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ABSTRACT 

A sensitive marker for monitoring progression of early Alzheimer‟s Disease (AD) 

would help to develop and test new therapeutic strategies. The present study aimed 

at investigating brain metabolism changes over time, as potential monitoring marker, 

in patients with amnestic Mild Cognitive Impairment (aMCI), according to their clinical 

outcome (converters or non-converters), and in relation to their cognitive decline. 

Seventeen aMCI patients underwent MRI and 18FDG-PET scans both at inclusion 

and 18 months later. Baseline and follow-up PET data were corrected for partial 

volume effects and spatially normalized using MRI data, scaled to the vermis and 

compared using SPM2. „PET-PAC‟ maps reflecting metabolic percent annual 

changes were created for correlation analyses with cognitive decline. In the whole 

sample, the greatest metabolic decrease concerned the posterior cingulate-

precuneus area. Converters had significantly greater metabolic decrease than non-

converters in two ventro-medial prefrontal areas, the subgenual (BA25) and anterior 

cingulate (BA24/32). PET-PAC in BA25 and BA24/32 combined allowed complete 

between-group discrimination. BA25 PET-PAC significantly correlated with both 

cognitive decline and PET-PAC in the hippocampal region and temporal pole, while 

BA24/32 PET-PAC correlated with posterior cingulate PET-PAC. Finally, the 

metabolic change in BA8/9/10 was inversely related to that in BA25 and showed 

relative increase with cognitive decline, suggesting that compensatory processes 

may occur in this dorso-medial prefrontal region. The observed ventro-medial 

prefrontal disruption is likely to reflect disconnection from the hippocampus, both 

indirectly through the cingulum bundle and posterior cingulate cortex for BA24/32, 

and directly through the uncinate fasciculus for BA25. Altogether, our findings 

emphasize the potential of 18FDG-PET for monitoring early AD progression. 
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INTRODUCTION 

 To develop and test new therapeutic strategies for Alzheimer‟s Disease (AD), 

sensitive markers for monitoring disease progression are urgently needed especially 

at its earliest stages, when neuropathological damage is still confined.  

 Positron Emission Tomography with 2-[18F]-Fluoro-2-Deoxy-D-Glucose 

(18FDG-PET) is exquisitely sensitive to early AD-related brain changes. Significant 

hypometabolism can be detected in patients with amnestic Mild Cognitive Impairment 

(aMCI) that best represents the pre-dementia stage of AD Petersen, 2005. The 

earliest metabolic changes involve the precuneus - posterior cingulate cortex (PCC) 

and temporo-parietal areas (Salmon et al., 1994; Minoshima et al., 1997; Drzezga et 

al., 2003; Nestor et al., 2003a; Chételat et al., 2003b; Nestor et al., 2003b; Nestor et 

al., 2004; Mosconi, 2005; Ishii et al., 2005; Kawachi et al., 2006). By contrast, the 

frontal cortex appears involved at the dementia stage (Minoshima et al., 1997; 

Desgranges et al., 1998; Alexander et al., 2002; Herholz et al., 2002), suggesting 

that metabolic changes should be detectable from aMCI to clinically probable AD.  

 Nonetheless, little is known about the accuracy of 18FDG-PET to monitor the 

progression of early AD and only one previous longitudinal 18FDG-PET study in aMCI 

patients has been published sofar (Drzezga et al., 2003). This study highlighted 

significantly greater metabolic decreases in the right middle frontal gyrus in those 

patients who converted to clinically probable AD as compared to non-converters over 

a one-year follow-up period. However, whilst clinically meaningful, the dichotomous 

approach used in this study (i.e. comparing rapid converters to non-converters) is 

limited by the fact that non-converters do include patients who will later progress to 

AD. A comprehensive approach should also consider all aMCI patients, whether they 

rapidly convert or not, assessing in a whole sample analysis brain metabolic changes 
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in relation to cognitive decline over time (Chételat et al., 2005a). Indeed, these two 

approaches would appear as complementary as the former would allow identifying 

specific changes occurring in aMCI patients while they convert to clinically probable 

AD while the latter would inform on changes characterizing rapid cognitive decline 

whatever the clinical outcome at the end of an arbitrary-defined follow-up period.  

