non-denaturing 

conditions (Fig. 1A), indicating that the main pool of Kin1 is present in the membrane 

fraction. Next, using different extraction buffers, we observed that Kin1 is completely 

solubilized by 2% SDS, consistent with an interaction with membranes (Fig. 1B). 

Interestingly, Kin1 is not solubilized by 1% Triton X-100 at 4°C, suggesting that the major 

pool of Kin1 is present in the Triton X-100-insoluble lipid raft fraction (Fig. 1B). It is not 

solubilised by  0.5 M NaCl, 0.1 M Na2CO3 pH 11 or  2 M urea, so we can rule out the 

possibility that the major part of Kin1 is adsorbed to the plasma membrane by weak 

interactions (Liu et al., 2002), i.e., it is not a peripheral membrane protein. A very small pool 

of Kin1 seems to be solubilized by 0.5 M NaCl, suggesting that different Kin1 sub-

populations may be present in the plasma membrane. 

These data show that Kin1 is anchored in the membrane sterol-rich fraction. Kin1 does 

not exhibit transmembrane domains or canonical lipid anchoring amino acid motifs (e.g., GPI 

anchor, CAAX box), the membrane association of Kin1 may be mediated by an as-yet-

unidentified post-translational modification.  

A possible link between sub-cellular fractionation (Fig. 1, A and B) and GFP-tagged 

localization data (Cadou et al., 2009) is an association of Kin1 with sites of active membrane 
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flux at the plasma membrane where sterol-rich domains are polarized. To test this hypothesis, 

Kin1-GFP localization was assayed in cells after treatment with the ER-to-Golgi vesicular 

traffic inhibitor Brefeldin A (BFA, Fig. 1C). BFA treatment depolarized the sterol-rich 

domains detected by filipin, a histochemical stain for membrane sterols, as described by 

Wachtler et al. (2003).We observed that Kin1-GFP is delocalized over the entire plasma 

membrane in BFA treated cells. This suggests that Kin1-GFP polarization requires intact 

vesicular traffic and/or polarized sterol-rich domains. 

 

2) Kin1 is required for proper cell wall structure 

It has been shown that kin1Δ cells have abnormal morphologies including “ice cream cone” 

shaped cells and irregular cell outlines (Drewes and Nurse, 2003; La Carbona et al., 2004; 

Levin and Bishop, 1990). In addition, kin1Δ cells are hypersensitive to treatment with cell 

wall degrading enzymes (Levin and Bishop, 1990). As shown in Fig. 2A, 77±6.5% of kin1Δ 

cells (n>400) show deposition of extra cell wall material on the cortex detected by methyl 

blue (beta-glucan staining), especially in the central region (hereafter collectively referred to 

as Cell Wall Deposits or CWD). This phenotype is exacerbated by incubating cells 5 hours at 

high temperature (37°C, Fig. 2A; 89.5±2.5% of cells contain CWD). Biochemical 

measurements consistently show a higher content of both alpha and beta glucans in the cell 

wall of kin1Δ cells compared to wild type cells (P. Perez, pers. comm.). 

Because CWD in kin1Δ cells are predominantly located in the central region close to 

the septum synthesis site, we examined whether their presence might be correlated with 

septum synthesis. Kin1Δ was outcrossed to sid4-SA1, a thermosensitive mutant of a 

component of the Septation Initiation Network (SIN) that fails to septate at 37°C 

(Balasubramanian et al., 1998). CWD were detected in the central region of kin1Δ sid4-SA1 

mutant cells (Fig. 2B), indicating that CWD are unlikely to correspond to excess septal 
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material. Similar results were observed with other SIN mutants including cdc7-24 and cdc11-

123 (data not shown). We also detected CWD in G1-arrested kin1Δ cdc10-V50 or G2-arrested 

kin1Δ cdc25-22 cells (Fig. 2B), indicating that CWD can also form in interphase cells. 
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The kin1Δ cell wall was also examined by Transmission Electron Microscopy (TEM, 

Fig. 2C). This revealed a thicker cell wall and two distinct cell wall structure defects: (a) a 

multilayered structure on the outer face of the cell wall, and (b) the presence of cell wall 

depositions (called amorphous deposits), with distinct electron density between the cell wall 

and the plasma membrane (Fig. 2C). 

Taken together, these data suggest that Kin1 deletion promotes the localized synthesis 

of extra cell wall material (CWD), the presence of which is probably responsible for the 

defects in cell morphology. 

 

3) Using chemical genetic inhibition to study Kin1 function 

To further address the primary function of Kin1 in cell wall synthesis and membrane 

dynamics, we used the chemical genetic approach developed by K. Shokat and colleagues 

(Bishop et al., 2000). This strategy is based on site-directed mutagenesis of the ATP binding 

pocket in the  catalytic domain which makes the kinase uniquely sensitive to the bulky 

nonhydrolyzable  ATP analog 4-amino-1-tert-butyl-3-(1'-naphthylmethyl) pyrazolo [3,4-d] 

pyrimidine (hereafter abbreviated as 1NM-PP1). First, it was determined by comparison with 

other protein kinases (Bishop et al., 2000) that  to enlarge the ATP binding pocket of Kin1 we 

should introduce an  F-to-G mutation at position 220 in the Kin1 Open Reading Frame (Fig. 

3A). The resulting mutated kinase was named Kin1-as1 (for analog sensitive 1). Expression of 

Kin1-as1 from a multicopy plasmid rescued the kin1Δ phenotype (data not shown), indicating 

that Kin1-as1 is functional. Next, the wild type kin1 ORF was replaced by a kin1-as1 version 

(see Material and Methods). The resulting strain, kin1-as1, exhibited a wild type phenotype 
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indicating that the F220G mutation does not modify Kin1-as1 activity when expressed from 

the kin1 locus. Furthermore, a GFP tag was inserted at the C-terminus of the Kin1-as1 ORF as 

described in Cadou et al. (2009). Expression levels of Kin1, Kin1-GFP and Kin1-as1-GFP 

were very similar under normal growth conditions (supplementary Fig. S1). 

The kin1-as1 inhibitory phenotype was studied using increasing doses of the ATP 

analog 1NM-PP1. We observed that septum positions were rapidly modified with low doses 

of 1NM-PP1 (asterisk, Fig. 3B; supplementary Fig. S2), confirming our previous results using 

a repressible allele of Kin1 (Cadou et al., 2009; La Carbona and Le Goff, 2006). Thus, 

inhibition of Kin1 kinase activity leads primarily to an off-center division site. Interestingly, 

we also observed the formation of localized CWD stained by methyl blue. This material was 

present as discrete patches in the ends of 22.2±8.9% of early G2 cells or on the lateral cortex 

of 10.4±3.5% of late G2 cells (arrowheads, Fig. 3B). This phenotype is reminiscent of the cell 

wall defects observed in kin1Δ cells. 1NM-PP1-mediated CWD formation was studied further 

in ATP analog-treated kin1-as1 cells by TEM. We observed that CWD correspond to 

amorphous material deposited between the plasma membrane and the structured cell wall 

layers (TEM, Fig. 3B). Thus, inhibition of Kin1-as1 promoted localized accumulation of cell 

wall material. Furthermore, the percentage of cells containing CWD increased with increasing 

1NM-PP1 concentrations (histogram, Fig. 3B). 

