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Abstract: 

Background: Type I and II inosine monophosphate dehydrogenases (IMPDH) are the targets 

of mycophenolic acid (MPA), a widely used immunosuppressant. The aims of this study 

were: to check the presence of controversial polymorphisms in the IMPDH II gene; to look 

for new ones; and to investigate potential associations between the most frequent SNPs in 

both IMPDH genes and clinical outcome in renal transplant recipients. 

Methods: The DNA and clinical data of 456 patients from two clinical trials were collected. 

We sequenced the IMPDH II gene in 80 patients and we genotyped the 456 patients’ DNA for 

the IMPDH II rs4974081, rs11706052, 787C>T and the IMPDH I rs2278293 and rs2278294 

SNPs, all of which were previously reported to be potentially involved in MPA treatment 

related outcome. We investigated the associations of biopsy proven acute rejection (BPAR), 

leucopenia, CMV infections and other infections with these IMPDH polymorphisms, as well 

as with demographic, biological and treatment data using multivariate analysis. 

Results: Many IMPDH II variant alleles referenced in Genbank were not detected and no new 

polymorphisms were identified. In the whole group of 456 patients, the IMPDH I rs2278294 

SNP was associated with a lower risk of BPAR and a higher risk of leucopenia over the first 

year post-transplantation. No other IMPDH I or IMPDH II polymorphism was significantly 

associated with any clinical outcome. Interestingly, CNI and MPA exposures below the 

therapeutic range increased the risk of BPAR. CMV infection was the factor most closely 

linked with leucopenia, whereas tacrolimus was associated with fewer infections than 

cyclosporine. 

Conclusion: IMPDH II genotyping may not improve MPA treatment outcome over the first 

year post-transplantation, in contrast to MPA and CNI therapeutic drug monitoring and 

IMPDH I genotyping. 
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Introduction 

 

Mycophenolic acid (MPA) is an immunosuppressive drug widely used in liver and 

kidney transplantation [1-3]. Its effect is essentially attributed to the inhibition of type II 

Inosine MonoPhosphate DeHydrogenase (IMPDH) [4-6], a rate-limiting enzyme involved in 

the de novo purine synthesis pathway [7, 8]. Lymphocytes are devoid of the salvage pathway 

that allows other cells to recycle purines, and are therefore dependent on IMPDH II for DNA 

synthesis and GMP/AMP controlled pathways [9]. MPA therapy is not devoid of treatment 

failures and side effects [10-12], which indicates inter-individual pharmacokinetic or 

pharmacodynamic variability. The potential benefit of mycophenolate mofetil (MMF) dose 

adjustment in decreasing the risk of acute rejection is still controversial, as two studies 

yielded divergent results [13, 14]. There have been many attempts to identify 

pharmacogenetic parameters that could be taken into account in order to control MPA 

pharmacokinetic variability, with limited success so far [15, 16]. As IMPDH I and II are the 

target proteins of MPA, polymorphisms in their genes might explain part of the inter-

individual variability in MPA effects [17]. Wang et al. found an association between two 

intronic IMPDH I SNPs (rs2278293 and rs2278294) and the incidence of BPAR in kidney 

transplant recipients, and concluded that these IMPDH I polymorphisms should be considered 

in further pharmacogenetic studies [18]. In a recent study on IMPDH II expression, Vannozzi 

F et al. identified IMPDH II gene as another good candidate for MPA pharmacogenetic 

studies [19]. Several studies demonstrated that both isoforms of IMPDH are transcribed in 

response to T cell activation [11] and that the increase of IMPDH activity is linked to 

activation of both IMPDH isoforms [20-21]. 

The human IMPDH II gene is located on chromosome 3 locus 3p21.2 and is 

approximately 5.2 kb in length (accession number: NC_000003.10). It has 14 exons encoding 

a 1.7 kb mRNA (NM_000884.2) leading to a 514 amino-acid protein of 56 kDa 
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(NP_000875.2) [22]. This protein shares 84% homology with IMPDH I and its exonic 

sequence is highly conserved among species, especially in mammalians [23]. The 3D 

structure has been published, and crucial amino-acids for the enzyme activity (Cys-331, Asp-

364 and Ser-329) and MPA binding site (Ser-276 Thr-333 and Gln-441) have also been 

reported [22, 23]). Polymorphisms in these regions could potentially be linked with inter-

individual variations in MPA effects. A random mutagenesis study has found three IMPDH II 

mutations (L30F/Q227R, A462T and F465S/D470G) conferring resistance to MPA [24]. 