 Our main objective with the present study was therefore to further investigate 

the brain pattern of metabolic changes over the course of early AD using these two 

complementary approaches, i.e. comparing converters to non-converters in a 

standard fashion, but also across the whole sample in relation to cognitive decline, 

implementing methodology specially designed for this purpose. Furthermore, thanks 

to supplementary analyses, we aimed at assessing their discriminant accuracy for 

monitoring the progression to early AD and investigating the mechanisms underlying 

these metabolic changes. 
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METHODS 

Patients 

 The present sample partly overlaps with those of our previous publications 

using baseline PET data (Chételat et al., 2003a; Chételat et al., 2003b; Chételat et 

al., 2005a; Mevel et al., 2007) or longitudinal magnetic resonance imaging (MRI) data 

(Chételat et al., 2005b; Chételat et al., 2008), although only those patients with both 

baseline and follow-up MRI and PET data were included in this study. Briefly, the 17 

aMCI patients included here were all recruited through a memory clinic, and all 

complained of memory impairment. They were right-handed, aged over 55 years and 

had at least 7 years of education (see Table 1 for demographic and clinical 

characteristics). They underwent medical, neurological, neuropsychological, and 

neuroradiological examinations, and were selected according to current criteria of 

aMCI, i.e. isolated episodic memory deficits (<1.5 SD of the normal mean for age and 

education), normal performances in other areas of cognition and in global cognition 

(assessed with MMSE and Mattis scales), and NINCDS-ADRDA criteria for probable 

AD (McKhann et al., 1984) not met (see Chételat et al., 2005a for details). According 

to the Declaration of Helsinki, each patient gave written informed consent to 

participate in the study, which was approved by the regional ethics committee.  

 Using the same neuropsychological battery as used at inclusion, all aMCI 

patients were evaluated every 6 months over an 18-month follow-up period to assess 

whether they met NINCDS-ADRDA criteria of probable AD or not; at the end of the 

follow-up period, patients were classified as converters or non-converters, 

respectively. Patients were declared as converters if they had impaired performances 

(more than 1.5 SD below the normal means according to age and education when 
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available) in at least one of general intellectual function scales as well as in at least 

two areas of cognition including memory, leading to impaired daily activities as 

judged by the clinicians from the consultation interviews. Moreover, as an index of 

cognitive decline, a Mattis - Percent Annual Change (Mattis-PAC) was obtained for 

each patient. This index was calculated by first modelling a simple linear regression 

from Mattis scores collected at each neuropsychological evaluation (y=ax+b; where 

y=Mattis score and x=time from first evaluation). Then, estimated a and b values 

were used to calculate percent change in Mattis scores over 12 months using the 

formula: [(12a/b)*100] (Chételat et al., 2005a).  

Neuroimaging data acquisition 

Within a few days interval at most from inclusion and 18 months later, each 

patient underwent MRI and 18FDG-PET scans on the same scanners and using the 

same acquisition parameters. MRI consisted of a set of 128 adjacent axial cuts 

parallel to the anterior-posterior commissure (AC-PC) line and with slice thickness 

1.5 mm and pixel size 1x1 mm, using the SPGR (spin gradient recalled) sequence 

(TR=10.3 ms; TE=2.1 ms; FOV=24x18 cm; matrix=256x192). PET data were 

collected using the ECAT Exact HR+ device with isotropic resolution of 4.2x4.2x4.6 

mm (FOV=158 mm). A catheter was introduced in a vein of the arm to inject the 

radiotracer. Following 68Ga transmission scans, three to five mCi of 18FDG were 

injected as a bolus at time 0, and a 10 min PET data acquisition started at 50 min 

post-injection period. Sixty-three planes were acquired with septa out (volume 

acquisition), using a voxel size of 2.2x2.2x2.43 mm (see Chételat et al., 2005a for 

further details).  
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PET data processing and analysis 

To implement the two complementary analyses described in Introduction, 

metabolic changes were evaluated, first, directly from baseline and follow-up PET 

data and comparing changes in converters and non-converters. Second, maps 

reflecting metabolic percent annual changes, called “PET-PAC” maps in what follows, 

were generated for each patients and used to assess relationships with cognitive 

decline as well as for supplementary analyses. The following sections will 

successively briefly describe the common and specific processing steps for these 

analyses. Further details and illustration of these processing steps are provided as 

Supplementary material. 