In 1NM-PP1-containing medium, the Kin1-as1-GFP protein is dispersed in a broad 

region at the cell end (Fig. 3C; compare also Kin1-as1-GFP signals in DMSO or 1NM-PP1 

treated cells prior to the bleaching in the FRAP experiment, Fig. 3D). Thus, the kinase activity 

of Kin1 is required for the maintenance of its polarized state but not for its cortical 

localization. Remarkably, Kin1-as1-GFP signal colocalizes with CWD (supplementary Fig. 

S3). 
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Fluorescence Recovery After Photobleaching (FRAP) allows one to monitor protein 

mobility in live cells (Reits and Neefjes, 2001). Here, Kin1-as1-GFP recovery was measured 

after laser illumination of a cell end (see Material & Methods). In the absence of 1NM-PP1, 

kinetics of recovery were indistinguishable between Kin1-GFP and Kin1-as1-GFP (data not 

shown). In cells treated with DMSO only, Kin1-as1-GFP exhibited a high mobility (the 

mobile fraction is ~ 60%) at the cell end (Fig. 3D). In parallel, the single type IV membrane-

spanning protein GFP-Psy1 was almost immobile under identical FRAP conditions. 

Interestingly, in cells treated with 1NM-PP1, Kin1-as1-GFP protein showed a marked 

reduction in mobility. This suggests that the kinase activity of Kin1contributes to its mobility.  

 

4) Kin1 is required for plasma membrane organization 

Cell wall structure dynamics depend on the polarization of the growth machinery at the cell 

ends and at the division site (septum). Active cell wall synthesis sites are intimately linked 

with polarized F-actin structures, trafficking and sterol-rich plasma membrane domains 

(Wachtler et al., 2003). We previously showed that kin1Δ cells exhibit a depolarized 

interphase F-actin cytoskeleton on the lateral cortex (La Carbona and Le Goff, 2006). Here, 

we have monitored localization of the sterol-rich domains in the plasma membrane using the 

fluorescent dye filipin. In contrast to wild-type cells, kin1Δ cells show depolarized sterol-rich 

domains on the entire plasma membrane (Fig. 4A).  

TEM studies did not reveal accumulation of vesicles in the cytoplasm (Fig. 2C), 

suggesting that general secretion might not be defective in kin1Δ cells. We therefore 

examined the localization of the fission yeast t-SNARE syntaxin homolog GFP-Psy1, a 

component of the late secretion SNARE complex. In kin1Δ cells, GFP-Psy1 was detected on 

the overall plasma membrane, as in wild type cells, suggesting that Kin1 does not regulate 

GFP-Psy1 plasma membrane targeting (Fig. 4B). However, we observed that GFP-Psy1 
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accumulated on the lateral cortex (arrowheads, Fig. 4B), indicating that Kin1 affects the 

distribution of GFP-Psy1 within the plasma membrane. 

Polarization of plasma membrane sterol-rich domains (and cell wall synthesis) is 

dependent on efficient intracellular trafficking. In yeast, the amphiphilic fluorescent dye FM4-

64 is taken up by endocytosis and transported to the vacuolar membrane. When living kin1Δ 

cells incorporate the FM4-64 dye (Fig. 4C), stained vacuoles exhibit morphology defects. 

Vacuoles seemed strikingly smaller and more numerous in kin1Δ cells compared to wild type 

cells, suggesting a defect in vacuole biogenesis. Time-lapse studies revealed that initial 

incorporation of FM4-64 was not affected in kin1Δ cells but that later the signal of FM4-64 

was more diffuse than in wild type cells (supplementary Fig. S4). 

During vegetative growth, polarized cell wall synthesis is dependent on the 

localization of transmembrane beta-glucan synthase holoenzymes at cell wall remodeling sites 

(Cortes et al., 2002; Cortes et al., 2005; Cortes et al., 2007; Liu et al., 2002; Martin et al., 

2003). We therefore monitored the localization of GFP-tagged vegetative beta-glucan 

synthase catalytic subunits Bgs1, Bgs3 and Bgs4. Kin1Δ cells were not defective in polarized 

localization of GFP-Bgs3 (supplementary Fig. S5). By contrast, GFP-Bgs1 and GFP-Bgs4 

signals were not only observed at cell wall remodeling sites but could also be detected on the 

lateral cortex of kin1Δ cells (Fig. 4D; supplementary Fig. S5). In addition, Western blot 

analysis revealed that expression of Bgs1 and Bgs4, but not Bgs3, was significantly 

upregulated in the absence of Kin1 (supplementary Fig. S6). Thus, Kin1 regulates Bgs1 and 

Bgs4 expression as well as their polarization at the plasma membrane.  

If in the kin1Δ mutant Bgs1 is more stable at the plasma membrane, the kin1Δ 

mutation should lower the sensitivity to temperature of cps1-191, a thermosensitive allele of 

bgs1. Indeed, we observed growth rescue at 32°C and 37°C in the kin1Δ cps1-191 double 

mutant compared to the single cps1-191 mutant (Fig. 4E). 
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 To characterize the primary function of Kin1 at the plasma membrane, we used the 

rapid inactivation of Kin1-as1 mediated by 1NM-PP1. We observed that sterol-rich domains 

are depolarized when 1NM-PP1 is added to the culture medium (Fig. 5A). Since overall 

endocytosis is not affected in the kin1Δ mutant, one explanation for the increased stability of 

the beta-glucan synthase Bgs1 at the plasma membrane is that a specific regulator of the 

endocytosis of Bgs1 is altered. Cfh3 is a protein that colocalizes and co-immunoprecipitates 

with Bgs1 and regulates its stability at the plasma membrane (Sharifmoghadam and 

Valdivieso, 2009). To test if the early phenotype of Kin1 inactivation affects Cfh3 regulation, 

we followed GFP-Cfh3 in a kin1-as1 background. We observed that the cell-cycle regulated 

distribution of GFP-Cfh3 was perturbed in 1NM-PP1-treated cells. In particular, GFP-Cfh3 

was strikingly depolarized at the plasma membrane compared to control cells (Fig. 5B). 

Delocalized Cfh3-GFP coincided with sites of CWD formation (supplementary Fig. S3). 

Moreover, 1NM-PP1-treatment of GFP-Psy1 kin1-as1 cells also showed that GFP-Psy1 

localization was perturbed and that GFP-Psy1 accumulates at sites of CWD formation 

(supplementary Fig. S3). These observations link the role of Kin1 in proper localization of 

GFP-Cfh3 and GFP-Psy1 with cell wall regulation.  
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Next, we determined the kinetics of GFP-Cfh3 depolarization and CWD formation by 

analyzing samples in the fluorescence microscope during a time-course experiment following 

inhibition of Kin1-as1 with 1NM-PP1 (Fig. 5C). The results show clearly that depolarization 

of GFP-Cfh3 is nearly complete after 60 minutes and precedes the accumulation of cell wall 

material in CWD. This demonstrates that the primary function of Kin1 resides in plasma 

membrane organization and suggests that CWD is a consequence of the disruption of this 

primary function. In parallel, activation of the Cell Wall Integrity Pmk1 MAP kinase was 

determined. Pmk1 basal phosphorylation was detected at different time points by employing 

an anti-phospho p42/p44 antibody as described earlier (Madrid et al., 2006). Pmk1 activation 
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was only obvious after 90 minutes (Fig. 5D), supporting the idea that this phenotype may be a 

consequence of CWD formation. 