However, none of them have yet been reported in vivo. 

Little is known about the consequences of IMPDH II gene polymorphisms and their 

involvement in patients’ response to MPA. Only two non-synonymous polymorphisms are 

referenced in the NCBI database (the AAG/- rs5848860 deletion and the rs11557540 A/G 

single nucleotide polymorphism) with no frequency mentioned. A recent study [25] based on 

genotyping of more than 400 DNA samples reported no mutated allele for these two 

previously reported polymorphisms (rs5848860 and rs11557540) and suggested these 

reported polymorphisms to be sequencing artifacts. Using in silico techniques, the same team 

predicted a possible effect of a mutation in the promoter region (rs4974081) on IMPDH II 

transcription [25], which has not yet been confirmed by in vitro or clinical studies. Wang J. et 

al. reported the previously non-referenced 787C>T SNP in exon 7, leading to a Leu-Phe 

substitution and a 10-fold decrease in basal enzyme activity in vitro [16]. However, this 

mutation showed a low frequency (~1%) in the population and the authors were not able to 

demonstrate any association between this mutation and clinical outcomes [18].  

Grinyó J. et al recently reported an association of the 3757T>C SNP (rs11706052) in 

intron 7 on the IMPDH II gene with a higher risk of acute rejection in renal transplant 

recipients [15], whereas Wang et al. did not find any association between this SNP and 

clinical outcomes. A recent study in a cohort of 80 renal transplanted patient treated by MPA 
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found increased IMPDH activity in variant carriers of the 3757T>C IMPDH II SNP [26], but 

no association with acute rejection incidence was found, which may have been due to an 

underpowered sample size. 

The goals of the present study in a large group of renal transplants (n=456) receiving 

mycophenolate mofetil in combination with calcineurin inhibitors were to look for possible 

new polymorphisms in exons, the flanking intron-exon regions and the proximal promoter of 

the IMPDH II gene in 80 renal transplant patients and for associations between clinical 

outcomes and the previously reported or new IMPDH polymorphisms, taking in account 

demographic, biological and treatment data as potential confounders.  

 

Material and methods 

 

Patient population: 

This study was conducted in adult, de novo renal transplant patients enrolled in the 

pharmacogenetic substudies of two clinical trials: a first group of 121 (out of 137) patients 

enrolled in of the Apomygre trial (Clinical Trial Registry No. NCT0019967); a second group 

of 335 patients from the international FDCC trial (NCT00166244). Both studies were 

prospective, randomized, open-labeled and aimed to compare concentration-controlled MMF 

with the approved fixed-dose over the first 12 months posttransplantation. All patients signed 

a specific written informed consent for pharmacogenetic investigations. The study design, 

patient populations and primary results were recently reported [13, 14]. Briefly, patients 

enrolled in Apomygre received MMF in combination with cyclosporine, whereas those in 

FDCC were either on tacrolimus or cyclosporine (Table 1). MPA AUC0-12h, the associated 

calcineurine inhibitor (CNI), CNI concentrations, side effects (leucopenia, infection, 

diarrhea), and biopsy proven acute rejection (BPAR) episodes were collected at D7, D14, M1 

M3, M6 and M12 post-transplantation in both trials. Leucopenia was defined as a white blood 
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cell count < 3.10
9
.l

-1
. Infections were defined as clinical infectious syndromes with positive 

identification of an organism by microbiological culture, serology, antigen detection, PCR 

techniques or histology. Patients’ demographic characteristics are reported in Table 1.  

DNA samples: 

In the FDCC study [27], genomic DNA was isolated from 200 μl of EDTA whole 

blood using a total nucleic acid extraction kit (MagNA Pure LC; Roche Diagnostics, 

Mannheim, Germany). In the Apomygre study, genomic DNA was extracted from EDTA-

treated blood using a previously described manual ethanol precipitation method [28]. 