Common processing steps 

A first coregistration was performed to place baseline and follow-up MRI and 

PET data of each patient in the same space. Second, all PET data were voxel-wise 

corrected for partial volume effects (PVE) using the patient contemporary MRI and 

the “modified Muller-Gardner” method (Quarantelli et al., 2004). Third, PET data were 

scaled using a metabolically preserved brain region, namely the cerebellar vermis 

(Mevel et al., 2007), to control for inter- and intra-individual global variations in PET 

signal.  

Optimal spatial normalization parameters, to be used in the subsequent 

specific procedures, were estimated from the spatial normalization of MRI data onto a 

customized aMCI template using optimal Voxel-Based Morphometry (Good et al., 

2001) as previously used in our laboratory (Chételat et al., 2005b). Note that a single 

set of normalization parameters was estimated for each patient so as to normalize 

baseline and follow-up PET data using the same parameters to avoid bias due to 

differential spatial normalization. 
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PET data processing for analyses comparing baseline and follow-up PET  

The optimal normalization parameters were applied to baseline and follow-up 

coregistered, PVE-corrected and scaled PET data resulting from the common 

processing steps. Spatially normalized PET data were subsequently smoothed using 

a Gaussian kernel of 10mm, and entered into the following statistical analyses.  

First, a 'Population main effect: 2 cond's, 1 scan/cond' (paired t-test) with 2 

conditions (baseline and follow-up) was performed to assess the pattern of metabolic 

evolution in all aMCI patients by comparing baseline to follow-up data (with a 1 -1 

contrast). The resulting SPM-T map was projected onto the aMCI whole brain 

template. 

 Second, a 'Multi-group: conditions & covariates' (repeated measures ANOVA) 

with 2 groups (converters and non-converters) and 2 conditions (baseline and follow-

up) was performed on the same data to assess the patterns of metabolic evolution in 

converters and in non-converters separately, by comparing baseline to follow-up data 

in each group (with a 1 -1 and a 0 0 1 -1 contrast, respectively). Resulting SPM-T 

maps were projected onto the customized aMCI whole brain template. To highlight 

areas of greater metabolic decrease in converters as compared to non-converters, 

between-group comparison of baseline minus follow-up PET data was then 

performed (through a 1 -1 -1 1 interaction contrast) onto the voxels exhibiting 

significant metabolic decreases in converters (using the inclusive masking procedure 

of SPM2).  

Clusters showing significant interaction in the above analysis were also used 

to define Volumes Of Interest (VOIs) for subsequent application onto PET-PAC maps 

(see below). 

PET data processing for analyses with PET-PAC maps 
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The baseline and follow-up coregistered, PVE-corrected and scaled PET data 

resulting from the common processing steps were used to create individual PET-PAC 

maps. These PET-PAC maps represent the voxel-wise calculation of percent 

metabolic change over the 18-month follow-up period (i.e. the difference between 

follow-up and baseline scaled PET value divided by baseline PET value X 100) 

expressed in annual percent change (i.e. multiplied by 12/18). Note that this 

calculation was performed only onto those voxels common to both baseline and 

follow-up PET data, identified using a masking procedure. The optimal spatial 

normalization parameters were then applied to these PET-PAC maps, which were 

subsequently smoothed using a Gaussian kernel of 10mm. 

 A „Single subjects: covariates only‟ analysis was then conducted onto these 17 

PET-PAC maps using Mattis-PAC as covariate to assess the relationship between 

metabolism changes and global cognitive decline. Both positive and negative 

correlations were assessed. 