In summary, our data suggest that Kin1 function is primarily required for proper 

polarization of sterol-rich domains and proper localization of regulators of cell wall synthesis 

at the plasma membrane. They suggest further that the initial effect of inhibition of Kin1 is 

depolarization of the cell wall synthesis machinery, which then leads to CWD. Presence of 

CWD then triggers the CWI pathway which further exacerbates the formation of CWD. 

 

5) A possible role for Kin1 in maintenance of a robust link between plasma membrane 

and the cell wall during vegetative growth 

A possible explanation for the generation of CWD could be a localized invagination of the 

plasma membrane due to a modification of the mechanical properties of the lipid bilayer. This 

could result from a loss of a robust and tight link between the cell wall and the plasma 

membrane at the cell surface. The enlarged periplasmic space could then be filled by 

amorphous cell wall material (Figs. 2 and 3). How could the plasma membrane invaginate 

into the cytoplasm? One possibility is that a defect in the balance between exocytic and 

endocytic vesicles plays a role. 

It is unlikely that Kin1 function regulates exocytic vesicle fusion because no 

accumulation of large vesicles is observed by TEM in kin1Δ cells or during Kin1-as1 

inhibition. Following our hypothesis, we reasoned that inhibition of active vesicular 

trafficking would suppress CWD formation since cell wall material is targeted to the cell 

cortex by secretion machinery. Indeed, kin1-as1 cells pre-treated with BFA, an inhibitor of 

ER to Golgi transport, showed a complete suppression of CWD formation after 1NM-PP1 

addition (Fig. 6A). By comparison, CWD were observed in 39.2% of control cells. However, 

cells treated with both BFA and 1NM-PP1 still showed asymmetric septa, demonstrating that 
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1NM-PP1 is able to inactivate Kin1-as1 in the presence of BFA and strongly suggesting that 

nuclear mispositioning and CWD formation are distinct phenotypes. Consistently, no CWD 

were observed in an ATP analog-treated kin1-as1 for3Δ mutant, where no interphase F-actin 

cables are nucleated (data not shown). Similarly, a strong reduction of CWD (6.4% compared 

to 45.7% in a myo4
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+ background) was observed in a 1NM-PP1-treated kin1-as1 myo4Δ 

mutant, where exocytic vesicle transport was disturbed (Fig. 6B). A corollary to our 

hypothesis is that an inhibition of the endocytosis process should stimulate CWD formation. 

To test this, we used the sla2Δ strain which is deleted for the End4/Sla2 transmembrane 

protein. Interestingly, control sla2Δ cells stained with methyl blue dye showed discrete 

punctate staining on the lateral cortex (Fig. 6B). This indicates that the sla2Δ mutation itself 

promotes formation of localized CWD, consistent with an imbalance between endocytosis and 

exocytosis. Moreover, when Kin1-as1 was inhibited by 1NM-PP1, a dramatic increase in both 

the number and intensity of CWD was observed (Fig. 6B). Thus, the endocytosis defect 

exacerbates kin1-as1-mediated CWD formation. 

Next, we monitored Kin1-GFP localization in the mutants for3Δ, myo4Δ and sla2Δ 

(data not shown). Kin1-GFP was not strictly accumulated at cell ends in any of these 

situations. We conclude that vesicular trafficking defects (either exocytosis or endocytosis) 

promote depolarization of Kin1-GFP around the cell cortex, even though Kin1-GFP remains 

at the plasma membrane. We also monitored Kin1-GFP mobility by FRAP in for3Δ, myo4Δ, 

and sla2Δ mutants and in BFA-treated cells. Only BFA alters Kin1-GFP mobility and that 

only moderately (Supplementary Fig. S7). Since BFA is a strong inhibitor of general 

membrane trafficking and polarization of sterol-rich domains, this observation suggests that 

the altered mobility of Kin1-GFP in this situation may be due to broad BFA-mediated 

perturbation of plasma membrane organization. 
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6) The Pmk1 MAP kinase pathway affects CWD formation in kin1Δ cells. 1 
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In yeast cells, cell wall integrity (CWI) MAPK module is involved in the sensing of and 

response to perturbations in the cell wall and the plasma membrane (Levin, 2005; Barba et al., 

2008). In S. pombe the cell integrity MAP kinase module is composed of MAPKKK Mkh1, 

MAPKK Pek1 and MAPK Pmk1, the key element of the pathway. The protein kinase C 

ortholog Pck2 and the small Rho GTPase Rho2 act upstream of the Mkh1-Pek1-Pmk1 

cascade (Ma et al., 2006; Barba et al., 2008), and they are responsible for Pmk1 activation in 

response to several stresses such as hypertonic or hypotonic shock (Barba et al., 2008). The 

presence of altered cell walls in the kin1Δ mutant suggested that Pmk1 activity might be 

deregulated in these cells. CWD formation was monitored in a kin1Δ pmk1Δ double mutant. 

As shown in Table 2 and supplementary Fig. S8, deletion of pmk1+ reduced the number of 

CWD in kin1Δ cells. Identical results were obtained with deletions of mkh1+ and pek1+ (data 

not shown). Similarly, CWD formation was partially abolished in kin1-as1 cells disrupted in 

either pmk1+, pek1+ or mkh1+, and treated with 1NM-PP1 (data not shown). Partial 

suppression of CWD was also observed in kin1Δ pck2Δ cells, indicating that Pck2 is also 

involved in the formation of CWD (Table 2; supplementary Fig. S8). The fact that pck2Δ 

suppresses CWD more strongly than pmk1Δ suggests that Pck2 is also involved in CWD 

formation independently of the Pmk1 pathway. This result is not surprising since Pck2 

regulates cell wall integrity independently of the CWI cascade (Toda et al., 1996; Barba et al., 

2008). Moreover, CWD in kin1Δ cells were not markedly affected by deletion of rho2+ (Table 

2; supplementary Fig. S8), suggesting that the Pmk1 pathway may branch at the Rho2 level. 

On the other hand, Pmk1 hyperactivation elicited by deletion of the dual specificity 

phosphatase pmp1+ (Sugiura et al., 1998) significantly increased the number of CWD in 

kin1Δ cells (Table 2; supplementary Fig. S8). 
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We also tested the possible role of Pck1, a Pck2 homolog, in CWD formation. Pck1 

negatively regulates cell wall integrity and the Pmk1 pathway, but its function remains 

obscure (Arellano et al., 1999; Barba et al., 2008). A kin1Δ pck1Δ double mutant showed 

extensive CWD (Table 2; supplementary Fig. S8) and severe growth defects, supporting the 

existence of synthetic interaction between the single mutants. 

