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Abstract

Because microglial cells, the resident macrophages of the CNS, react to any lesion of the nervous system, they have for long been

regarded as potential players in the pathogenesis of several neurodegenerative disorders including Amyotrophic Lateral Sclerosis, the

most common motor neuron disease in the adult. In recent years, this microglial reaction to motor neuron injury, in particular, and

the innate immune response, in general, has been implicated in the progression of the disease, in mouse models of ALS. The

mechanisms by which microglial cells influence motor neuron death in ALS are still largely unknown. Microglial activation increases

over the course of the disease and is associated with an alteration in the production of toxic factors and also neurotrophic factors.

Adding to the microglial/macrophage response to motor neuron degeneration, the adaptive immune system can likewise influence the

disease process. Exploring these motor neuron-immune interactions could lead to a better understanding in the physiopathology of

ALS to find new pathways to slow down motor neuron degeneration.
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Introduction

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease of the adult characterized by degeneration of motor neurons

in the spinal cord, brain stem and motor cortex. Progressive muscle atrophy and weakness are the main clinical features of the disease

leading to paralysis and death of the patient in mean 3 5 years after the onset of disease, usually around the age of 45 60. Death of the– –
patients is generally due to respiratory failure linked to denervation of the respiratory muscles and diaphragm. Although the cause of the

disease is currently unknown, several hypotheses including oxidative stress, protein aggregation, mitochondrial dysfunction, glutamate

excitotoxicity and neuro-immune reactions are believed to participate in the motor neuron degenerative process ( ). TheBoillee et al. 2006a 

majority of ALS cases are sporadic, and 10  are inherited (familial), but sporadic and familial ALS produces similar pathological%
hallmarks, including an immune response in the affected tissues. This reaction includes activation of astrocytes, microglia (the macrophage

of the CNS) as well as lymphocyte infiltration and, therefore, implicates both the innate and adaptive immune system. Despite the

important efforts to find new therapies to ALS, including targeting the immune system, very limited options are available today. This

highlights the need to better understand the processes implicated, especially in the progressive phase of the disease to slow down the

course of motor neuron degeneration. We review here the different faces of the immune response in ALS including what has been learnt so

far from the rodent models and verified or not in human ALS patients concerning these neuroimmune interactions, the immune factors

potentially implicated in motor neuron degeneration and the involvement of microglia/macrophages and the adaptive immune system on

the disease progression.

SOD1 mutations and rodent models of ALS

Mutations in the Cu/Zn superoxide dismutase (or SOD1) gene are still the ones most frequently found in familial ALS (20  of%
inherited ALS, ). As of today, more than 130 mutations have already been described in the human SOD1 gene involvingRosen et al. 1993 

all the regions of the 154 amino acid long protein. Beside for a few exceptions, mutations in the SOD1 gene are of dominant character and

lead to motor neuron death through a gain of toxic function of the protein. Indeed, a large fraction of SOD1 mutants retain the dismutase

activity of the enzyme (which functions as a radical oxygen species-superoxide scavenger) and patients carrying either a dismutase active

or inactive form of the enzyme develop ALS with similar phenotypes. In addition, studies in mice showed that deleting the mouse

endogenous SOD1 gene did not lead to ALS phenotypes ( ) while the transgenic expression of different forms ofReaume et al. 1996 

mutant human (or mouse) SOD1 in mice and rats recapitulated several features of the disease ( ; ; Gurney et al. 1994 Ripps et al. 1995 

; ; ; ) that were not observed when expressing the humanWong et al. 1995 Bruijn et al. 1997 Howland et al. 2002 Wang et al. 2002 

wild-type SOD1 at similar levels ( ; ). These mouse and rat lines expressing different forms of SOD1Gurney et al. 1994 Wong et al. 1995 

represent, therefore, valuable tools and are currently the broadly used model to study ALS. However, the recent discoveries of new

mutated genes involved in ALS like (TDP-43) and (FUS/TLS) (TAR DNA-binding protein fused in sarcoma/translated in liposarcoma 
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; ; ; ; ; ; Gitcho et al. 2008 Kabashi et al. 2008 Rutherford et al. 2008 Sreedharan et al. 2008 Chow et al. 2009 Kwiatkowski et al. 2009 

), bring new comparative opportunities for designing novel animal models for studying the neurodegenerative processesVance et al. 2009 

occurring in ALS ( ; ; ).Wils et al. 2010 Zhou et al. 2010 Wegorzewska et al. 2009 

ALS, a non-cell autonomous disease

Although death of motor neurons is responsible for ALS, important discoveries of the last years led to the concept that motor neuron

degeneration is non-cell autonomous and cells other than motor neurons, for instance glial cells, actively participate in the

neurodegenerative process ( ) ( ; ). First transgenic mice generated to express mutant SOD1 onlyFig 1 Boillee et al. 2006a Ilieva et al. 2009 

in motor neurons did not show evidence of neurodegeneration ( ; ) and a second generation of thePramatarova et al. 2001 Lino et al. 2002 

same type of mice had to be bred homozygously to increase the level of mutant SOD1 expressed in motor neurons to show a late onset

motor neuron disease ( ) suggesting that mutant SOD1 expressed in other cells besides motor neurons could participateJaarsma et al. 2008 

to the progression of the typical ALS phenotype in mice. However, selective expression of mutant SOD1 in astrocytes alone, although

leading to astrogliosis ( ), or in microglial cells alone ( ) was not sufficient to induce motor neuron deathGong et al. 2000 Beers et al. 2006 

suggesting the need for mutant SOD1 expressed by motor neurons and a cooperation between multiple cell types to induce motor neuron

degeneration. The participation of cells in the neighborhood of motor neurons to neurodegeneration in ALS mouse models was shown

using chimeric mice whose motor neurons expressing mutant SOD1 survived longer when surrounded by wild-type cells (Clement et al.