DNA from 80 randomly selected APOMYGRE patients were used for IMPDH II 

sequencing. The genomic DNA samples from 121 APOMYGRE and 335 FDCC patients 

were genotyped and used for the pharmacogenetic association study. 

IMPDH II sequencing: 

To tentatively identify novel IMPDH II mutations, 10 targets covering the proximal 

promoter, 14 exons and intron/exon flanking regions from 80 patients DNA samples were 

sequenced. Table 2 lists the SNPs identified. Ten genomic DNA regions (target 1 to 10) 

covering the proximal promoter region, the 14 exons and the flanking intron-exon regions of 

the IMPDH II gene were PCR-amplified using the AmpliTAQ gold PCR master mix (Applied 

Biosystems, Courtaboeuf, France) (covered regions are reported in supplemental Table 1). 

Reactions were carried out in a final volume of 100 µl using 150 ng genomic DNA and 10 

µM of reverse and forward primers, designed using the Primer3 website 

(http://frodo.wi.mit.edu/) and reported in supplemental Table 1. Amplification consisted of an 

initial denaturation for 6 minutes at 95°C followed by 35 cycles of denaturation at 95°C for 15 

seconds, annealing at 60°C for 15 seconds and extension at 72°C for 1 minute. Terminal 

elongation was performed at 72°C for 7 minutes. The PCR-amplified products were purified 

http://frodo.wi.mit.edu/
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using the QiaVac96 kit (Qiagen, Courtaboeuf, France) and forward sequenced using the 

Bigdye terminator v1.1 kit (Applied Biosystems) according to the manufacturers’ procedures. 

All the potential SNPs were confirmed by reverse sequencing. The extension products were 

purified using a standard Ethanol/EDTA/sodium acetate precipitation procedure and the 

nucleotide sequences determined on an ABI 3100 automated sequencer (Applied-

Biosystems). The Sequencer v4.8 program (Gene Codes Corp. Ann arbor, MI, US) was used 

for data processing using the IMPDH II reference sequence (Genbank NC_000003.10) for 

automatic alignment. All SNPs and unclear regions were visually checked. 

Genotyping assays: 

The IMPDH II rs11706052 and 787C>T SNPs were genotyped in patients whose 

DNA had not been sequenced at the previous step. The previously reported rs4974081, 

rs2278293 and rs2278294 SNPs were genotyped in all 456 patients because IMPDH II 

rs4974081 was out of our sequencing coverage and both rs2278293 and rs2278294 are 

located on the IMPDH I gene. Genotyping was performed using validated TaqMan allelic 

discrimination assays on an ABI PRISM 7000 Sequence Detection System (Applied 

Biosystems), using the manufacturer protocol. 

Statistical analyses: 

 Deviation from the Hardy-Weinberg equilibrium was investigated for each SNP 

separately using the Fisher exact test. Statistical analyses were performed using R software 

version 2.10.1 (R foundation for statistical computing, http://www.r-project.org). Each 

clinical outcome criterion (BPAR, CMV infections, other infections and leucopenia episodes 

occurring over the first year post transplantation) was used in turn as the dependent variable 

for stepwise logistic regression analysis using the “Epicalc” R package. Different genetic 

models (co-dominant, dominant, recessive and log-additive) were tested using the 

http://www.r-project.org/


8 

 

“SNPassoc” R package. The log-addidive model was retained for all the dependent variables 

on the basis of the lowest Akaike criterion. Patients’ genotypes, sex, age, MPA inter-dose area 

under the concentration-time curve (AUC0-12h), the associated CNI and its representative 

blood levels (C2h for cyclosporine, C0 for tacrolimus), were used as independent variables. In 

addition, CMV infections were considered as an independent variable for the multivariate 

regression analysis considering leucopenia as the dependant variable. The CNI concentration 

and MPA AUC0-12h values used were those closest to the event or, when the dose 

administered or patient’s exposure might have been influenced by the event, just prior to it. 

Concentration values in the stable period (M6-M12) were used when no events occurred. 