To perform VOI-based discriminant and correlation supplementary analyses, 

mean PET-PAC values were extracted from each PET-PAC map in the VOIs defined 

above, using the „binary ROIs analysis‟ option of the „fMRI-ROI analysis‟ SPM2 

toolbox.  

To assess the accuracy of the metabolic changes in the VOIs for monitoring 

the progression to AD in converters, a discriminant analysis was performed. 

Univariate analyses (T-test) of the mean PET-PAC value of each VOI independently 

were computed, and a multivariate F-statistic based on MANOVA analysis was 

performed on all VOIs values combined thanks to a Linear Discriminant.  

Finally, to highlight the brain networks whose dysfunction or relative 

preservation may be related to that of each VOI, correlation analyses were then 
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performed by entering the mean PET-PAC value of each VOI as covariate in a 

„Single subjects: covariates only‟ voxel-based analysis with PET-PAC maps, 

assessing both positive and negative correlations, respectively.  

 All data processing and voxel-based statistical analyses were performed using 

SPM2 running on MATLAB 6.5. The threshold for significance was set to 

p(uncorrected)<0.005, which is identical (Alexander et al., 2002) or more severe 

(Drzezga et al., 2003) than previously used in longitudinal PET studies in AD and 

judged to provide the best compromise, neither too permissive nor over-conservative 

with risk of type 2 errors. 
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RESULTS 

Clinical data  

 Baseline and follow-up clinical characteristics are presented in Table 1. Over 

the 18 months follow-up period, 7 of the 17 aMCI patients converted to clinical 

diagnosis of probable AD. Baseline MMSE scores and follow-up Mattis scores were 

lower in converters than in non-converters. As already reported (Chételat et al., 

2005a), the Mattis scores significantly decreased over the follow-up period in 

converters, but not in non-converters. 

Comparison between baseline and follow-up PET  

The patterns of metabolic changes from baseline to follow-up in the whole 

aMCI sample, and in converters and non-converters separately, are illustrated in 

Figure 1. In the whole aMCI sample, metabolic decreases were largely bilateral and 

involved medially the PCC and frontal areas (Brodman areas BA 11 and 24/32), and 

laterally the temporo-parietal cortex (with right predominance), insula and inferior 

temporal cortex. Assessing converters and non-converters separately, effects were 

similar but higher in the former and lower in the latter, a difference that was 

particularly prominent in ventro-medial prefrontal regions (BA25 and 24/32). Also, the 

PCC changes observed in the whole sample extended to the middle cingulate cortex 

in converters.  

 The repeated measures ANOVA comparing converters to non-converters 

revealed areas of significantly greater metabolism decrease in converters than non-

converters, but not in the reverse contrast. These changes were located in two 

distinct ventro-medial prefrontal regions: the left anterior cingulate cortex (BA24/32) 
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and the subgenual area (BA25; Figure 2A). As described above, these two clusters 

were then made into VOIs for the correlation and discriminant analyses.  

PET-PAC maps  

Positive correlation between PET-PAC maps and Mattis-PAC revealed a 

single significant cluster located in the subgenual area (BA25; Figure 2B). The 

reverse contrast (i.e. PET-PAC increases with Mattis-PAC decreases) disclosed a 

single cluster located in the right dorso-medial prefrontal cortex (BA9/10; Figure 3A). 

While a partial overlap was observed between individual values of converters 

and non-converters using the mean PET-PAC in BA24/32 (p=0.001; AUC=0.94) or in 

BA25 (p=0.006; AUC=0.87) separately, the combination of the mean PET-PAC in 

these two VOIs improved the between-group discrimination (p=0.0001; AUC=1; 

Figure 4). 

 Positive correlation between BA24/32 mean PET-PAC value and PET-PAC 

maps highlighted surrounding medial prefrontal areas (BA24/32/11) as well as the 

right PCC including the retrosplenial cortex (BA23/26/29; Figure 5). The reverse 

contrast did not reveal any significant negative correlation. 

