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Abstract 

Hepatocellular carcinoma (HCC) is the most frequent tumors derived from the malignant 

transformation of hepatocytes. It is well established that cancer is a disease of the genome and 

as in other type of solid tumors, a large number of genetic and epigenetic alterations are 

accumulated during hepatocarcinogenesis process. Recent developments using comprehensive 

genomic tools enabled to identify the molecular diversity in human HCC. Consequently, 

several molecular classifications have been described using different approaches and 

important progresses have been done particularly with the transcriptomic, genetic, 

chromosomal, miRNA and methylation profiling. On the whole, all these molecular 

classifications are related together and one of the major determinants of the identified 

subgroups of tumors are gene mutations found in oncogenes and tumor suppressors. However, 

the full understanding of the HCC molecular classification requires additional comprehensive 

studies using both genomic and pathway analyses. Finally, a refinement of the molecular 

classification of HCC taking into account the geographical and genetic diversity of the 

patients will be essential for an efficient design of the forthcoming personalized clinical 

treatments.  
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Despite our growing comprehension of the different pathways altered in hepatocellular 

tumors, the molecular mechanisms that lead hepatocytes to undergo transformation and give 

rise to a hepatocellular carcinoma are still poorly understood. As proposed by Vogelstein in 

overall cancer, hepatocellular tumorigenesis is a DNA disease due to the accumulation of 

alterations in genes that control cell cycle and cell proliferation
1
 and a large number of genetic 

and epigenetic alterations accumulate during this process. Classically, at initiation of 

carcinogenesis, the different risk factors (viral infection, cirrhotic lesions, obesity, oxidative 

stress …) contribute to promote the occurrence of gene alterations in hepatocytes. Then, 

tumor development process will select altered hepatocytes with the highest capacity to survive 

and proliferate. Finally, each HCC tumor results from a specific combination of several 

alterations modifying oncogenic pathways. These changes are both quantitative (losses and 

gains of chromosome segments), qualitative (point mutations) or epigenetic and numerous 

cases of extinctions of gene expression secondary to the hypermethylation of their promoters 

have been reported 
2
. Some of the observed genetic alterations are widely shared among the 

different tumor types; for example, mutations in CTNNB1 and TP53 genes are found in 

tumors developed in several different organs, as shown in the cosmic mutation database 

(http://www.sanger.ac.uk/genetics/CGP/cosmic/)
3
. In contrast, other alterations are found 

quasi-exclusively in hepatocellular tumors and this is the case for IL6ST or HNF1A mutations 

4-6
. Therefore the comprehensive knowledge of repertory of genetic alterations in a tumor type 

and the study of the correlation between these alterations and the different clinical and 

histological parameters allow refining the tumor classification and the understanding of the 

multistep carcinogenesis process.  

Recent analysis of large number of genetic and epigenetic alterations together with 

transcriptome and systematic pathway analyses enabled to clarify the diversity of HCC and 

HCA, their molecular classification and the identification of subgroups of tumors likely to be 

efficiently targeted by specific drugs. In this review, we will summarize the most important 

molecular classifications that have been described and how these classifications could be 

useful in clinical practice 
7-9

.  

1-Oncogene and tumor suppressor gene mutations in hepatocellular tumors. 

Mutations activating ß-catenin are found in 20 to 40% of hepatocellular 

carcinomas (Table 1), showing that ß-catenin is the most frequently activated oncogene in 



HCC by mutation 
2, 10, 11

. The WNT/ß-catenin pathway plays a key role in liver physiological 

phenomena, such as lineage specification, differentiation, stem cell renewal, epithelial-

mesenchymal transition, zonation, proliferation, cell adhesion and liver regeneration 
12-19

. We 

showed that ß-catenin mutations are associated with chromosome stability and this genetic 

alteration occurs more frequently in patients without HBV infection 
20, 21

. In a recent study, 

Audard and collaborators found that ß-catenin activated HCC exhibit specific features 

associating high differentiation with a homogeneous microtrabeculo-acinar pattern, low-grade 

cellular atypia, and cholestasis 
22

. In addition, ß-catenin activated HCC are frequently 

developed in non-cirrhotic liver in absence of usual HCC risk factor 
22, 23

. Depending of the 

series, ß-catenin activating mutations were found to be associated with either good 
24, 25

 or bad 

prognosis 
23

 and its relation with prognosis remains debated. 