; ). However, the type of cells participating to the disease could not be identified in the chimeric mice and a2003 Yamanaka et al. 2008a 

Cre/Lox approach revealed that decreasing mutant dismutase active SOD1 (SOD1 ) levels in motor neurons (using Islet-Cre, G37R Boillee et

or VAChT-Cre, mice) or decreasing dismutase inactive SOD1 in motor neurons and interneurons (SOD1al. 2006b Yamanaka et al. 2008b 

, using Lhx3-Cre mice, ) led to a delayed onset of the disease. Conversely, downregulating the amount of SOD1G85R Wang et al. 2009b 

or SOD1 in microglial cells and macrophages (CD11b-Cre, ; ) or SOD1 in astrocytes (G37R G85R Boillee et al. 2006b Wang et al. 2009b G37R 

) actively participated in slowing down the progression of the disease. Looking at other cell types that surroundYamanaka et al. 2008b 

motor neurons, downregulating the expression of the dismutase active mutant SOD1 in muscle cells or endothelial cells did not haveG37R 

an impact on the disease while in Schwann cells, the peripheral myelinating cells and the ones most in contact with motor neuron axons, it

surprisingly accelerated the disease ( ; ; ). Therefore, mutant SOD1 in SchwannMiller et al. 2006 Lobsiger et al. 2009 Zhong et al. 2009 

cells does not seem to have a detrimental effect that could influence motor neuron survival; however, the dismutase activity of SOD1 in

this particular cell type seems to be neuroprotective during the course of the neurodegeneration in ALS mice ( ; Lobsiger et al. 2009 Turner

). These studies highlight the importance of targeting therapeutic strategies using downregulation of SOD1 at the right cell type,et al. 2009 

avoiding Schwann cells.

A complementary experiment by the group of Stanley Appel used an alternative technique of bone marrow transplant to replace

mutant SOD1 (dismutase active, SOD1 ) expressing microglia with wild-type microglia. To be able to replace the entire myeloidG93A 

lineage, including microglial cells, they used the PU.1 knockout mouse ( ) which, from birth, lacks myeloid cells,McKercher et al. 1996 

therefore macrophages and microglia as well as mature lymphoid B cells and reduced number of lymphoid T cells. Crossing PU.1 mice/  − −

with SOD1 mice allowed them to reconstitute the myeloid lineage in ALS mice with either control or SOD1 cells and to compareG93A G93A 

the progression of the disease in ALS mice with microglia/macrophages (and possibly lymphocytes) expressing or not mutant SOD1. The

outcome was that microglia/macrophages expressing mutant SOD1 accelerated the progression of the disease ( ).Beers et al. 2006 

Altogether, these studies show that glial cells in the environment of motor neurons have an impact on their survival and on the disease

progression ( ). Knowing that the majority of ALS cases are sporadic and therefore diagnosed after showing symptoms of the disease,Fig 1 

being able to act on the progression of the disease would provide pathways for potential therapeutic tools. Microglial cells, astrocytes and

neuroinflammatory processes appear as valuable candidates to target ALS disease progression ( ).Fig 1 

Implication of astrocytes in ALS disease process

Astrocytes, the main macroglia of the CNS that are known for their major functions as synaptic glutamate uptaker and

glucose/metabolites provider for neurons, have long been suspected to be implicated in ALS ( ; ;Barbeito et al. 2004 Di Giorgio et al. 2007 

; ; ; ; ). AstrocytesNagai et al. 2007 Lepore et al. 2008 Van Den Bosch and Robberecht 2008 Vargas et al. 2008 Yamanaka et al. 2008b 

were first shown to be activated and to display a decreased expression of the glutamate transporter EAAT2 in patients and animal models

of ALS ( ; ; ) favoring glutamate-induced excitotoxicity (Rothstein et al. 1995 Howland et al. 2002 Pardo et al. 2006 Van Den Bosch et al.

). Further evidence for a role of astrocytes in ALS came from work on primary astrocyte cell cultures carrying mutant SOD1 and2006 

showing toxicity towards motor neurons ( ; ; ). In addition, evidence forVargas et al. 2006 Di Giorgio et al. 2007 Nagai et al. 2007 in vivo 

an active role of astrocytes in ALS pathology came from the CreLox experiment described above where decreasing the expression of

mutant SOD1 specifically in astrocytes increases survival of LoxSOD1 mice ( ). Reducing the mutant SOD1G37R Yamanaka et al. 2008b 

expressing astrocytes as well as increasing the number of wild-type astrocytes focally in the cervical spinal cord of SOD1 rats byG93A 

grafting wild-type lineage-restricted astrocyte precursors (that efficiently differentiated into astrocytes) could prolong lifespan (Lepore et

). These studies not only showed the implication of astrocytes in the disease process, but also that they could be potentially used toal. 2008 
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increase motor neuron survival. In this line, boosting astrocytic antioxidant defenses by overexpressing the transcription factor Nrf2

(which is downregulated in the spinal cord of ALS patients) extended the lifespan of SOD1 mice ( ; G93A Sarlette et al. 2008 Vargas et al.

). Although astrocytes could be taken as a part of the neuroinflammatory process, the scope of this review will remain on the innate2008 

and adaptive immune response in the nervous system during motor neuron degeneration in ALS models and will, therefore, focus on

microglia and lymphocytes.

Microglial cell activation as a neuroinflammatory sign in ALS

Microglial cells are the intrinsic immune effector cells of the CNS. Under physiological conditions, they were previously considered as

resting  but after observing them with live imaging and , they had to be renamed surveying  since they are actively“ ” in vitro in vivo “ ”
screening their microenvironment most likely watching for a potential intrusion and are therefore in constant communication with

surrounding cells ( ; ; ; ). Upon activation,Kreutzberg 1996 Davalos et al. 2005 Nimmerjahn et al. 2005 Hanisch and Kettenmann 2007 

microglial response will depend on the nature, amount and length of the stimulus and generally includes cell proliferation, phagocytosis,

release of neurotransmitters, pro-inflammatory cytokines and reactive oxygen species as well as anti-inflammatory cytokines and

neurotrophic factors ( ) ( ; ). Microglial cells have, therefore, the capacities to affectFig 1 Streit 2002 Hanisch and Kettenmann 2007 

neuronal survival and were shown to actively promote neuron death during development ( ). Microglial cellMarin-Teva et al. 2004 

activation occurs after any injury of the CNS including neurodegenerative disorders ( ; ). InMcGeer et al. 1993 McGeer and McGeer 2002 