The above results suggested the existence of a specific link between Pmk1 activity and 

CWD formation in kin1Δ cells. To further explore this hypothesis, we first determined Pmk1 

basal phosphorylation in growing cells from the above mutants by employing the anti-

phospho p42/44 antibody. As can be seen in Fig. 7A, Pmk1 was hyperphosphorylated in the 

kin1Δ mutant. Importantly, the increase in Pmk1 phosphorylation elicited by kin1+ deletion 

was abolished in kin1Δ pck2Δ cells but not in the kin1Δ rho2Δ mutant (Fig. 7A). Moreover, 

basal Pmk1 phosphorylation was higher in either kin1Δ pmp1Δ or kin1Δ pck1Δ  cells than in 

their respective single mutant counterparts (Fig. 7A).  

In S. pombe, calcineurin and Pmk1 play antagonistic roles in chloride homeostasis, and 

Pmk1 hyperactivation leads to strong sensitivity to this anion (Sugiura et al., 1998). Pmk1 

hyperphosphorylated cells lacking kin1+ showed an evident growth inhibition in YES medium 

supplemented with 0.2 M MgCl2 (Fig. 7B), and this phenotype was rescued by additional 

deletion of pmk1+ or pck2+genes (Fig. 7B). Interestingly, disruption of either pck1+ or pmp1+ 

in a kin1Δ background clearly increased cell sensitivity to chloride anions as compared to 

single kin1Δ , pck1Δ or pmp1Δ parental strains (Fig. 7B).  

As a whole, our results strongly suggest that in fission yeast: (i) Kin1 operates at the 

plasma membrane and its function influences Pmk1 activity via Pck2 but in a Rho2-

independent fashion; (ii) hyperactivation of the Pmk1 MAPK pathway is partially responsible 

for the production of CWD in the absence of Kin1 kinase; and (iii) other Pmk1-independent 

mechanisms are also important in CWD formation. 
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The cell wall is essential for determination of cell shape and also for 

mechanoresistance to environmental changes. Since lack of Kin1 function alters cell wall 

organization, kin1Δ cells might behave differently from wild type cells under stress 

conditions.  

Congruent with a strong cell separation defect at high temperature (Levin and Bishop, 

1990), kin1Δ cells show reduced growth at 37°C (data not shown). We monitored the effect of 

plasma membrane stress and cell wall damaging agents on kin1Δ cell growth to show that 

these cells are extremely sensitive to stress induced by low doses of SDS and to the cell wall 

damaging agent Calcofluor white (Fig. 7C), but not to the beta-glucan synthase inhibitor 

caspofungin (data not shown). Thus, our data indicate that Kin1 function is required for cell 

tolerance to specific stress conditions, and confirm those obtained by Bimbo et al. (2005) 

during a systematic study of non-essential kinase deletions. Importantly, deletion of pmk1+ or 

pck2+ alleviated the hypersensitivity of kin1Δ cells to either SDS or Calcofluor white (Fig. 

7C; data not shown). Thus, our results indicate that Kin1 function is required for resistance to 

thermal and cell wall stresses, and that Pmk1 activity is involved in this response.  

 

7) SICS and CWD 

Recently, Robertson and Hagan have described the formation of Stress-Induced Calcofluor 

Structures (SICS) upon treatment of fission yeast cells with either 1.2 M Sorbitol or 0.6 M 

KCl (Robertson and Hagan, 2008). During the course of this study, we have observed that 

treatment of cells with 0.01% SDS can also promote SICS (supplementary Fig. S9).  

SICS appear to be very similar to the CWD described in the present work. We 

therefore examined whether Kin1 is required for SICS formation. Incubation in Sorbitol or 

SDS exacerbated cell wall deposits in kin1Δ cells (supplementary Fig. S9). In addition, kin1-

as1 cells treated with both 1NM-PP1 and Sorbitol or SDS showed additive effects on 
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accumulation of cell wall material compared to 1NM-PP1-treated control cells (data not 

shown). These observations strongly suggest that Kin1 is dispensable for SICS formation. 

 

DISCUSSION 

Proper regulation of cell morphogenesis is essential for eukaryotic cells to carry out their 

functions, divide and adapt to environmental changes. Here, we have demonstrated a role for 

the fission yeast Kin1 kinase in controlling cell surface organization. 

 

Kin1 associates dynamically with the plasma membrane 

Fission yeast Kin1 is structurally related to the evolutionary conserved PAR-1/MARK protein 

kinase family (Tassan and Le Goff, 2004). These are plasma membrane proteins, as 

demonstrated by sub-cellular fractionation experiments in budding yeast and plasma 

membrane localization in metazoan systems (Chartrain et al., 2006; Elbert et al., 2005; Hurov 

et al., 2004; Tibbetts et al., 1994; Vaccari et al., 2005). Fission yeast Kin1-GFP is detected at 

the plasma membrane and accumulates in actively growing cell surface regions. Kin1-GFP 

signal does not overlap exactly with methyl blue. Kin1 is probably present on the cytoplasmic 

face of the plasma membrane and thus in a slightly different position from the cell wall. A 

similar conclusion has been reached for the budding yeast homologs Kin1p and Kin2p 

(Tibbetts et al., 1994). Moreover, our results consistently show that Kin1 associates with the 

Triton X-100-insoluble membrane fraction, suggesting that it is preferentially located in 

sterol-rich lipid rafts. However, in silico analysis of the Kin1 ORF does not reveal any known 

membrane association domains such as FYVE, PH, CAAX box, GPI anchoring motifs or 

transmembrane domains. Moreover, it is not detached from the membrane by 0.5M NaCl or 

2M urea, indicating that this is not simply a peripheral membrane protein. This suggests that 
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Kin1 may be anchored in the lipid membrane by an as-yet-unidentified post-translational 

modification.  

 

Our FRAP studies reveal that Kin1 interaction with the plasma membrane is highly 

dynamic compared to a membrane spanning protein. This high mobility is evidently not 

influenced by plasma membrane viscosity, but we show that it does require Kin1 kinase 

activity, suggesting a dynamic interaction with a putative membrane protein substrate. This is 

a puzzling observation considering that Kin1 associates with the membrane fraction. An 

alternative possibility is that inhibition of Kin1-as1 rapidly alters plasma membrane properties 

and this may eventually modify Kin1 dynamics. It will be necessary to decipher the 

underlying molecular mechanism regulating the association of Kin1 with the membrane to 

address this issue. 

 

A role for Kin1 in regulating the cell surface 

Budding yeast Kin1 homologs, Kin1p and Kin2p, have been isolated as multicopy 

suppressors of several mutants acting at different levels of the secretory pathway, including 

the cdc42-6 and rho3-V51 alleles. Kin1p and Kin2p have been shown to interact with and 

regulate phosphorylation of proteins acting at the final stage of exocytosis such as the t-

SNARE Sec9p. Epistatic data suggest a role for Kin1p and Kin2p downstream of CDC42 and 

RHO3 and upstream of vesicle fusion (Elbert et al., 2005). 