Patients were divided into the following categorized groups: below (group 1), within (group 

2), or above (group 3) the target range for either CNI concentration (CNI concentration 

groups) or MPA AUC0-12h (MPA AUC groups). Target ranges were 30 to 60 mg.h/l for MPA 

AUC0-12h; 1300-1500 (D7-M1), 1100-1300 (M1-M3), 800-1100 (M3-M6) and 700-900 µg/l 

(M6-M12) for cyclosporine C2h [13]; 10-15 µg/l (D7-M3) and 5-15 µg/l (M3-M12) for 

tacrolimus C0 [29]. The final multivariate model was determined by stepwise regression. 

Variables with p values > 0.20 were not included into the final model; p values < 0.05 in the 

final model were considered as significant. Linkage disequilibrium estimation and haplotype 

analysis were performed using the THESIAS program (http://genecanvas.ecgene.net).  

Results 

IMPDH II polymorphisms: 

Within exonic regions, no SNP was detected. Specifically, no variant allele for the two 

non-synonymous (rs11557540 and rs5848860) or the seven synonymous (rs11557543, 

rs11557547, rs11557541, rs11557545, rs11557542, rs11557544 and rs11557546) SNPs 

referenced in Genbank (http://www.ncbi.nlm.nih.gov/SNP; June 2009) were found. Similarly, 

http://genecanvas.ecgene.net/
http://www.ncbi.nlm.nih.gov/SNP
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the 787 C>T (Leu236Phe) and 417 C>T SNPs previously reported by Wang et al. [16]  could 

not be found in these 80 samples. Within the intronic regions sequenced, the SNPs referenced 

in Genbank were not found either, except for the rs11706052 SNP (i.e., IVS7+10T>C or 

3757T>C; Table 2), detected in 9.3% of the sequenced alleles (Table 2). In addition, we 

observed, although at low frequencies, 3 previously reported intronic SNPs (IVS1-162C>T: 

1.2%; IVS1+91 T>G: 0.6%; and IVS12-23C>T: 2.5%; Table 2). The IVS4+197 C>T and 

IVS5-62 G>A SNPs reported by Wang et al. were located out of our target boundaries and the 

IVS8-7G>A SNP was not present in the samples analyzed. No other SNP was found in the 

untranslated (intronic, proximal promoter and 5’/3’ UTR) regions sequenced. 

The minor rs4974081 allele located in the IMPDH II distal promoter region was 

genotyped and found at an allelic frequency of 24% in our 456 patients (Table 3). The 

intronic 3757T>C (rs11706052) SNP detected by gene sequencing was further investigated in 

the remaining patients by genotyping. The frequency of its variant allele was 9% (Table 3). 

No variant 787C>T (Leu236Phe) allele was found in the group of 456 patients (Table 3). No 

linkage disequilibrium was found between IMPDH II rs4974081 and rs11706052 SNPs (r² = 

0.02). 

IMPDH I polymorphisms: 

For the IMPDH I rs2278293 and rs2278294 SNPs, the minor allele frequencies were 46% 

and 36%, respectively (Table 3). The allelic distributions of all the SNP detected were in the 

Hardy-Weinberg equilibrium. The SNPs were in strong linkage disequilibrium (D’=0.78; 

r
2
=0.41) leading to 4 haplotypes with the following frequencies: G-G (0.50); G-A (0.04); A-G 

(0.14), A-A (0.32). 

For those previously reported, the allelic frequency found here was consistent with the 

literature: rs4974081, 21% in Caucasians [25]; 3757T>C (rs11706052) 7-10.2% [15, 16]; 
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787C>T (Leu236Phe) < 1% [16, 26] ; rs2278293 42.7% ; and rs2278294 40.6% [18]. It is 

noteworthy that the patients’ ethnicity or the allelic distribution between ethnic 

subpopulations was not mentioned in these last four papers. 