ALS patients, microglial activation has been largely documented in the early nineties from postmortem affected tissues and involves,

besides proliferation and morphological changes, an up-regulation of cell surface molecules, such as complement receptor 3, major

histocompatibility complex (MHC) antigens I and II, integrins and reactivity to immunoglobulins ( ; Lampson et al. 1990 Troost et al. 1990

; ; ). The finding of increased expression of microglia cell markers in ALS tissues,Kawamata et al. 1992 McGeer and McGeer 1995 

however, represent a snap-shot  at the end-stage pathology and does not give information about evolution of microglial activation during“ ”
the course of the disease. Evidence from microglia activation during disease progression came from animal models where it is already

apparent at early stages of the disease and increases with disease progression up to end-stage in several ALS mouse and rat lines (Hall et

; ; ; ; ; ; ). Moreal. 1998 Alexianu et al. 2001 Elliott 2001 Olsen et al. 2001 Fendrick et al. 2007 Lobsiger et al. 2007 Gowing et al. 2008 

recently, PET imaging coupled to 11C (R)-PK11195, a ligand for the peripheral benzodiazepine binding site, which is expressed by[ ]
activated microglia, detected a widespread microglial activation in motor (motor cortex and pons) as well as extra-motor (dorsolateral

prefrontal cortex and thalamus) cerebral regions and showed evidence of increased microglial activation with the severity of the disease in

ALS patients ( ). Besides being able to show microglial reaction in living patients, this tool could also provide ways toTurner et al. 2004 

define if potential therapeutic drugs act on inflammation.

In addition to activated microglia, large dendritic cells were also observed in affected areas of the CNS of ALS patients in particular in

proximity to motor neuron cell bodies in the spinal cord ( ) ( ; ). Dendritic cells areFig 1 Lampson et al. 1990 Henkel et al. 2004 

antigen-presenting cells that control both innate and adaptive immunity and may infiltrate the CNS through blood vessels, choroid plexus

and/or meninges. Increased dendritic cell marker transcripts (DEC205, CD1a, CD11c, CD123, CD83 and CD40) were detected both in

ALS patients and in late symptomatic or end-stage mice ( ; ; ). Although dendriticHenkel et al. 2004 Gowing et al. 2006 Henkel et al. 2006 

markers can also be expressed by activated microglial cells, dendritic cells with their stellate shape were already visible before symptoms

in ALS mouse spinal cords ( ; ; ). However, the origin of these dendritic cells inHenkel et al. 2004 Gowing et al. 2006 Henkel et al. 2006 

ALS mice and patients, as well as their protective or otherwise injurious function has not yet been established. Interestingly, in ALS

patients, the level of dendritic cell transcripts was higher in fast-progressing cases than in slow progressing ones supporting the

involvement of the adaptive immune system in the disease process ( ). Implication of the innate immune system was alsoHenkel et al. 2004 

shown in ALS mice by stimulating the innate immune reactivity in SOD mice through chronic i.p. injections of lipopolysaccharidesG37R 

(LPS), which led to a speed up of the disease ( ). However, the mechanisms by which immune cells including microgliaNguyen et al. 2004 

could favor neurodegeneration in ALS are still largely unknown and the participation of potentially infiltrating monocytes/macrophages

still under debate.

Activated microglial cells in ALS mice are of endogenous origin

Microglial cells originate from phagocyte progenitors generated in hematopoietic tissues including bone marrow and that enter the

CNS during development, through different potential routes that are the blood vessels, the ventricles or the meninges ( ; Perry et al. 1985 

). Several experimental designs have been used to analyze microglial turnover during physiologicalCuadros and Navascues 1998 

conditions or after lesions of the CNS. To summarize, under normal conditions in adulthood, microglial turnover seems to come from both

endogenous dividing microglial cells and infiltrating monocytes but is very low and therefore monocytes entering the CNS are rare (Ling

; ). CNS lesions that highly compromise the blood-brain barrier (BBB) like ischemia, stab wounds or theet al. 1980 Lawson et al. 1992 

injection of a toxin, favor blood monocytes infiltration through the damaged vessel wall ( ; ; Andersson et al. 1991 Marty et al. 1991 Leong

). The current issue is whether similar infiltrations occur during neurodegenerative diseases such as ALS especially sinceand Ling 1992 

the blood spinal cord barrier has been shown to be disrupted in different mutant SOD1 mice and this even before motor neuron

degeneration ( ) ( ; , ). So far, there are still no available antibodies capable ofFig 1 Garbuzova-Davis et al. 2008 Zhong et al. 2008 2009 
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discriminating macrophages coming from outside and microglial cells because they share the same monocyte markers. To follow potential

infiltration of peripheral monocytes into the CNS, the broadly used technique is irradiation of mice to deplete them from their immune

cells and replenishment of the cells by bone marrow transplantation of marked (usually green fluorescent protein (GFP) positive) cells (

; ; ; ). Several authors have used this technique in SOD1Flugel et al. 2001 Priller et al. 2001 Simard and Rivest 2004 Ajami et al. 2007 G93A

mice trying to understand if infiltration of monocytes was happening in the spinal cord during the course of the disease and found some

GFP-positive cells, therefore cells originating from outside of the CNS, but the overall proportion of these GFP-positive microglial cells

over the totality of microglial cells was very low indicating that their contribution to the local pool of microglia was limited and even if it

increased over the course of the disease, the proportion of GFP versus non-GFP microglia showed that microglial expansion was rather

coming from proliferation than peripheral recruitment ( ; ). The higher proportion of GFP-positiveSolomon et al. 2006 Chiu et al. 2009 

microglial cells in sick ALS mice as compared to controls showed that motor neuron degeneration (either directly or through increased

inflammation) induced more attraction of cells from the outside. However, most of the GFP-positive cells in the spinal cord seemed to be

associated with blood vessels, and therefore represented perivascular microglia (the cells located between glia limitans and endothelial

cells) rather than parenchymal microglia ( ).Lewis et al. 2009 

Recent studies, however, have revealed that this experimental paradigm of irradiation and bone marrow transplantation could lead to

certain artifactual effects and actually modify what is happening in mice during the course of the disease. Indeed, first, bone marrow

transplant could change the type of monocyte precursors in the blood stream and therefore the type of cells entering the CNS could be

different ( ). In addition, irradiation seems to be the process provoking entrance of cells in the CNS, most probably byMildner et al. 2007 

altering the BBB tightness ( ; ). Mice whose brain was protected from the irradiation showed thatAjami et al. 2007 Mildner et al. 2007 

microglial turnover from the periphery did not happen while it was the case in non-protected CNS ( ). Furthermore, aMildner et al. 2007 

very elegant experiment used parabiosis (joining the circulatory systems of two animals leading to peripheral blood exchange to obtain 50

 chimerism) between an SOD1 mouse and a control mouse expressing GFP in bone marrow cells and showed no evidence of% G93A 

microglia coming from cells recruited from the bloodstream in parabiotic chimeras ( ).Ajami et al. 2007 