In contrast to budding yeast,  sec9 is essential in fission yeast (Nakamura et al., 2005) 

and vesicular trafficking mutants in fission yeast remain poorly characterized (Takegawa et 

al., 2003). Exocytic mutants such as rho3Δ or the exocyst component sec8-1 have been 

described which accumulate vesicles about 100 nm in diameter, indicating a defect in vesicle 

fusion with the plasma membrane (Wang et al., 2002; Wang et al., 2003). However, we did 
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not detect such vesicles in kin1Δ by TEM. In addition, we were unable to detect suppression 

of these mutants by Kin1 overexpression in fission yeast (data not shown). Growth of kin1Δ 

rho3Δ cells is severely reduced at 25°C and inhibited above that temperature. Electron 

microscopy studies show that kin1Δ rho3Δ cells exhibit tremendous cell wall accumulation at 

36°C (unpublished results), suggesting that Rho3 and Kin1 act in nonredundant pathways to 

regulate the cell surface. Thus, budding and fission yeast Kin1 homologs may control a late 

step in plasma membrane organization, such as membrane recycling, even though molecular 

mechanisms may differ. In higher eukaryotes, mammalian Par-1 may regulate exocytosis 

although Par-1 does not interact with the Sec9 SNAP25 homolog (cited in Elbert et al., 2005). 
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The early defect of Kin1 loss-of-function impinges on several aspects of plasma 

membrane organization such as localization of t-SNARE and beta-glucan synthases and 

polarization of sterol-rich domains. With regard to Kin1 localization, our data are consistent 

with a primary role for Kin1 in maintenance of polarized actively growing cell surface regions 

in the plasma membrane. We propose that Kin1 deletion or inhibition may promote localized 

loss of cohesiveness between the plasma membrane and the cell wall. Exocytic and cell-wall 

regulators are concentrated at these sites and thus the periplasmic space formed by this loss of 

cohesiveness would be rapidly filled up by amorphous cell wall deposits. A possible role for 

phosphorylation catalyzed by the Kin1 kinase might therefore be the recycling of proteins 

transiently present at the plasma membrane, including Kin1 itself and cell wall synthesizing 

enzymes. In conclusion, Kin1 function would be required to ensure a robust and tight link 

between the plasma membrane and the cell wall during vegetative growth. 

 

Kin1 inhibition causes plasma membrane depolarization which leads to cell wall damage 

and hyperactivation of the CWI Pmk1 pathway 
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Cell wall damage and plasma membrane stretch are detected and relayed by transmembrane 

protein sensors connected with the cell wall via post-translational modifications. Following 

detection, the CWI MAPK pathway plays a major role in intracellular signalling to promote 

an adapted response (Barba et al., 2008; Levin, 2005). We propose that kin1 deletion or 

inhibition mimics continuous cell wall or plasma membrane stress. In kin1Δ cells, the beta-

glucan synthase Bgs1 is more stable at the plasma membrane than in wild type cells. Cfh3 is a 

specific regulator of Bgs1 endocytosis. Time-course experiments consistently show that the 

primary effect of Kin1-as1 inhibition is the rapid depolarization of Cfh3 and this may impair 

Bgs1 endocytosis. Accumulation of Cell Wall Deposits (CWD) is not detected until later and 

Pmk1 activation is detected even later, suggesting that CWI pathway is activated as a 

consequence of the plasma membrane and cell wall defects. Production of empty periplasmic 

spaces as a result of Kin1 inhibition may lead to a cellular response involving a rapid 

compensation by synthesis of amorphous cell wall material. Kin1 inhibition may also trigger 

(either directly or indirectly via induction of CWD) a permanent signal of cell surface injury, 

activating the CWI pathway and leading to more CWD than would result from Kin1 

inhibition alone. Inhibition of CWI signalling suppresses CWD formation, indicating that 

CWI contributes to such a cell wall response. However, this suppression is only partial, 

suggesting that other molecular pathways are also involved. Sty1 MAPK, the core component 

of the Stress-Activated Protein Kinase (SAPK) pathway in fission yeast, may also participate 

in CWD formation. However, kin1Δ sty1Δ cells did not show any significant change in the 

number of CWD compared to kin1Δ alone (data not shown). 

 

Kin1, Cell Wall Integrity and Sensitivity to Stress 

The presence of CWD may be detrimental to the cell’s capacity to resist specific stresses, 

specifically those which challenge cell wall plasticity. Thus, kin1Δ cells are hypersensitive to 
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several stress conditions, including upward shifts in osmotic pressure and temperature. Kin1Δ 

cells have a higher content of beta- and alpha-glucan (P. Perez, pers. com.) and we have 

shown that the expression of Bgs1 and Bgs4 is upregulated in these cells. This is consistent 

with kin1Δ cells being insensitive to caspofungin, an inhibitor of cell-wall synthesizing 

enzymes. Inhibition of the CWI pathway reduces cell wall thickening and contributes to the 

alleviation of stress sensitivity. 
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The function of fission yeast Pck1 is largely unknown, but its physical interaction with 

Rho GTPases and genetic interactions with pck2Δ and other cell wall regulating genes suggest 

a function in cell wall integrity (Arellano et al., 1999; Calonge et al., 2000; Ma et al., 2006; 

Toda et al., 1996). Our work reveals a strong synthetic interaction between kin1Δ and pck1Δ. 

In double mutant cells, growth and cell polarity are severely compromised. We conclude that 

Kin1 is required for the maintenance of cell integrity in the absence of Pck1 whereas the 

kin1Δ pck2Δ mutant shows phenotypic suppression. Thus, the kin1Δ mutation could be useful 

in discriminating the distinct functions of these protein kinase C homologs. 

 

SICS versus CWD: an identical consequence of two unrelated causes? 

It is tempting to speculate that SICS and CWD are the same consequence of plasma 

membrane disruption, occuring when wild type cells are subjected to stress or when Kin1 is 

inhibited under normal growth conditions, respectively. For example, we have suggested that 

formation of CWD in the absence of Kin1 activity may be due to loss of cohesiveness 

between the cell wall and plasma membrane and subsequent accumulation of amorphous cell 

wall material.  A similar loss of cohesiveness could result from hypertonic treatment (in the 

case of 1.2 M sorbitol or 0.6 M KCl) or damage to the plasma membrane (in the case of SDS).   

However, SICS are not dependent on the CWI pathway, whereas CWD are partially 
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dependent on that pathway. This suggests that SICS and CWD may correspond to different 

cellular defects that only appear to have similar outcomes. 

 

Kin1 cooperates with Sla2-dependent membrane internalization and acts downstream of 

Myo4 and For3 

A mutation like sla2Δ that alters endocytosis promotes accumulation of cell wall material at 

the plasma membrane (this study; Ge et al., 2005), perhaps due to  inhibition of membrane 

internalization. Fluorescent FM4-64 uptake suggests that Kin1 has no significant role in 

endocytosis itself but inhibition of endocytosis via the sla2Δ mutation exacerbates kin1-as1-

mediated CWD formation. This and other observations support the notion that inability of 

cells to properly regulate membrane internalization promotes the accumulation of cell wall 

material between a layered cell wall and the plasma membrane. 