Positive correlation between BA25 mean PET-PAC value and PET-PAC maps 

revealed two clusters, the first encompassing surrounding prefrontal areas (BA25/24) 

and right hippocampus and amygdala, and the second involving the left 

parahippocampal cortex (BA20; Figure 5). The reverse contrast (negative 

correlation) highlighted two close clusters in the right dorso-medial prefrontal cortex 

(BA8 and BA9; Figure 3B). 
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DISCUSSION 

 In the present study, we used a method specifically designed for the 

longitudinal assessment of PET changes, including voxel-based PVE correction and 

optimal normalization of each pair of PET data with the same parameters, as well as 

PET-PAC maps calculation restricted to common GM voxels. This method prevents 

as far as possible any confounding effects of brain tissue atrophy or methodological 

bias due to differential normalization and segmentation of baseline and follow-up 

data. The effects highlighted here are thus thought to reflect genuine metabolic 

changes taking place during the transition from aMCI to AD.  

In the whole aMCI sample, we found progressive metabolic decreases over an 

18-month follow-up period encompassing the temporo-parietal cortex and posterior 

medial parietal areas, consistent with numerous previous studies underlining the 

early involvement of these areas in AD (see Introduction). Our results also disclosed 

significant changes in specific prefrontal areas, suggesting that prefrontal metabolic 

alteration are in fact initiated early in the course of AD. Most notably, the metabolic 

declines found to be significantly greater in converters relative to non-converters 

specifically and uniquely pointed to two medial prefrontal areas, namely the anterior 

cingulate cortex (BA24/32) and the subgenual area (BA25). A similar analysis also 

pointed to prefrontal areas in Drzezga et al. study (2003), but involved lateral 

prefrontal rather than medial regions. In that study, the medial prefrontal areas were 

found to show similar decreases in converters and nonconverters which was 

interpreted as reflecting a normal aging process. Our findings disagree with this 

interpretation as the two groups did not differ in age or follow-up duration, and 

furthermore the metabolic changes in both medial prefrontal areas were found not to 

correlate with age (data not shown). In contradiction with Drzezga et al. (2003), 
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therefore, the present study argues in favour of AD-related pathological processes in 

these two regions. In support of this contention, the same two medial prefrontal 

regions have been previously reported to show specific perfusion decreases from the 

entorhinal to the limbic neuropathologic Braak stages (Braak and Braak, 1991), 

corresponding respectively to aMCI and early AD (Bradley et al., 2002).  

For reasons detailed in Introduction, we also assessed metabolic changes in 

relation to global cognitive decline across the whole aMCI sample. Positive 

correlation between PET-PAC maps and Mattis-PAC highlighted a single ventro-

medial prefrontal area encompassing the same BA25 region as that found in the 

between-group comparison, but surprisingly failed to highlight the BA24/32 cluster. 

As previously proposed (Chételat et al., 2005a), patients expected to present with 

probable AD criteria at the end of the follow-up period (converters) include both 

patients with rapid cognitive decline, and patients with less rapid cognitive decline but 

who started from lower baseline cognitive status. Our findings thus suggest that the 

metabolic decrease in BA25 is specifically related to the slope of cognitive decline, 

while that in BA24/32 may instead be related to baseline cognitive performance. 

Consistent with this hypothesis, we found a significant positive correlation between 

baseline MMSE performances and BA24/32 PET-PAC values (p=0.0006; data not 

shown), while no significant correlation was found with BA25 PET-PAC values 

(p=0.209; data not shown). Overall, these two regions thus appear to serve 

complementary roles in expressing the metabolic decreases from aMCI to AD. This 

was also supported by our multivariate analysis showing improved discrimination 

between converters and non-converters when combining both BA25 and BA24/32 as 

compared to either VOI separately. While the complete discrimination found here 
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would need to be validated from an independent and larger sample, our results 

strongly support the use of 18FDG-PET to monitor early AD progression. 