Bone marrow transplant to replace mutant SOD1 expressing myeloid cells by wild-type cells

Whether bone marrow derived cells enter or not the CNS is a question that remains important for ALS especially with regard to the

potential benefit to motor neuron survival of replacing mutant SOD1 expressing bone marrow by wild-type bone marrow. Grafting

wild-type bone marrow cells in irradiated presymptomatic SOD1 mice led to conflicting outcomes of either increased survival or noG93A 

benefit ( ; ). To explain the discrepancy obtained by the different groups, technical aspects could beCorti et al. 2004 Solomon et al. 2006 

taken into consideration including strength of irradiation, number of cells grafted, route of transplantation (i.p, i.v or intra-bone) and the

rate of engraftment. Indeed, increasing the percentage of wild-type bone marrow cells in grafted SOD1 mice could increase theG93A 

survival of ALS mice ( ). In this study, wild-type (GFP ) bone marrow was transplanted directly in the bone marrowOhnishi et al. 2009 +
cavity (intra-bone marrow-bone marrow transplant) in SOD1 mice at onset (defined as leg tremor in 2 consecutive days) and showedG93A 

an increase in survival. It is, therefore, interesting to see that transplantation even at onset could have a positive effect on the disease (

). Therefore, bone marrow transplant after irradiation could still prove to be an interesting concept to test potentialOhnishi et al. 2009 

therapeutic tools. Cell replacement therapies or trophic cell therapies have also been tested in mice using hematopoietic cells derived from

human umbilical cord blood showing an increased survival of SOD1 mice ( ; ).G93A Ende et al. 2000 Garbuzova-Davis et al. 2003 

The effect of wild-type myeloid cells on motor neuron survival could also be linked to a peripheral effect because bone marrow

grafting experiments replaced also the peripheral macrophages. In addition, lower expression of mutant SOD1 in peripheral macrophages

was measured in CD11bCre/LoxSOD1 mice as compared to LoxSOD1 mice and CD11bCre/LoxSOD1 mice survived longer (G37R G37R G37R 

). Macrophages at the periphery include the ones in the nerves, and activated macrophages are present in the peripheralBoillee et al. 2006b 

nerves upon axonal degeneration in neurodegenerative conditions ( ) including in the sciatic nerves of ALS mice or rats (Griffin et al. 1993 

; ).Graber et al. 2010 Chiu et al. 2009 

Allogeneic hematopoietic stem cell transplantation was used in a phase I trial in six ALS patients as a cell replacement therapy with

the aim of slowing motor neuron degeneration and ALS disease. Two patients with 100  engraftment showed donor cells in the vicinity of%
affected motor neurons, but not in unaffected brain areas. Nevertheless, this trial did not show any benefit for the patients and the authors

propose to transplant transduced bone marrow stem cells to deliver neurotrophic factors for therapeutic value ( ).Appel et al. 2008 

Anti-inflammatory drugs in ALS clinical trials

Inflammatory cytokines could potentiate motor neuron degeneration and some of these factors are known to be produced by

microglia/macrophages or even activated astrocytes. In addition to proinflammatory factors produced around motor neurons, as the blood

spinal cord barrier has been shown to be disrupted in ALS mice ( ; ; )Garbuzova-Davis et al. 2008 Zhong et al. 2008 Zhong et al. 2009 

proinflammatory factors from outside of the CNS could also enter the spinal cord. To lower the inflammatory reaction and potentially

increase motor neuron survival, anti-inflammatory drugs were tested in ALS models and some of them brought to clinical trials. The most
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famous one is probably minocycline, a second generation tetracycline which had been previously shown to bear anti-inflammatory

properties ( ) and that had prompted a lot of hope after several groups showed delayed onset of motor neuronYrjanheikki et al. 1999 

degeneration and increased survival of different mutant SOD1 mouse models ( ; ; Kriz et al. 2002 Van Den Bosch et al. 2002 Zhu et al.

). Although minocycline could have a direct anti-apoptotic effect on motor neurons ( ), it induced a concomitant2002 Zhu et al. 2002 

decrease in microglial activation ( ). However, the positive results from the mice were not visible in a phase III randomizedKriz et al. 2002 

clinical trial that showed no benefit and maybe some adverse effects, although further studies would need to address the dose of

minocycline to be used and the time frame of the administration ( ; ; ). This outcome hasGordon et al. 2007 Carri 2008 Leigh et al. 2008 

hampered the relevance of using SOD1 mice for testing drugs for potential clinical trials ( ). However and very importantly,Schnabel 2008 

patients are always treated after the onset of disease, and animals are often given the drug before motor neuron degeneration has started.

When considering this major difference and the divergences in experimental protocols, some guidelines have been proposed for testing

potential treatments in ALS mice ( ; ).Ludolph et al. 2010 Scott et al. 2008 

Other anti-inflammatory drugs focused on the cyclooxygenase (COX) 2 enzyme that can participate in the activation of inflammatory

pathways in the CNS through the production of prostaglandin E2 (PGE2) ( ). Increased COX-2 expression wasConsilvio et al. 2004 

measured in ALS patient spinal cords where the COX-2 immunoreactive cells corresponded to activated microglial cells/macrophages and

PGE2 levels were increased in the cerebrospinal fluid and their receptors induced in the spinal cords of ALS patients ( ; Almer et al. 2001 

; ; ; ). COX-2 and PGE2 levels were also found to beYasojima et al. 2001 Maihofner et al. 2003 Yiangou et al. 2006 Liang et al. 2008 

increased in SOD1 mice ( ) and PGE2 receptors deletions or COX-2 inhibitors delayed the onset and prolongedG93A Almer et al. 2001 

survival of ALS mice together with decreasing both astroglia and microglial reactivity ( ; ; Drachman et al. 2002 Pompl et al. 2003 Liang et