Vesicles are transported via F-actin cables to sites of polarized growth by molecular 

motors such as the type V myosin Myo4 (Feierbach and Chang, 2001; Motegi et al., 2001; 

Mulvihill et al., 2006; Win et al., 2001). In accordance with a Kin1 function in membrane 

recycling at the cell cortex, we show that inhibition of general vesicle targeting to the plasma 

membrane by deletion of myo4, by BFA-mediated interruption of intracellular trafficking or 

by inhibition of the formation of F-actin cables through for3 deletion in the kin1-as1 

background, suppresses the CWD phenotype usually associated with Kin1 inhibition. Myo4 

has been shown to target the beta-glucan synthase Bgs1 protein to sites of polarized growth 

(Mulvihill et al., 2006). Here we show that Kin1 is not involved in targeting Bgs1, nor its 

regulator Cfh3, to the plasma membrane but in their restriction to polarized growth sites. 

Rather than regulating exocytic and/or endocytic flux per se, Kin1 appears to regulate the 

balance between these processes, both spatially and dynamically. 
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S. pombe strains, media and reagents 

S. pombe strains used in this study and their genotypes are listed in Table 1. Media (EMM and 

YES) and genetic methods were as described (Moreno et al., 1991). Cells were grown at 

25°C, 30°C or 37°C for 5h when stated. Genetic crosses and sporulation were performed in 

EMM agar plates with 1/10 limiting nitrogen source NH4Cl. Tetrad dissection was performed 

with a Singer MSM system (Somerset, UK) and genotypes of interest were selected by 

appropriate replica plating. GFP-Psy1-expressing strains were derived from leu1-32 h- (WT) 

or kin1::kanMX6 leu1-32 h- (kin1Δ) cells transformed with the pTN381 (Psy1 promoter-GFP-

Psy1) plasmid (a kind gift from T. Nakamura, Osaka, Japan) integrated at the leu1 locus. For 

nonstandard growth conditions, cells were grown in liquid media containing 0.01% Sodium-

Dodecyl-Sulfate (SDS), 1.2 M Sorbitol, or 50 μg/ml Brefeldin A (diluted in ethanol, Sigma). 

For stress induction conditions, EMM- or YES-based agar plates contained 0.1M or 0.2M 

MgCl2, 0.005% SDS, or 0.5 mg/ml Calcofluor white. Exponentially growing cells of different 

strains were diluted and 105, 104,103, 102 cells were spotted for 3-5 days at 30°C. The ATP-

analog 4-Amino-1-tert-butyl-3-(1’-naphthylmethyl)pyrazolo[3,4-d]pyrimidine (Bishop et al., 

2000), abbreviated as 1NM-PP1, was synthesized as described in Dischinger et al. (2008), 

prepared as a 25 mM stock solution in DMSO and stored at -20°C. 

 

Mutagenesis and integration of kin1-as1 

Mutagenesis of  phenylalanine to glycine at position 220 in the Kin1 ORF was performed 

using a “QuickChange Multi Site-Directed Mutagenesis” kit (Stratagene) and the 

pREP41GFP-Kin1 plasmid as a DNA matrix (La Carbona et al., 2004). The resulting 

pREP41GFP-kin1-as1 (F220G) plasmid was fully sequenced and transformed into 
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kin1::kanMX6 leu1-32 (kin1Δ) cells. Expression of the mutated Kin1-as1 protein fully 

rescued all tested kin1Δ phenotypes (cell morphology, zymolyase and salt resistance, 

septation efficiency), indicating that the mutated Kin1-as1 protein was functional (data not 

shown). The mutagenized ORF was amplified by PCR and transformed into kin1::LEU2 

disrupted cells (Levin and Bishop, 1990). Kin1-as1 integrants were selected by growth on 

EMM agar plates containing 1 M KCl that did not allow kin1Δ growth. Leucine auxotrophy 

due to loss of the LEU2 marker confirmed integration at the kin1 locus. The kin1 ORF was 

further modified by homologous recombination using the Gly5-GFP-kanMX cassette as 

described (Bahler et al., 1998; Cadou et al., 2009). G418-resistant colonies were selected and 

the kin1-as1-GFP ORF was fully sequenced on the genome. Inhibition of Kin1-as1 was 

performed using 1NM-PP1 diluted from a 25 mM stock solution in DMSO. Except when 

otherwise stated, cells were incubated 2h with 20 μM 1NM-PP1 at 30°C. 
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Western blotting 

A 50 ml cell culture was harvested by centrifugation at 3,000 rpm, washed in 20 ml ice-cold 

PBS and then in 10 ml ice-cold STOP buffer (10 mM EDTA, 150 mM NaCl, 50 mM NaF, 

0.05% NaN3). Dry cell pellets were stored at -70°C. Lysis was carried out by vortexing cells 

in 200 μl of lysis buffer (10% glycerol, 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% nonidet 

P-40, 15 mM imidazole, Roche protease inhibitor cocktail) supplemented with 2% SDS and 

0.3 g of glass beads (Sigma). The cell lysate was then centrifuged for 10 min. at 13,000 rpm at 

4°C and the supernatant was diluted with 3X Laemmli loading buffer. Proteins were separated 

by SDS-PAGE and transferred onto nitrocellulose or PVDF Immobilon-P membranes. 

Membranes were blotted in PBS/5% milk/0.1% Tween 20. Rabbit polyclonal anti-Kin1 (La 

Carbona et al., 2004) and mouse monoclonal anti-GFP (Roche) were used at 1:3000 and 

1:1000 dilutions, respectively. For a loading control, mouse monoclonal anti-PSTAIR (anti-
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Cdc2, Sigma) was used at 1:5000 dilution. Secondary antibodies were conjugated to either 

alkaline phosphatase or horseradish peroxidase and revealed by ECF/Storm or West DURA 

(Pierce), respectively. Activated Pmk1 was detected in total cell extracts using a rabbit anti-

p42/44 antiphospho-antibody at 1:1000 dilution and the ECL system as described (Madrid et 

al., 2006). 

 

Sub-cellular fractionation 

Sub-cellular fractionation was performed using 200 ml of exponentially growing cells. Cells 

were incubated for 10 min. in RB buffer (1.2 M Sorbitol, 30 mM beta-mercaptoethanol, 50 

mM Tris pH 8.5) and washed twice in SP buffer (1.2 M Sorbitol, 50 mM NaH2PO4 pH 5.8). 