TP53 is the tumor suppressor the most frequently mutated in HCC (Table 2). The 

mutational spectrum of TP53 gene in HCC from Qidong and Mozambique where aflatoxin B1 

(AFB1) exposure level is high, revealed G->T transversion at codon 249 in more than 50% of 

the tumors 
26, 27

. This mutation at codon 249 of TP53, leading to the amino acid substitution 

R249S, is exceptionally found in HCC from geographical regions without AFB1 exposure. 

Usually, in a determined geographic area, the frequency of the R249S mutation paralleled the 

estimated level of AFB1 exposure, supporting the hypothesis that the carcinogen has a 

causative role in hepatocarcinogenesis. In western countries, where there is no exposure to 

AFB1, TP53 mutations are found in approximately 20% of the HCC, without specific hotspot 

of mutations 
20

. Finally, no TP53 mutations were found in benign hepatocellular tumors 
28, 29

. 

During the last 20 years, several studies have searched to identify other genes mutated 

in hepatocellular tumors (Table 1 and 2). Apart from CTNNB1 and TP53, all the other 

identified genes were found rarely mutated, i.e. in less than 10 % of the HCC cases. Although 

most of HCC are developed in a context chronic hepatitis and cirrhosis, a small proportion 

result from a malignant transformation of a benign adenoma. Accordingly, IL6ST and 

HNF1A that are frequently mutated in adenoma (Table 3), are rarely altered in HCC (Table 1 

and 2) or in other malignant tumors 
30-32

. In contrast, in adenoma CTNNB1 activation was 

shown to be associated with a higher risk of malignant transformation 
5, 33-35

. Accordingly, 

this gene is found rarely mutated in HCA and more frequently activated in HCC, suggesting 

that ß-catenin activation is a common genetic determinant associated with both benign and 

malignant tumorigenesis in the liver.  



2- Transcriptomic classification of HCC 

During the last 10 years, analysis of a large number of human HCC using expression 

microarray techniques enabled to identify new sub-groups of tumors defined by specific 

deregulation of expression of gene networks. Comparisons with functional gene modification 

induced in animal models or cell lines allowed to characterize the nature of these networks. 

The first example of integrative analyzes of transcriptomic and functional was done in the 

Snorri Thorgeirsson’s laboratory (NCI, Bethesda, USA). In 2006, by integrating gene 

expression data from rat fetal hepatoblasts with HCC from human and mouse models, this 

team identified a subgroup of HCC that may arise from hepatic progenitor cells
8
. Importantly, 

this subgroup of tumors shared a gene expression pattern with fetal hepatoblasts and had a 

poor prognosis.  

In our series of HCC surgically treated in France, we performed a genome wide 

transcriptomic analysis of 60 tumors together with an exhaustive characterization of structural 

genetic alterations and clinical parameters 
36

. In this study, unsupervised transcriptomic 

analysis identified six robust subgroups of HCC (termed G1 to G6) associated with clinical 

and genetic characteristics (Figure 1). The main classification divider was the chromosome 

stability status. Tumors from group G1 to G3 were chromosome instable whereas tumors 

from G4 to G6 were chromosome stable. Indeed, tumors presenting chromosome instable 

phenotype demonstrated a trancriptomic profile strikingly different from chromosome stable 

ones (Figure 1). Chromosome instability appears as the main driver of tumor classification as 

previously shown in classifications based on chromosomal and genetic aberrations 
20, 21, 28, 37

. 