). Celecoxib, the selective COX-2 inhibitor used in mouse studies, however, proved no benefit to ALS patients although PGE2al. 2008 

levels were not downregulated, indicating that the dose of celecoxib used could have been too low ( ).Cudkowicz et al. 2006 

Peroxisome proliferator-activated receptor-  (PPAR ) agonists are ligand-dependent transcription factors that are known toγ γ
downregulate pro-inflammatory cytokines and inducible nitric oxide synthase (iNOS) in both macrophages and microglial cells and can

also protect against glutamate excitotoxicity ( ; ; ). The PPAR  agonist,Colville-Nash et al. 1998 Ricote et al. 1998 Zhao et al. 2006b γ
pioglitazone, is a FDA-approved drug to treat type II diabetes, because it enhances insulin sensitivity. This drug previously showed

improved symptoms in experimental autoimmune encephalomyelitis mice used to model multiple sclerosis (MS) and in the

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse model for Parkinson s disease ( ; ’ Breidert et al. 2002 Dehmer et al.

). In SOD1 mice, pioglitazone was given orally, starting before onset and showed increased motor performance, protection from2004 G93A 

motor neuron loss and extension of survival accompanied by a reduced gliosis and immunoreactivity to inflammatory markers (iNOS,

NFkB, 3-nitrotyrosine) in the spinal cord of treated mice ( ; ). Because this drug is well tolerated inKiaei et al. 2005 Schutz et al. 2005 

patients chronically treated for diabetes and crosses the BBB, it makes it an attractive candidate for neurodegenerative diseases and is

currently given to ALS patients in an ongoing phase II clinical trial ( ).http://www.clinicaltrials.gov/ 

Blocking the inflammatory response could, therefore, be a strategy to slow down motor neuron degeneration; however, inflammation

and microglial activation cannot be assimilated only as a negative reaction. Indeed, elimination of a significant proportion of the

proliferating pool of spinal cord microglial cells in SOD1 mice (crossing them with CD11b-thymidin Kinase mice) had no effect onG93A 

motor neuron survival ( ). However, as previously described, boosting the inflammatory reaction by chronicallyGowing et al. 2008 

injecting LPS exacerbated the disease ( ). Defining the factors secreted by activated microglial cells and that are toxic orNguyen et al. 2004 

trophic for motor neurons is therefore the strategy that several groups have employed to define the types of anti-inflammatory drugs that

could be used in the future.

Microglia-derived pro- or anti-inflammatory factors

The expression of several pro-inflammatory factors has been described in the spinal cord of ALS mice or patients over the course of

the disease in ALS ( ) and, interestingly, expression profiling of gene products modified between SOD1 and control mouse spinalFig 1 G93A 

cords show genes implicated in inflammatory processes as majorly changed in ALS mice ( ). Several strategies haveYoshihara et al. 2002 

been used to study genes involved in neuroinflammation, including comparing isolated microglial cells (expressing or not mutant SOD1)

in culture before or after adding activating factors such as LPS, but also crossing ALS mice with mice deleted for a gene implicated in

neuroinflammation.

Tumor necrosis factor-alpha

Tumor necrosis factor-alpha (TNF- ) which can be released by microglial cells ( ) is a potent pro-inflammatory cytokine withα Fig. 1 

direct effects on neurons, astrocytes and microglia and that can elicit toxic though sometimes also trophic responses, according to the

receptor. TNF-  levels were shown to be increased in the blood and plasma of ALS patients ( ; ). Inα Poloni et al. 2000 Cereda et al. 2008 

SOD1 mice elevated TNF-  mRNA and protein levels are found in the spinal cord at pre-symptomatic stages which increases with theG93A α
progression of the disease, suggesting that it could be related to the neurodegenerative process ( ; ). InElliott 2001 Hensley et al. 2003 
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addition, TNF-  release by microglial cell cultures was shown to be increased when adult (but not neonate) microglial cells isolated fromα
SOD1 adult mouse brain were stimulated with LPS ( ). To analyze the role of TNF-  on motor neuron degenerationG93A Weydt et al. 2004 α
in ALS mice, SOD1 and SOD1 mice were crossed with TNF-  deleted mice that unexpectedly failed to decrease disease severityG93A G37R α
or even motor neuron death ( ). Neither axonal degeneration nor astrocytic or microglial activation were affected whichGowing et al. 2006 

suggests that TNF-  is not a key factor in motor neuron degeneration caused by SOD1 mutations. However, looking for potentialα
compensatory processes, increased expression of transcripts for IL-1  (a pro-inflammatory factor) and TLR-2 (a receptor implicated in theβ
innate immune response induction) ( ) were found in the spinal cord of SOD1 (but not in SOD1G37R) mice lacking TNF- ,Fig. 1 G93A α
which could account for the absence of effect of TNF-  deletion, at least in SOD1 mice. The drugs thalidomide and lenalidomide thatα G93A 

are known to inhibit TNF-  synthesis (but also modulate the expression of other cytokines) were neuroprotective and significantlyα
increased lifespan in SOD1 mice, with a slightly better performance for lenalidomide, however, the administration (oral) started wayG93A 

before the onset of symptoms ( ). In a second study, where mice were treated with lenalidomide starting at symptom onsetKiaei et al. 2006 

it led to a slight improvement of motor performance and a slight increase in lifespan, but far less significant than when treated long before

symptom onset ( ). Thalidomide has recently been tested in a phase II clinical trial in ALS patients and showed noNeymotin et al. 2009 

improvement of the symptoms, an increased mortality and several side effects experienced by the patients ( ).Stommel et al. 2009 

Reactive Oxygen Species (ROS) and neuroinflammation

Oxidative stress has long been suspected to contribute to ALS pathology ( ). Indeed, because SOD1 is a ROSBarber et al. 2006 

scavenger, a loss of the dismutase activity function of the protein was first hypothesized to be part of the pathogenic process; however, it is

a gain of toxic function of the different SOD1 mutants that leads to motor neuron degeneration (as described previously). Even though,

downregulating the levels of dismutase active mutant SOD1 in certain cell types, like Schwann cells, in ALS mice, still contributes to

disease acceleration showing that an increase in oxidative stress most likely contributes to exacerbating motor neuron pathology (Lobsiger