Association between clinical outcome and genetic, demographic and pharmacologic 

parameters: 

 

No association was found between the four tested clinical outcomes and any of the 

IMPDH II genotypes tested. Neither variants of the distal promoter (rs4974081) nor of the 

3757T>C (rs11706052) SNPs were significantly associated with an increased risk of side 

effects or acute rejection (OR for BPAR was 0.66 (95% CI [0.39-1.13]; p = 0.13) for 

rs4974081 variant allele carriers, and 0.89 (95% CI [0.44-1.78]; p = 0.74) for rs11706052 

carriers). The IMPDH I rs2278293 variant allele was not significantly associated with any 

tested outcomes either. The final regression model using acute rejection (BPAR) as the 

dependent variable included IMPDH I rs2278294, MPA AUC0-12h and CNI blood levels as 

significant factors (Table 4). The risk of BPAR was lower for the rs2278294 variant allele 

carriers, with a gene-additive effect (OR 0.54 [0.34-0.85]; p = 0.0075). Patients whose 

exposure was below the target range for both immunosuppressive drugs presented a 

significantly higher risk of acute rejection than patients within or above the target range for at 

least one of the drugs (OR: 2.22, 95% CI [1.20-4.11]; p = 0.0109 and OR: 2.27, 95% CI 

[1.272-4.06]; p = 0.0056 for MPA AUC0-12h and CNI blood level respectively) (Table 4). 

Leucopenia was significantly associated with IMPDH I rs2278294, the type of CNI used, 

their categorized blood levels and CMV infections. However, the CNI type may be a 

confounding factor, as it showed a significant interaction with CMV (p = 0.0369). The 

association with IMPDH I rs2278294 showed an additive risk for each variant allele carried 

(OR 1.66, 95% CI [1.11-2.48]; p = 0.0139) (Table 4).  
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Haplotype analysis of IMPDH I showed no significant association with the clinical 

outcomes.  

Discussion 

 

We did not discover any new IMPDH II polymorphism in the 80 patients whose DNA was 

sequenced. In addition, we did not observe the previously reported, non-synonymous IMPDH 

II polymorphisms rs11557540, rs5848860 and 787C>T. The first two mutations were already 

indicated as potential sequencing errors by Mohamed et al. [25] who studied a cohort of more 

than 400 patients, whereas the third (787C>T) polymorphism was found at a low frequency 

(1% or less) by Wang et al. in two different studies [16, 18]. However, we did not find this 

last variant allele either when genotyping our 456 DNA samples. This difference may be due 

to the different ethnical origins of the populations studied. Even though Wang et al. reported 

that the Leucine to Phenylalanine amino acid change resulting from this SNP induced a 

drastic decrease in IMPDH II catalytic activity [16], they also wrote in a second paper that a 

putative association with leucopenia would be difficult to prove due to its very low frequency 

[18]. Furthermore, such a rare allele would probably not significantly contribute to clinical 

management of the MMF benefit/risk balance.  

The present sequencing study did not retrieve any mutated allele of the IMPDH II intronic 

SNPs listed in GenBank, except for rs11706052 (3757T>C) which was present at a frequency 

similar (9% of our 456 patients) to those reported by Grinyo et al. [15] and Wang et al. [16]. 

In our cohort, this SNP was not significantly associated with BPAR, which is consistent with 

the results previously reported by Wang et al. [18] who found no association in 191 kidney 

transplant recipients using univariate analysis. However, Grinyo et al [15] did find a 

significant association between the 3757T>C SNP and BPAR at 3 and 12 months post-

transplantation in 237 patients of the CAESAR study. They used multivariate logistic 
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regression but only considered a few demographic covariates (age, sex, treatment groups – 

cyclosporine standard dose, low-dose or withdrawal- and donor type), but not MPA dose (that 

was significantly linked with BPAR in their study) or MPA exposure. They also admitted that 

they had very few variant allele carriers and that they had no mechanistic explanation for this 

association. The present study has the largest group of patients prospectively followed for one 

year post-transplantation so far, and used multivariate logistic regression considering many 

possible confounders. We were not able to confirm the association between this genotype and 

acute rejection.  

We also found that this 3757T>C SNP was not associated with leucopenia (which was 

consistent with Wang et al.’s results) [18], nor with CMV infections or other infections, 

which were not tested in the other two studies. A recent paper [26] reported a higher IMPDH 

activity in carriers of the variant 3757T>C SNP, without any association with clinical 

outcomes. As we did not measure IMPDH activity in the present patient cohort, we were 

unable to check the functional consequence of this polymorphism. 