In addition, genetic alterations and pathways analyses allowed for a refined transcriptomic 

classification: G1-tumors were related to a low copy number of HBV and overexpression of 

genes expressed in fetal liver and controlled by parental imprinting; G2 included HCC 

infected with a high copy number of HBV, PIK3CA and TP53 mutated cases; G3-tumors were 

TP53 mutated without HBV infection, a frequent P16 methylation and showed over-

expression of genes controlling cell-cycle; G4 was a heterogeneous subgroup of tumors 

including TCF1 mutated adenomas and carcinomas; G5 and G6, were strongly related to ß-

catenin mutations leading to Wnt pathway activation; G6-tumors presented satellite nodules, 

higher activation of the Wnt pathway and a E-cadherin under-expression. This 6-group 

classification has clinical application regarding the development of targeted therapies for 

HCC because specific pathway activations, particularly AKT and Wnt pathways, are closely 

associated to subgroups G1-G2 and G5-G6 respectively. Therefore we identified and 



validated a robust 16-gene signature to classify HCC tumors into the 6-group transcriptomic 

classification. This signature should be very useful to determine alterations of specific 

pathways and to predict putative response to targeted drugs 
36

. 

Actually several transcriptomic analyses have been reported 
7, 8, 36, 38-45

. Successively, a 

large number of molecular subgroups of tumors have been identified underlining the broad 

diversity of HCC in human. Despite disparities among studies in term of risk factors, 

geographical origin, grading of the tumors, some similar subgroups of tumors have been 

recurrently identified. In an attempt to describe a common molecular classification, Hoshida 

and collaborators performed the first “biostatistical meta-analysis” of 9 different 

transcriptome HCC studies
45

. This constitutes an important opening step to construct an 

international consensus defining common bases of a robust molecular classification of HCC.  

3- Micro-RNA profiling in hepatocellular tumors 

Micro RNAs (miRNAs) are small non-coding RNAs that regulate gene expression. 

Many studies show that they are implicated in essential physiological functions and 

particularly in tumors 
46

. Specific alterations of miRNA expression have been identified 

directly involved in carcinogenesis. Indeed, miRNAs could act as oncogenes or tumor 

suppressors. In addition, some miRNAs deregulations seem to be associated to specific 

tumors subtypes, suggesting that they could be used as tumor biomarker. Recently, we 

performed microRNA (miRNA) profiling in two series of fully annotated liver tumors to 

uncover associations between oncogene/tumors suppressors’ mutations, clinical and 

pathological features 
47

. Expression levels of 250 miRNAs in 46 benign and malignant 

hepatocellular tumors were compared to 4 normal liver samples using quantitative RT-PCR. 

miRNAs associated to genetic and clinical characteristics were validated in a second series of 

43 liver tumor and 16 non-tumor samples. miRNAs profiling unsupervised analysis classified 

samples in unique clusters characterized by histological features (tumor/non-tumor; 

benign/malignant tumors, inflammatory adenoma and focal nodular hyperplasia), clinical 

characteristics (HBV infection and alcohol consumption) and oncogene/tumor suppressor 

gene mutations (ß-catenin and HNF1). Our study identified and validated miR-224 over-

expression in all tumors, miR-200c, miR-200, mir-21, miR-224, miR-10b and miR-222 

specific deregulation in benign or malignant tumors 5 (Figure 3). Moreover miR-96 was over-

expressed in HBV tumors, miR-126* down regulated in alcohol related HCC. Down-

regulations of miR-107 and miR-375 were specifically associated with HNF1 and ß-catenin 



gene mutations, respectively. miR-375 expression was highly correlated to that of ß-catenin 

targeted genes as miR-107 expression was correlated to that of HNF1 in a siRNA cell line 

model. Thus, strongly suggesting that ß-catenin and HNF1 could regulate miR-375 and 

miR-107 expression levels, respectively. All together, hepatocellular tumors may have distinct 

miRNAs expression fingerprint according to malignancy, risk factors and oncogene/tumor 

suppressor gene alterations. Dissecting these relationships provides new hypothesis to 

understand the functional impact of miRNAs deregulation in liver tumorigenesis and their 

promising use as diagnostic markers 
47

. 