). Different markers of oxidative stress are induced during the course of ALS disease in human and mouse models. A marker ofet al. 2009 

lipid peroxidation, 4-hydroxynonenal (HNE), is increased in serum, CSF and spinal cord (motor neurons and glia) of sporadic ALS

patients ( ; ; ) and expression of iNOS, mainly localized in astrocytes andSmith et al. 1998 Shibata et al. 2001 Simpson et al. 2004 

microglia, is upregulated during the progression of motor neuron loss, starting at early symptomatic stages in mutant SOD1 mice (Almer et

). These observations are consistent with the fact that primary SOD1 microglia, in culture, produce more nitric oxide (NO)al. 1999 G93A 

than wild-type microglia ( ), and are toxic to motor neurons which can be partially reverted with the addition of an iNOS inhibitor (Fig. 1 

; ). NO has been shown to be necessary for Fas-triggered death of mutant SOD1 motor neurons in cultureBeers et al. 2006 Xiao et al. 2007 

( ). Exogenous NO leads to increased expression of the Fas ligand itself in primary motor neurons and of the Raoul et al. 2002 collapsin

(CRMP4a) that can trigger motor neuron death ( ; ). Crossing neuronalresponse mediator protein 4a Duplan et al. 2010 Raoul et al. 2006 

NOS (nNOS) knockout mice with the slow progressing line of transgenic mice SOD1 (low copy number, G93A-low B6SJL-Tg(SOD1-G93A)dl 

), did not affect motor neuron degeneration; however, these mice still produced  and  isoforms of nNOS and of course iNOS (1Gur/J β γ
). Deletion of iNOS, this time, increased lifespan of the fast progressing and commonly used SOD1 but had noFacchinetti et al. 1999 G93A 

effect on the SOD1 mice ( ; ). Pharmacological inhibition of iNOS could also delay disease onsetG93A-l ow Son et al. 2001 Martin et al. 2007 

and extend lifespan of SOD1 mice ( ). NO produced through iNOS seems, therefore, to have an impact on motorG93A Chen et al. 2009 

neuron survival in a fast-progressing ALS mouse line.

Microglial cells can also produce superoxide by the NADPH oxidase, a multiprotein complex including a transmembrane catalytic

subunit, Nox, that transports electrons across biological membranes to reduce oxygen to superoxide ( ). NADPHBedard and Krause 2007 

oxidase also modulates intracellular signaling in microglial cells since Nox2 (or phagocytic Nox), that is highly expressed by microglia,

together with Nox1 are required to optimize microglial production of NO and Nox1-derived superoxide contributes to IL1  secretion byβ
microglia ( ). During the course of ALS disease in mice, NADPH oxidase is upregulated in the spinal cord, increasingCheret et al. 2008 

ROS production, that could lead to neuronal degeneration through protein oxidative damage ( ) ( ; Fig. 1 Wu et al. 2006 Marden et al. 2007 

). Crossing SOD1 mice with mice either deleted for Nox2 or Nox1 significantly increased survival (with a greater efficiency for Nox2,G93A 

; ). In addition, apocynin, an NADPH oxidase blocker given in the drinking water to ALS miceWu et al. 2006 Marden et al. 2007 

remarkably prolonged their survival by more than 100 days (with the highest dose tested and with the treatment started at 2 weeks of age

and therefore way before disease onset) what is to date the highest effect obtained with a drug treatment in this model ( ).Harraz et al. 2008 

However, given after onset, the outcome was less striking and this effect could well be linked to mutant SOD1 mediated ALS only (and

maybe even a subpopulation of SOD1 mutants). Indeed, analyzing the mechanisms by which mutant SOD1 led to an increase in

superoxide production by Nox2, in transfected cell lines, dismutase active mutants of SOD1 but not dismutase inactive or wild-type forms

hyperactivated Nox2, through binding to Rac1 (a regulatory subunit of Nox2) enhancing the production of superoxide (Harraz et al. 2008 

). Increased superoxide production has also been reported for microglial cells in culture expressing SOD1 compared with controlG93A 

microglia ( ) ( ); however, downregulation of overall microglial reaction by apocynin or Nox2 deletion was either notFig. 1 Xiao et al. 2007 

analyzed or reached divergent outcome ( ; ; ). Nox2 upregulation has also beenWu et al. 2006 Marden et al. 2007 Harraz et al. 2008 

reported in spinal cords of sporadic ALS cases ( ), but considering the direct action of mutant SOD1 on Nox2 activation, itWu et al. 2006 

would be important to know if patients with SOD1 mutations generate similar or greater increase in Nox2 and if the NADPH oxidase
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pathway could be a target for potential therapeutics also in sporadic ALS (since activated microglial cells, even without expressing mutant

SOD1 and can still produce superoxide through NADPH oxidase activation).

Anti-inflammatory and trophic factors produced by microglia

When compared with the well studied pro-inflammatory factors, not much is known about the trophic factors potentially released by

microglial cells and especially downregulated in ALS. IL-4 known to be released by T cells can also be produced by microglia ( )Fig. 1 

and was shown to be protective to microglial-induced motor neuron injury through the reduction in microglial NO and superoxide

production mediated by LPS ( ). Microglial cells can also produce the trophic factor for motor neurons, insulin-likeZhao et al. 2006a 

growth factor-1 (IGF-1) and primary SOD1 microglial cell cultures release less IGF-1 when compared with non-transgenic microglia (G93A 

) and further maintains this difference upon treatment with LPS ( ). However, when microglial cells were directlyFig. 1 Xiao et al. 2007 

isolated from adult mutant SOD1 mice, IGF-1 levels were found to be increased at pre-symptomatic stages and further increase later in

disease when compared with non-transgenic or transgenic mice expressing wild-type SOD1 ( ). IGF-1 also showedChiu et al. 2008 

anti-inflammatory properties, reducing the release of TNF-  and NO by BV2 microglial cell lines expressing mutant SOD1 andα
neuroprotective capacities against mutant SOD1 induced toxicity of astrocytes towards motor neurons in culture ( ).Dodge et al. 2008 

Importantly, several groups have shown the motor neuron protective effect of IGF-1 in animal models of ALS, however, the site of

effectiveness of the treatment is debated. showed that IGF-1 delivered by retrograde adeno-associated virus (AAV)Kaspar et al. (2003) 

prolonged survival and delayed disease progression of SOD1 mice when treated both before and at disease onset. The effect of IGF-1G93A 

was due to its presence in motor neurons themselves given that delivery of muscle-targeted IGF-1 viral vectors (which could not be

retrogradely transported) only increased survival very modestly ( ). However, muscle-specific expression of IGF-1 (by aKaspar et al. 2003 

transgenic mouse approach) in SOD1 mice reduced spinal cord inflammation and increased their survival ( ),G93A Dobrowolny et al. 2005 

but this was not confirmed by a similar approach where IGF-1 was expressed exclusively in the skeletal muscle or in the CNS (Messi et al.