We were also interested in the promoter variant rs4974081 for which an effect on IMPDH 

II transcription and thus possibly on MMF effects was forecasted in silico [25]. The variant 

allele was present in 25% of our 456 patients, but no statistically significant association was 

found with any clinical outcome tested. In vitro studies of IMPDH II transcription may give 

more information about the potential influence of this promoter mutation. 

We found three IMPDH II intronic SNPs, which were previously reported by Wang et al 

[16] at the same low frequencies. These SNPs showed no significant association with patient 

outcomes. Although the study may have been underpowered to find any significant 

association with these rare mutated alleles, it is less likely that intronic SNPs have a large 

influence on MPA pharmacodynamics. 
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We also investigated two IMPDH I polymorphisms (rs2278293 and rs2278294) which 

were previously reported to be associated with a decreased risk of BPAR [18]. No association 

with either BPAR or other tested outcomes was found for the rs2278293 variant in our large 

sample of patients.  This discrepancy with Wang et al. is not explained by the fact that we did 

not group heterozygous and homozygous variant carriers (51% and 20% of patients, 

respectively) to perform our analyses, because when we did there was no significant 

association between the rs2278293 variant and BPAR either (data not shown). On the other 

hand, we did find a significant, protective effect on BPAR of the rs2278294 variant allele as 

compared to the wild-type allele (log-additive model; OR 0.54 95% CI [0.34-0.85]; p = 

0.0075; Table 4). Nevertheless, no explanation on the mechanism behind this decreased risk 

of BPAR with an IMPDH I intronic SNP could be inferred. The mutant allele carriers also 

had a 1.6-fold increased risk of leucopenia, again with a gene-dose effect. The fact that BPAR 

and leucopenia are inversely associated to the same rs2278294 SNP reinforces the pertinence 

of this finding. A factor favoring low lymphocyte levels, sometimes leading to leucopenia 

episodes, is expected to protect the patient from developing an immunological reaction 

against the allograft. 

One limitation of this study is that we missed information about the patients’ ethnicity. 

This is partly due to the fact that the APOMYGRE study was conducted in France, where it is 

not legally possible to ask patients about their ethnic origins, unless it is the main aim or a 

main determinant of the study and provided one obtains a special authorization from the 

ministry of health. However, all patients enrolled in this sub-study were recruited in Europe, 

which suggests that a vast majority were of European descent, although this cannot be 

ascertained.  

When combined with MPA, cyclosporine was associated with more frequent side effects 

(leucopenia, CMV and other infections) than tacrolimus, with no difference in acute rejection 
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incidence. Nevertheless, the association between CNI type and infections could be biased by 

the fact that all tacrolimus co-treated patient were enrolled in the FDCC trial where reporting 

infections could have been slightly different from the APOMYGRE trial.  

Currently, the benefit of MPA TDM in transplant recipient is still under debate, as 

highlighted in a recent review by Knight & Morris [30]. Many retrospective studies found 

significant relationships between MPA AUC0-12h and BPAR or side effects in various types of 

populations [31-35], but the few prospective studies lead to diverging conclusions. The FDCC 

study found no statistically significant differences in outcome between the fixed-dose group 

and the dose-adjusted group [14], whereas the Apomygre trial did [13]. In the current 

retrospective study based on patients from these two trials we found statistically significant 

evidence that being in the target range for both the CNI (whether cyclosporine or tacrolimus) 

and MPA strongly protected against acute rejection, with no increased risk of side effects. 

Conclusions 

 

We did not find new variant alleles in the IMPDH II gene when sequencing DNA from 80 

patients, nor associations between the known IMPDH II polymorphisms and clinical outcome. 

We found a significant association of the IMPDH I rs2278294 SNP with BPAR and 

leucopenia, but the previously reported association between IMPDH I rs2278293 and 

outcomes was not confirmed.  MPA AUC0-12H < 30 mg.h/L was significantly associated with 

an increased risk of BPAR, while the nature of and the exposure to the associated CNI were 

associated with BPAR, and leucopenia.  
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Table 1: demographic characteristics of the studied patients enrolled either in the Apomygre 

or FDCC trials.  