Several other studies have also identified a relationship between miRNA deregulation 

and the phenotype of HCC48-56, 57 , 58 , 59-62. Despite different clinical features of the tumors, 

various risk factors, techniques and strategies used to normalized data, several miRNA altered 

in their expression have been recurrently found in the different studies. These observations 

indicate that miRNA profiling may be robust biomarkers to classify tumors. Recently the 

expression of miR-122 
63

, miR-221 
51

 and miR26 
58

 were found to be associated with a poor 

prognosis in human HCC. All together, hepatocellular tumors may have distinct miRNAs 

expression fingerprint according to malignancy, risk factors and oncogene/tumor suppressor 

gene alterations. Dissecting these relationships provides new hypothesis to understand the 

functional impact of miRNAs deregulation in liver tumorigenesis and their promising use as 

diagnostic markers. 

Conclusion 

Both benign and malignant hepatocellular tumors demonstrate a broad diversity at the 

genetic and epigenetic levels leading to robust classification closely related to clinical features 

and carcinogenesis pathways. These molecular classifications are closely related together. In 

each of them, tumor suppressor and oncogene mutations are frequently major drivers of the 

subclasses. Finally, classifying tumors in homogeneous sub-groups using gene signature is a 

promising tool to construct rational protocols with targeted therapies and to refine prognosis 
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Table 1: Major oncogenes activated by mutation in HCC (excluding cell 

lines) 

Oncogene Protein 
Mutated HCC 

(%) 
Main refs. 

CTNNB1 

Catenin (cadherin-

associated protein), 1 

(ß-catenin) 

5-50% 

 

10, 11, 21, 23, 36, 

64-67
 

HRAS 

KRAS 

NRAS 

Ras proto-oncogene < 3-5% 

36, 68-72
 

IL6ST 
Interleukin 6 signal 

transducer (gp130) 

< 3% 
5
 

PIK3CA 

Phosphoinositide-3-

kinase, catalytic, alpha 

polypeptide 

< 3% 

36, 73, 74
 

MET 

Met proto-oncogene 

(hepatocyte growth 

factor receptor) 

< 1-5% 

75
 

CSF-1R 
Colony stimulating 

factor 1 receptor (c-fms) 
2 mutations 

76
 

 



Table 2: Major tumor suppressor genes inactivated by mutation in HCC 

(excluding cell lines) 

Tumor 

suppresso

rs 

Protein 
Mutated HCC 

(%) 
Main refs. 

TP53 Tumor protein p53 10-61% 
20, 26, 36, 77-79

 

CDKN2A 

Cyclin-dependent kinase 

inhibitor 2A 

(p16INK4) 

10-60% 

36, 80-82
 

AXIN1 Axis inhibition protein 1 5-25% 
20, 65, 83-87

 

AXIN2 Axis inhibition protein 2 3-10% 
83

 

HNF1A 
Hepatocyte nuclear 

factor 1a 

< 3% 
4, 36

 

RB1 Retinoblastoma 1 < 11% 
88

 

SMAD2-4 
SMAD family member 2 

and 4 
< 10% 

89, 90
 

PTEN 
Phosphatase and tensin 

homolog 
< 5-10% 

53, 91-94
 

IGF2R 
Insulin-like growth 

factor 2 receptor 
0-13% 

95-97
 

STK11 
Serine/threonine-protein 

kinase 11 (LKB1) 
1 mutation 

98
 

 



Table 3: Oncogenes and tumor suppressor genes mutated in 

hepatocellular adenomas 

Genes 

altered in 

adenomas 

Protein 

% of 

mutated 

HCA 

Type of 

mutation 

Main 

refs. 

HNF1A 

Hepatocyte 

nuclear 

factor 1a 

35% 

 
Inactivating  

4, 6, 35, 99-

103
 

CTNNB1 

Catenin 

(cadherin-

associated 

protein), 

beta 1 

(ß-catenin) 

15-19% Activating  

29, 34, 35, 

104
 

IL6ST 

Interleukin 6 

signal 

transducer 

(gp130) 

35-45% Activating 
5
 

 

 



Figure 1 

Significant associations with the transcriptomic classification adapted from Boyault et 

al, 200736. The six robust subgroups found in 120 HCC (termed G1 to G6) are shown 

with their significant relationships with clinical, genetic and oncogenic pathway 

features. 

 

 

Figure 2 

miRNA recurrently altered in HCC and benign liver tumors47-51, 53-56. Major 

deregulated miRNAs validated in at least two different published studies are 

indicated.   
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