 So as to better understand the mechanisms underlying these metabolic 

changes, we also performed metabolic-metabolic correlations between PET-PAC in 

each VOI and whole brain PET-PAC maps, allowing unravelling the whole brain 

networks whose metabolic changes relate to those in each of the two prefrontal VOIs 

(i.e. BA24/32 and BA25). Interestingly, these analyses highlighted two distinct 

networks for BA24/32 and BA25, the former involving the PCC and the latter the 

hippocampal region and temporal pole. These distinct relationships suggest that the 

medial prefrontal metabolic decreases characterizing the progression from aMCI to 

clinically probable AD may result from disconnection from limbic structures, i.e. from 

the PCC for BA24/32 and from the hippocampus for BA25. This so-called diaschisis 

hypothesis (Minoshima et al., 1997; Meguro et al., 2001; Bradley et al., 2002; 

Chételat et al., 2003b; Nestor et al., 2004) is consistent with recent functional MRI 

studies of functional connectivity showing, through a method similar to the correlation 

approach used here, altered hippocampal functional connectivity with the PCC and 

ventro-medial prefrontal cortex in early AD (Greicius et al., 2004; Wang et al., 2007; 

Allen et al., 2007). As the uncinate fasciculus directly connects the hippocampus, 

amygdala and temporal poles to the subgenual cortex (Kier et al., 2004; 

Schmahmann et al., 2007), disruption of this WM tract may lead to the specific 

relationships found here. Furthermore, alteration of this tract has been reported in AD 

(Taoka et al., 2006; Yasmin et al., 2008), and direct hippocampal projection fibers to 

BA25 were shown to mainly originate from the CA1 subfield (Zhong et al., 2006), i.e. 

the hippocampal subregion most involved by atrophic processes from aMCI to 

clinically probable AD (Chételat et al., 2008). The progressive metabolic decrease in 
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BA25 is thus thought to directly reflect its disconnection from the hippocampus. In 

contrast, disruption of the rostral cingulum bundle relating the PCC to the frontal 

cortex (Mufson and Pandya, 1984; Schmahmann et al., 2007; Mori et al., 2008) is 

probably responsible for the metabolic decrease observed in BA24/32. The caudal 

part of this tract, which connects the hippocampus to the PCC, is also altered early in 

AD (Rose et al., 2000; Xie et al., 2005; Medina et al., 2006; Villain et al., 2008) 

probably accounting for early PCC hypometabolism (Rose et al., 2000; Chételat et 

al., 2003b; Nestor et al., 2004; Xie et al., 2005; Villain et al., 2008). Our findings 

suggest that, as aMCI progress to AD, PCC alterations progressively lead to medial 

prefrontal disruption through involvement of the rostral part of the cingulum bundle. 

Overall, therefore, BA24/32 metabolic decreases may reflect indirect hippocampo-

frontal disconnection processes, as already mentioned elsewhere (Grady et al., 2001; 

Bradley et al., 2002; Villain et al., 2008) probably mediated by the cingulum bundle 

which is the major path for fronto-hippocampal connectivity (Kobayashi and Amaral, 

2003).  

Intriguingly, most structures highlighted in the present study, namely the 

hippocampus, amygdala, PCC and medial prefrontal cortex, are key components of 

the episodic memory network (Cabeza and Nyberg, 2000). The role of the uncinate 

fasciculus and cingulum bundle in memory processes has also been highlighted 

(Levine et al., 1998; Gaffan and Wilson, 2008; Sepulcre et al., 2008), more 

specifically for autobiographical memory related to emotional events (Markowitsch et 

al., 2003). In addition, dysfunction in ventro-medial prefrontal areas has been related 

to depressive symptoms in healthy subjects (Steele et al., 2007) and apathy in AD 

(Marshall et al., 2007). Taken together, disruption of the brain networks leading to 

progressive decrease in ventro-medial prefrontal metabolism may underlie the 
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worsening of memory impairments as well as the emergence of mood disorders 

reported as aMCI progresses to clinical AD (Assal and Cummings, 2002).  