 Apomygre (n=121) FDCC (n=335) Total (n=456) 

Sex    

Female 42 129 171 

Male 79 206 285 

Age (years) 
49.5 ± 13.7 48.6 ± 13.0 48.8 ± 13.2 

Co treatment    

Cyclosporine 121 156 277 

Tacrolimus 0 179 179 
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 Table 2: Summary of all known IMPDH II (NC_000003.10) polymorphisms and their 

localization. Positions are presented relatively to ATG set as +1.  

Position (ATG as +1) Genebank 

accession 

number 

Other names Synony- 
mous 

(Yes/No) 

Found in this 

study (minor  
allele 

frequency)* 

# - 3624 A>G / Promoter
1 rs4974081  NA°  NA  Out of bounds  

# - 162 C>T / Promoter
2
  NA  IVS1 - 162 C>T  NA  Yes (1.2%)  

# 189 T>G / Intron 1
2
  NA  IVS1+91 T>G NA  Yes (0.6%)  

# 834  C>T / Exon 3  rs11557543  NA  Yes No  

# 863  A>G / Exon 3  rs11557547 NA  Yes  No  

# 1049 C>T / Exon 4  rs11557541  NA  Yes  No  

# 1331 C>T / Intron 4
2
  NA  IVS4+197 C>T  NA  Out of bounds  

# 1373 G>A / Intron 4
2
  NA  IVS5-62 G>A  NA  Out of bounds  

# 1455  C>T  / Exon 5  rs11557545  NA  Yes  No  

# 1527 C>T / Exon 5
2
  NA  417 C>T Phe139Phe  Yes  No  

# 1570 T>C / Exon 5  rs11557542  NA  Yes  No  

# 2565 C>T / Exon 7  rs11557544  NA  Yes  No  

# 2632 C>T / Exon 7
2
  NA  787 C>T  Leu236Phe N (Leu>Phe)  No  

# 2674 T>C / Intron 7
2,3 rs11706052  IVS7+10 T>C/3757 T>C NA  Yes (9.3%)  

# 2735 G>A / intron 7
2 NA  IVS8-7G> A NA No  

# 2936 C>G / Exon 9 rs11557546 NA  Yes  No  

# 4413 A>G / Exon 11
1
  rs11557540  NA  No 

(asp>Gly)  
No  

# 4526 C>T / intron 11
2
  NA  IVS12-23 C>T  NA  Yes (2.5%)  

# 4833 AAG/- / Exon 13
1
  rs5848860  NA  No  No  

# 4965 C>T / Exon 14 rs104981  NA  Yes  No  

*Calculated from sequencing data. °NA= not applicable 

1
Mohamed et al. 

2
Wang et al. 

3
Grinyo et al. 
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Table 3. Observed frequencies of the genotyped IMPDH I and IMPDH II SNPs.  

SNP Genotype  Frequencies (n=456) MAF* 

IMPDH I gene    

rs2278293 Homozygous wt (GG) 28.9%  

 Heterozygous (AG) 51.1% 46% 

 Homozygous var (AA) 20.0%  

rs2278294 Homozygous wt (GG) 41.2%  

 Heterozygous (AG) 45.6% 36% 

 Homozygous var (AA) 13.2%  

 

IMPDH II gene 
 

 
 

rs4974081 Homozygous wt (AA) 56.4%  

 Heterozygous (AG) 37.9% 24% 

 Homozygous var (GG) 5.7%  

rs11706052 Homozygous wt (TT) 82.1%  

 Heterozygous (TC) 17.4% 9% 

 Homozygous var (CC) 0.4%  

787C>T Homozygous wt (CC) 100.0%  

 Heterozygous (CT) 0% 0% 

 Homozygous var (TT) 0%  

(*MAF = Minor allele frequency; wt = wild type; var = variant) 
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Table 4: Results of multivariate, stepwise logistic regression. Only the significant dependent 

variables kept in the final model are shown. 