). Beneficial effects of IGF-1 were also obtained by intraparenchymal delivery of AAV in the lumbar spinal cord of presymptomatic2007 

SOD1 mice, leading to increased motor performance with delayed disease onset but a modest increased survival selectively in males (G93A 

). IGF-1 expression was found in neuronal cell bodies (including ventral horn motor neurons) but not in astrocytes,Lepore et al. 2007 

therefore in accordance with an absence of effect on the disease duration, which as previously discussed, is mostly dependent on glial cells.

Injection of AAV-IGF-1 vectors this time, into the deep cerebellar nuclei of SOD1 mice at disease onset, to deliver IGF-1 in the brainG93A 

stem and spinal cord through axonal transport led to increased motor neuron survival, reduction in microglial and astroglial activation,

improved motor function and a significant extension of life span ( ). A different method for continuous delivery usedDodge et al. 2008 

infusion of IGF-1 into the intrathecal space (CSF) of the lumbar spinal cord in presymptomatic SOD1 mice and showed a positiveG93A-low 

outcome with improved performance of motor functions, delayed onset and extended survival ( ).Nagano et al. 2005a 

A similar technique was used in a small number of ALS patients where intrathecal delivery of IGF-1 showed a modest, but significant

benefit ( ). Other clinical trials with recombinant human IGF-I used subcutaneous delivery that resulted in modestNagano et al. 2005b 

effects in one trial ( ), or did not show significant differences in two other studies ( ; Lai et al. 1997 Borasio et al. 1998 Sorenson et al. 2008 

).

IGF-1 levels have been shown to be altered in the blood and CSF of ALS patients, with circulating concentrations either decreased (

), increased ( ; ) but also unchanged ( ; Torres-Aleman et al. 1998 Hosback et al. 2007 Pellecchia et al. 2009 Braunstein and Reviczky 1987 

; ) as compared to controls. In addition, alterations in the levels of IGF-1 binding proteins, whichBilic et al. 2006 Corbo et al. 2009 

regulate IGF-1 bioavailability have been reported ( ; ). These alterations that could influenceTorres-Aleman et al. 1998 Hosback et al. 2007 

the effect of IGF-1 treatments point out the need to evaluate the best administration route for assuring a correct availability of IGF-1 to the

CNS and whether it needs to be delivered to motor neurons and/or other non-neuronal cell types.

Increased expression of microglial mitogenic and chemoattractant factors

Colony stimulating factors (CSF) are implicated in myeloid cell production with macrophage-CSF (M-CSF or CSF-1) being the

archetypal mitogenic factor for macrophages/microglial cells. Although secreted by microglial cells, a main source of CSF-1 is coming

from astrocytes. Granulocyte macrophage CSF (GM-CSF) is also a mitogenic factor for macrophages while granulocyte-CSF (G-CSF)

mostly affects neutrophil production. Lack of M-CSF in osteopetrotic (op/op) mice or lack of its receptor (fms) leads to severe deficiency

in monocytes and tissue macrophages including microglia ( ; ; ). In op/opWiktor-Jedrzejczak et al. 1982 Wegiel et al. 1998 Dai et al. 2002 

mice, macrophage production seems to increase with age but post-lesion proliferation of microglia remains impaired ( ; Begg et al. 1993 

; ). M-CSF mRNA levels were found to be increased from onset of symptoms onward as diseaseRaivich et al. 1994 Kalla et al. 2001 

progressed in the CNS of SOD1 mice, correlating with the increase in microglial reactivity ( ) while levels of GM-CSFG93A-low Elliott 2001 

were measured in SOD1 mice and showed no alteration ( ). Intra-peritoneal administration of M-CSF to SOD1G93A Hensley et al. 2003 G37R 

mice induced an ameboid morphology and increased proliferation of microglia, but not sufficiently to translate to a higher number of

microglial cells in the spinal cord, or peripheral macrophages in the sciatic nerve. However, M-CSF treatment exacerbated the disease of

ALS mice ( ). CSFs also have neuroprotective capabilities apparently due to direct effects on the neurons expressingGowing et al. 2009 
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their receptors ( ; ). This is the case for G-CSF, which improved motor neuron survival, delayedSchneider et al. 2005 Schabitz et al. 2008 

onset of symptoms and increased lifespan (though modestly) when administered subcutaneously after onset of denervation or when

overexpressed transgenically in SOD1 mice ( ). However, in a pilot clinical study G-CSF, which was well tolerated,G93A Pitzer et al. 2008 

showed no benefit in ALS patients ( ).Nefussy et al. 2009 

Increased inflammatory processes also include chemoattraction of macrophages/microglial cells to the lesion site. Although as

previously described, macrophages from the periphery do not seem to contribute to the increase in microglial cells number in the spinal

cord, increased chemokine levels could still reflect extended microglial reactivity and attraction of local microglia to specific regions of the

CNS. Monocyte chemoattractant protein-1 (MCP-1), a chemotactic factor for macrophages/microglia, was found to be increased in the

CSF and serum of ALS patients while immunohistochemical studies localized its expression principally in glial cells in human ALS spinal

cords ( ; ; ; ; ; ).Wilms et al. 2003 Henkel et al. 2004 Simpson et al. 2004 Baron et al. 2005 Nagata et al. 2007 Kuhle et al. 2009 

Interestingly, a trend to higher MCP-1 levels in the CSF was found in ALS patients with shorter lifespan which, if confirmed in a bigger

cohort, could be of prognostic potential for ALS ( ). MCP-1 was also found to be elevated in animal models of ALS (Kuhle et al. 2009 