 Finally negative correlations between PET-PAC maps and Mattis-PAC as well 

as BA25 PET-PAC, both highlighted a single and identical dorso-medial prefrontal 

region encroaching BA8/9/10. This suggests that, as the disease progresses and 

BA25 metabolism decreases, BA8/9/10 metabolism relatively increases, potentially 

reflecting functional compensatory mechanism, as proposed in previous studies for 

the same dorso-medial prefrontal areas (Grady et al., 2001; Grady et al., 2003; Remy 

et al., 2005; Wang et al., 2007). The striking difference between metabolic changes 

taking place in ventro-medial and dorso-medial prefrontal regions, both known to be 

connected to the hippocampus (Schmahmann et al., 2007) but showing either 

relative metabolic decreases or increases respectively, would merit further 

investigations. 

 In sum, our findings highlight the specific metabolic changes associated with 

progression from aMCI to clinical AD, showing metabolic decrease in ventro-medial 

prefrontal BA24/32 and BA25 paralleled by relative increases in dorso-medial 

BA8/9/10. Prefrontal metabolic disruptions are likely to reflect disconnection from the 

hippocampus, both indirectly through the posterior cingulate cortex via cingulum 

bundle breakdown for BA24/32, and directly through uncinate fasciculus disruption 

for BA25. Metabolic decreases in these two areas combined specifically 

characterized rapid progression to AD, suggesting the potential of 18FDG-PET to 

monitor early AD progression and to test the effects of new therapies. 
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Table 1: Demographic and clinical data of aMCI patients at baseline (t0) and at 

follow-up (t18). ** significant difference between converters and non-converters 

p<0.01, ¤ significant difference between t0 and t18 p<0.05, ¤¤ p<0.01, ¤¤¤ p<0.001. 

 

Figure 1: Patterns of brain metabolic changes over 18 months in the whole aMCI 

sample (A), as well as in non-converters (B) and in converters (C) separately, as 

illustrated by projection of the SPM-T maps onto a 3D representation of the aMCI 

customized whole brain template. 

 

Figure 2: Brain areas showing significantly greater metabolic decreases in 

converters compared to non-converters (A-left), used as VOIs represented onto 3D 

views of the aMCI whole brain template in further analyses (A-right), and significant 

positive correlation between metabolic decrease (PET-PAC maps) and global 

cognitive decline (Mattis-PAC – B) as illustrated by SPM-2 „Glass brain‟ 

representation and projection of the SPM-T maps (thresholded at p<0.005; k>50 

voxels) onto sagittal sections of the aMCI whole brain template. Peak MNI 

coordinates (xyz), size in voxels (k), and T and P values are indicated for each 

significant cluster, and correlation plot and R2 values are also provided.  

 

Figure 3: Brain areas showing significant negative correlation between PET-PAC 

maps and Mattis-PAC (A) or BA25 PET-PAC value (B) as illustrated by SPM-2 

„Glass brain‟ representations and projection of the SPM-T maps (thresholded at 

p<0.005; k>100 voxels) onto sagittal section of the aMCI whole brain template. Peak 

MNI coordinates (xyz), size in voxels (k), and T and P values are indicated for each 

significant cluster and the corresponding plots and R2 values are also provided. 
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Figure 4: Illustration of the discriminant accuracy of the mean PET-PAC values in 

BA24/32 and BA25 separately, and of both values combined (2D representation) to 

separate converters from nonconverters. 

 

Figure 5: VOI-based correlation analysis. Brain areas showing significant positive 

correlation between PET-PAC maps and PET-PAC values in BA25 (left), and 

BA24/32 (right), as illustrated in SPM-2 „Glass brain‟ representations and projection 

of the SPM-T maps (thresholded at p<0.005; k>100 voxels) onto sagittal sections of 

the aMCI whole brain template. Peak and sub-peak MNI coordinates (xyz), size in 

voxels (k), and T and P values are indicated for each significant cluster and the 

corresponding plots and R2 values are also provided. Hcp: hippocampus. 

 

 

 

 

 

 

 