Variable Category Adjusted OR 95%CI P Value 

1. Leucopenia over the first year post-transplantation 

CMV 
Yes 6.06 [3.03-12.11] < 0.0001 

 No - - - 

CNI Cyclosporine - - - 

 Tacrolimus 0.49 [0.24-1.00] 0.0503 

CNI groups 1. Below TR 0.37 [0.18-0.74] 0.0052 

 2. Within TR 
Grouped - - - 

 3. Above TR 

IMPDH I  G (WT)  - - - 

rs2278294 A  1.66 [1.11-2.48] 0.0139 

Interaction 

CNI*CMV 
    0.0369 

2. CMV infections 

Age Per year increase 1.02 [1.01-1.04] 0.0330 

Sex Female - - - 

 Male 0.61 [0.38-0.99] 0.0467 

CNI Cyclosporine - - - 

 Tacrolimus 0.33 [0.19-0.57] < 0.0001 

3. Other Infections 

CNI Cyclosporine - - - 

 Tacrolimus 0.22 [0.13-0.37] < 0.0001 

4. BPAR 

AUC MPA groups 1.Below TR 2.22 [1.20-4.11] 0.0109 

2.Within TR 
Grouped - - - 

 3.Above TR 

CNI groups 1. Below TR 2.27 [1.27-4.06] 0.0056 

 2. Within TR 
Grouped - - - 

 3. Above TR 

IMPDH I  G (WT)  - - - 

rs2278294 A  0.54 [0.34-0.85] 0.0075 

(TR = therapeutic range, WT = wild type) 
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Supplemental Table 1: Primers, sequences and coverage of IMPDH II proximal promoter, 

exons, and flanquing intronic/exonic regions. 

Primer 

name 
Sequence (5’ to 3’) 

IMPDH II gene coverage (bp) 

Target n°1 
 

T1Left GGCTTGGACTGTGAAAAGAAA 
Proximal Promoter (-500 to -160) 

T1Right CCGCGCCAATATAAACCA 

Target n°2 
 

T2Left CGTCTCTTTATTTTGGGGAGGA Proximal Promoter + 5’UTR + Exon 1 + flanking region 

Intron1/Exon1 (-160 to 270) T2Right CATGTGTCTGGAGCATGGAA 

Target n°3 
 

T3Left GAGATTCCATGCTCCAGACAC Flanking region Intron1/Exon1 + Exon 1 + Flanking 

region Exon 1/Intron 2 (440 to 620) T3Right GAAAGCATCCCTTACACCTCA 

Target n°4 
 

T4Left ATCACCAGATTGGGCTTGG Flanking region Intron 2/Exon 3 &  Exon 4/Intron 5  + 

Exon 3 + Intron 3 + Exon 4 + (730 to 1110) T4Right GACCAAATCACACCAACACATC 

Target n°5 
 

T5Left GTTGGTGTGATTTGGTCTTGTG Flanking region Intron 4/Exon 5 & Exon 5/ Intron 5 

+ Exon 5 (1400 to 1860) T5Right CAGTATGATTGAGTGAGGGATGAG 

Target n°6 
 

T6Left TCAGCTACTTGGGAAGGAAAGA Flanking region Inton 5/Exon 6 + Exon 6 to 8 + intron 7 

and 8 (2280 to 2830) T6Right CTTACCCACTCCCACCACAC 

Target n°7 
 

T7Left TCCAAAGATGCCAAGAAACA Flanking region Intron 7/Exon 8 & Exon 9/Intron 9 + 

Exon 8 + Intron 8 + Exon 9 (2700 to 3160) T7Right GCAGAGCAGGAGCAAGAAGG 

Target n°8 
 

T8Left AGCAGCCATCCCAGACAC Flanking region Intron 9/Exon 10 + Exon 10 (3770 to 

4220) T8Right CTTGCCTGTCCCACCTGAA 

Target n°9 
 

T9Left CATGTGTTCCTCCATCTCAACA Exon 10 + Flanking region Exon 10/Intron 11 + Intron 

10 & 11 + Exon 11 & 12(4090 to 4640)  T9Right ATGCCAGCAATCAGGTAAGG 

Target n°10 
 

T10Left ATTTGTCCCTTACCTAGATTGCT Exon 12 to 14 + intron 12 & 13 + 3’UTR (4650 to 5110) 

T10Right CAGGAGGAACTTTTTGGACCTGGAA 

 