Cells were then incubated 1h45 at 30°C in SP buffer containing 10 mg/ml Lysing enzymes 

(Sigma). The resulting spheroplasts were checked by phase contrast microscopy and spun at 

3,000 rpm for 5 min. at 4°C. Spheroplasts were resuspended in 250 μl of L buffer (365 mM 

sucrose, 20 mM MOPS pH7.4, Roche protease inhibitor cocktail) and lysed under 

nondenaturing conditions using a Dounce homogenizer until 90% lysis efficiency was 

achieved. Cellular debris was removed by centrifugation at 3,000 rpm for 5 min. at 4°C. The 

cell lysate was then spun at 100,000 g for 1h at 4°C and the pellet and supernatant 

corresponded to the membrane and cytoplasmic fractions, respectively. The membrane 

fraction was resuspended in TNE buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 5 mM 

EDTA, Roche protease inhibitor cocktail) and different aliquots were pelleted at 100,000 g for 

30 min. at 4°C and resuspended in TNE buffer, TNE+0.5 M NaCl, TNE+0.1 M Na2CO3 

pH11, TNE+2 M urea, TNE+1% Triton X-100, and TNE+2% SDS. After 30 min. on a 

rotating wheel and further centrifugation at 100,000 g for 30 min. at 4°C, supernatants and 

pellets were analyzed by Western blot. 
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Cells were observed after reaching the exponential growth phase. For time-lapse video 

microscopy, 2 µl of cells were mounted on 2% EMM agarose pads. GFP movies were 

captured using a spinning disk Nikon TE2000 microscope with a 100x 1.45 NA PlanApo and 

a HQ2 Roper camera. Incorporation of FM4-64 (Molecular Probes) was recorded in live cells 

(1 image per 10 min) on agarose pads. Sterol-rich domains were detected using 5 μg/ml filipin 

(Sigma) and a DMRXA Leica microscope equipped with a neutral filter. For cell wall and 

septum detection, cells were fixed with 4% formaldehyde (Sigma) for 30 min., washed in PBS 

and stained with 0.5 mg/ml methyl blue (Sigma). Cells were observed using a DMRXA Leica 

microscope with a 100x 1.45 NA PlanApo and a CoolSNAP ES camera. Cell lengths were 

measured by ImageJ software. Colocalization experiments between cell wall (stained by 

methyl blue) and GFP tagged membrane proteins and Fluorescence Recovery After 

Photobleaching (FRAP) were performed on a spinning disc Nikon TE2000 microscope and 

used the Metamorph software. For FRAP, GFP signals were recorded every second and the 

bleach was applied for 0.5 sec. Cells were then observed every second for 2 min. Normalized 

FRAP data were calculated by the ImageJ software. For Transmission Electron Microscopy, 

cells were stained with potassium permanganate. Images were captured by a Jeol Jem-1010 

(Peabody, MA). 
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Table 1: S. pombe strains used in this study. 1 
2  

strain  Genotype Reference 
XLG009 h- cdc10-V50 leu1-32 (Reymond et al., 1992) 
XLG029 h- leu1-32 Lab stock 
XLG031 h- cdc25-22 leu1-32 ura4-D18 (Russel and Nurse, 1986) 
XLG046 h-  kin1::kanR cdc25-22 leu1-32 (La Carbona and Le Goff, 

2006) 
XLG053 h- leu1-32 kin1::kanMX6 (La Carbona et al., 2004) 
XLG092 h- kin1::kanR cdc10V50 leu1-32 This study 
FM401 h- myo4::ura4+ ade6-M216 leu1-32 ura4-D18 (Motegi et al., 2001) 
PPG3847 h- cps1-191 ura4-D18 (Liu et al., 1999) 
PPG165 h- pck1::ura4+ leu1-32 ura4-D18 (Arellano et al., 1999) 
PPG166 h- pck2::LEU2 leu1-32 (Arellano et al., 1999) 
XLG431 h+ kin1::kanR pck1::ura4+ leu1-32 ura4-D18 This study 
XLG454 h- kin1::kanR pck2::kanR leu1-32 ura4-D18 This study 
XLG485 h+  kin1::kanR pmk1::ura4+ leu1-32 ura4-

D18 
This study 

XLG510 h- sid4-SA1 leu1-32  (Balasubramanian et al., 1998) 
XLG520 h+  kin1::kanR sid4-SA1  This study 
#519 h- his3-D1 ura4-D18 leu1-32 bgs1::ura4+ 

Pbgs1+::GFP-bgs1+:leu1+  
(Cortes et al., 2005) 

#1216 h- his3-D1 ura4-D18 leu1-32 bgs3::ura4+ 
Pbgs3+::GFP-bgs3+:leu1+  

(Cortes et al., 2005) 

#561 h- his3-D1 ura4-D18 leu1-32 bgs4::ura4+ 
Pbgs4+::GFP-bgs4+:leu1+ 

(Cortes et al., 2005) 

XLG535 h- kin1::kanR bgs1::ura4+ Pbgs1+::GFP-
bgs1+:leu1+ leu1-32 ura4-D18 

This study 

XLG536 h- kin1::kanR bgs3::ura4+ Pbgs3+::GFP-
bgs3+:leu1+ leu1-32 ura4-D18 

This study 

XLG537 h- kin1::kanR bgs4::ura4+ Pbgs4+::GFP-
bgs4+:leu1+ leu1-32 ura4-D18 

This study 

TP319-13C h- pmk1::ura4+ ura4-D18 (Toda et al., 1996) 
XLG572 h- kin1::Gly5-GFP-kanR  leu1-32 ura4-D18 (Cadou et al., 2009) 
XLG595 h- kin1-as1::Gly5-GFP-kanR ade6-704 leu1-

32 ura4-294 
This study 

XLG602 h+ rho2::kanR ade6- ura4-D18 leu1-32 (Ma et al., 2006) 
XLG605 h+ pmp1::kanR ade6- leu1-32 ura4-D18 (Sugiura et al., 1998) 
XLG614 h- kin1::kanR rho2::kanR leu1-32 ura4-D18 This study 
XLG615 h- pmp1::kanR kin1::kanR ade6- leu1-32 This study 
XLG620 h+ kin1-as1::Gly5-GFP-kanR sla2::kanR 

ade6- leu1-32 ura4- 
This study 

XLG679 h- leu1:Ppsy1- GFP-psy1 (Nakamura et al., 2001) 
XLG680 h- kin1::kanR leu1:Ppsy1- GFP-psy1 This study 
XLG700 h- kin1-as1::Gly5-GFP-kanR myo4::ura4+ 

ade6- leu1-32 ura4- 
This study 

XLG709 h- kin1-as1 leu1:Ppsy1- GFP-psy1 ade6- leu1-
32 ura4- 

This study 

XLG717 h- kin1::kanR cps1-191 This study 
XLG724 h- kin1-as1 GFP-Cfh3:leu1 ade6- leu1-32 

ura4- 
This study 
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Table 2: Mutations in components of the Cell Wall Integrity pathway modulate kin1Δ-

dependent formation of Cell Wall Deposits. The indicated strains were cultured to mid log 

phase at 25°C and stained with methyl blue. Percentage of CWD containing cells (mean±SD, 

n>400) is indicated. 

1 

2 

3 

4 

5  

strain % of cell with CWD 

WT None 

kin1Δ 77 ± 6.5 

kin1Δ pmk1Δ 39.4 ± 2.2 

kin1Δ pck2Δ 17 ± 5.3 

kin1Δ rho2Δ 66.1 ± 0.5 

kin1Δ pck1Δ 91.6 ± 7.8 

kin1Δ pmp1Δ 92 ± 0.9 

 6 
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Fig. 1. Kin1 associates with sterol-rich domains of the plasma membrane and its polarization 

depends on intact vesicular traffic. A) Kin1 and GFP-Bgs4 localization were determined by 

sub-cellular fractionation in GFP-Bgs4 cells and Western blot analysis using anti-Kin1 (upper 

panels) and anti-GFP (lower panels) antibodies, respectively. Total cell extracts (CE) of 

exponentially growing GFP-Bgs4 protoplasts were prepared under nondenaturing conditions. 

Cytosol and membrane fractions were separated by ultracentrifugation. B) Membrane 

fractions were further separated in buffers containing either 0.5 M NaCl, 100 mM Na2CO3 pH 

11, 2 M urea, 1% Triton X-100 at 4°C and 2% SDS. C) Brefeldin A (BFA) treatment 

depolarizes Kin1-GFP on the plasma membrane. Kin1-GFP cells were treated for 1h with 100 

µg/ml of BFA. Polarization of lipid rafts was assayed by filipin dye as a control for BFA 

efficiency. Bar, 5 μm. 

 

Fig. 2. Kin1 is required for morphogenesis and cell wall synthesis regulation. A) Wild type 

(WT) and kin1Δ cells were cultured to mid-log phase, fixed at 25°C or after 5h at 37°C and 

beta-glucans were stained with methyl blue. Arrowheads show the presence of Cell Wall 

Deposits (CWD) on the lateral cortex. Percentage of CWD containing cells (mean±SD, 

n>400) are indicated in the top right for kin1Δ mutants. Bar, 2 μm. B) cdc10-V50, cdc25-22, 

and sid4-SA1 mutations (G1 arrest, G2 arrest and septum inhibition, respectively) were 

combined with kin1Δ and compared to kin1+ cells (WT). Exponentially growing cells were 

shifted to 37°C for 4h and stained with methyl blue. CWD are shown by arrowheads. Bar, 2 

μm. C) Cell wall structures observed by Transmission Electron Microscopy. Left: the wild 

type (WT) cell shows cell wall (cw), nucleus (n), plasma membrane (pm), septum (s). Right: 

kin1Δ cells showing two different Cell Wall defects: (a) multiple layers of cell wall, (b) 
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amorphous cell wall material (am, white arrow) between the plasma membrane and the cell 

wall. Insets show 2X magnifications of the cell surface. Bars, 1 μm. 

 

Fig. 3. Phenotypic characterization of the inhibition of an ATP analog-sensitive Kin1-as1 

kinase. A) Identification of the F220G analog-sensitive (as1) mutation in Kin1 ORF by 

sequence alignment with Calmodulin Kinase and Cyclin dependent kinase Cdk2 (according to 

Bishop et al., 2000). B) Effect of Kin1-as1 inhibition on the cell wall and septum: kin1-as1 

cells were incubated either with DMSO or 20 µM 1NM-PP1 for 2h at 30°C. In the upper 

panels, cells were stained with methyl blue for fluorescence microscopy (Bar, 2 μm). The 

asterisk shows an asymmetric septum and arrowheads show CWD.  In the middle panels, cells 

were processed for TEM. Arrows show amorphous cell wall material (am), cell wall (cw), 

plasma membrane (pm) (Bars, 1 μm). An inset depicts the distinctive nature of the electron 

density of the cell wall material in the TEM image (Bar, 0.5 μm). The histogram on the lower 

panel indicates the percentage of kin1-as1 cells with CWD following incubation with various 

doses of 1NM-PP1 for 2h at 30°C. C) Localization of Kin1-as1-GFP in cells incubated either 

with DMSO or 20 µM 1NM-PP1 for 2h at 30°C. Asterisks depict Kin1-as1-GFP signals on 

the lateral cortex. The right panel shows a part of the middle image with depolarized Kin1-

as1-GFP on the cortex. Bar, 2 μm. D) Mobility of Kin1-as1-GFP protein in the cell end 

analyzed by Fluorescence Recovery After Photobleaching (FRAP). Kin1-as1 cells were 

treated either with DMSO or 20 µM 1NM-PP1 for 2h at 30°C. Fluorescence of Kin1-as1-GFP 

in representative cells is shown before the laser bleach (pre), during the bleach (bleach) and at 

50 and 100 sec after the bleach (t50 and t100). The bleached areas are indicated by white 

squares. Bar, 5 μm. The graph on the right shows the mean normalized fluorescence intensity 

in the cell end plotted over time (n=10 for each condition). The arrow indicates the bleach. 

38 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

The membrane spanning protein GFP-Psy1 has been processed under identical FRAP 

conditions as a control. 

 

Fig. 4. Kin1 is required for plasma membrane organization and endocytosis. A) Wild type 

(WT) and kin1Δ cells were stained with filipin. B) GFP-Psy1 localization was detected in 

exponentially growing WT and kin1Δ cells at 25°C. Arrowheads show accumulation of GFP-

Psy1 on the lateral cortex. C) FM4-64 (8 μM) incorporation into WT or kin1Δ cells was 

monitored after 1h. D) Localization of GFP-Bgs1 in exponentially growing cells at 25°C was 

examined in WT and kin1Δ strains. Arrowheads denote delocalized GFP-Bgs1 signals. Bars, 2 

μm in all micrographs. E) Kin1Δ rescues cps1-191 (bgs1ts) sensitivity to heat. Growth of 

indicated strains was monitored by serial dilutions on YES medium at different temperatures. 

 

Fig. 5. Kin1-as1 inhibition initially alters growth area polarization and subsequently cell wall 

structure and Pmk1 activation. Kin1-as1 cells were treated with either DMSO or 20 µM 

1NM-PP1 for 2h at 30°C. A) Cells were stained with filipin to detect sterol-rich domains 

(Bar, 2 μm), B) GFP-Cfh3 (Bgs1 complex) was localized during different stages of the cell 

cycle. Arrowheads denote depolarized GFP-Cfh3 on the lateral cortex (Bar, 5 μm), C) 

Kinetics of CWD formation and GFP-Cfh3 depolarization at the cortex. Kin1-as1 GFP-Cfh3 

cells were incubated with 20 µM 1NM-PP1 and samples were collected at the indicated times. 

Cfh3 localization was detected by its GFP signal and CWD by methyl blue staining. The 

percentage of cells in the population is indicated (n>100). D) Pmk1 activation was monitored 

by western blot. Its activated form was detected using the anti-phospho MAPK antibody 

(p42/44) in whole cell extracts. Cdc2 was used as a loading control. 
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Fig. 6. Vesicular trafficking modulates CWD formation. A) Exponentially growing kin1-as1 

cells were treated with Ethanol or Brefeldin A (BFA) for 1h and then DMSO or 20 µM 1NM-

PP1 was added for 2h at 30°C. B) Strains of the indicated genotypes were incubated either 

with DMSO or 20 µM 1NM-PP1 for 2h at 30°C. Arrowheads show CWD. Samples were 

stained with methyl blue. Bars, 2 μm. 
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Fig. 7. The Cell Wall Integrity MAPK pathway is constitutively activated in kin1Δ cells and 

contributes to CWD formation. A) Analysis of CWI MAPK pathway activation in wild type 

(WT) and indicated mutant cells by Western blot. Whole cell extracts were prepared and 

Pmk1 activation was monitored using the anti-phospho MAPK antibody (p42/44). Cdc2 was 

used as a loading control. (B, C) The indicated strains were cultured to mid log phase and 

growth was assayed by 10-fold serial dilutions on B) YES control plates or YES plates 

containing 0.1 M or 0.2 M MgCl2, and C) EMM control plates or EMM plates containing the 

cell wall damaging agents SDS or Calcofluor white (Cw). 
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