; ). Surprisingly, MCP-1 mRNA levels were already elevated at the age of 15 days in SOD1Nguyen et al. 2001 Henkel et al. 2006 G93A 

mouse spinal cords and therefore before microglial activation revealing a very early intrinsic modification of MCP-1 synthesis in SOD1

mice and consistent with the increased production of MCP-1 by activated SOD1 cultured microglia from neonates whenG93A G93A 

compared to control cells ( ; ). MCP-1 immunoreactivity was found in neuronal and glial cells andHenkel et al. 2006 Sargsyan et al. 2009 

overtly increased at end-stage of disease in ALS mice ( ). Although MCP-1 has been the most studied chemokine inHenkel et al. 2006 

ALS, other chemokines such as IL-8 in CSF, eotaxin in serum and RANTES in CSF and serum have also been found at higher

concentrations in ALS cases ( ; ). Accordingly, protein levels of RANTES/CCL5 but also GRO/KCRentzos et al. 2007 Kuhle et al. 2009 

(the mouse analog of IL-8) were also increased in the SOD1 mouse spinal cords ( ).G93A Hensley et al. 2003 

Motor neuron signals to microglial cells

Microglial cells through release of trophic or toxic factors could have an impact on motor neuron survival and disease progression.

Initiation of the inflammatory process could in theory come from several sources. (1) Factors coming from the periphery through disrupted

blood spinal cord barrier ( ; ), however, the origin of this rupture is not yet clear and couldGarbuzova-Davis et al. 2008 Zhong et al. 2008 

likely be linked to the motor neuron degenerative processes. (2) Intrinsic pathways in microglial cells expressing mutations leading to ALS

could be the second hypothesis since as described previously microglial cells expressing mutant SOD1 can produce more toxic and less

trophic factors in culture ( ; ) and downregulating mutant SOD1 in microglia/macrophages has aBeers et al. 2006 Xiao et al. 2007 

beneficial effect on disease progression in mice ( ; ; ). However, replacingBeers et al. 2006 Boillee et al. 2006b Wang et al. 2009b 

wild-type microglia/macrophages by mutant expressing cells is not enough to induce death of motor neurons not expressing mutant SOD1

( ). (3) A likely pathway would, therefore, be signals coming from motor neurons when degenerating (and even when notBeers et al. 2006 

yet showing signs of death that could explain early microglial activation in ALS mouse spinal cord) and an exacerbation of the

inflammatory process by factors coming from microglia (described above) or even astrocytes and most likely also due to the intrinsic

expression of ALS linked mutated proteins ( ). Factors coming from neurons and directly activating microglial cells are still not wellFig. 1 

defined in the context of ALS.

Communication between neurons and microglia is an important feature for normal function of the CNS. For example, fraktalkine and

its receptor CX3CR1, as well as CD200-CD200R and SIRPa-CD47 actively maintain microglial cells in a resting state ( ; Hoek et al. 2000 

; ). Microglia can sense a wide range of stimuli including the ones released from damaged cells inCardona et al. 2006 Bessis et al. 2007 

pathological conditions ( ), which is first believed to be protective to reconstitute the damaged area. However, its chronic persistenceFig. 1 

is most likely becoming deleterious and participates in the degenerative process of many neurodegenerative diseases including ALS (

; ).Wyss-Coray and Mucke 2002 Hanisch and Kettenmann 2007 

Among the factors released by damaged neurons, ATP can act on microglia through cell surface purinergic P2 receptors either the

ionotropic (P2X) or the metabotropic (P2Y) subtypes ( ), which can activate inflammatory responses ( ). Recently,Fig. 1 Inoue 2006 

upregulation of P2X4, P2X7 and P2Y6 receptors as well as down-regulation of ATP-hydrolyzing activities have been found in mutant

SOD1 microglia. This activation translated first, into increased expression of TNF-  and COX-2 by mutant SOD1 microglia activated byα
ATP and second, into toxicity towards neuronal cell lines expressing human SOD1 and exposed to conditioned media of 2 -3G93A ′ ′
-O-(benzoyl-benzoyl) ATP-activated microglia ( ). P2X receptors have also been related to ALS pathology inD Ambrosi et al. 2009 ’
humans, since a greater density of P2X7-immunoreactive microglial cells/macrophages was found in affected regions of ALS spinal cords

( ).Yiangou et al. 2006 

One obvious candidate to participate in motor neuron-microglia interactions in ALS mouse models is mutant SOD1 itself, but this

evidence only became clear when chromogranin A (CgA) was found as an interacting partner to SOD1 in a yeast two hybrid approachG93A 

( ). Indeed, CgA which was expressed by motor neurons (but not microglial cells) seemed to act as a chaperone-likeUrushitani et al. 2006 

factor promoting secretion of mutant SOD1 in a CgA-SOD1 complex ( ). CgA and CgB co-localized with mutant SOD1, but notFig. 1 
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wild-type SOD1, in ALS mice in vivo. Of interest, a recent genetic screen showed implication of a mutation in the CgB gene as a risk

factor and a modifier of onset in ALS patients ( ). In mixed mouse spinal cord cell culture experiments addingGros-Louis et al. 2009 

mutant SOD1 was toxic for motor neurons in contrast to wild-type SOD1 and this toxicity was dependent on the presence of microglial

cells ( ). These observations, therefore, proposed a scheme where mutant SOD1 secreted by motor neurons wouldUrushitani et al. 2006 

activate microglial cells that would in turn secrete neurotoxic factors and affect motor neurons. In fact, mutant SOD1 added to microglial

cell cultures changed their morphology towards a round activated shape and turned microglia to a pro-inflammatory type with increased

production of TNF- , IL-1  and superoxides ( ). Mutant SOD1 seemed to activate microglial cells through binding toα β Zhao et al. 2010 

CD14. CD14 is a LPS receptor that mediates signal transduction in concert with TLR2 and TLR4. These data are also consistent with

studies on BV2 cells expressing mutant SOD1 and producing high amounts of TNF-  especially when the TLR2 pathway is activated (α Liu

). However, deletion of CD14 (CD14 mice) in SOD1 mice had no effect on disease progression and survival (et al. 2009 /  − − G93A Zhao et al.

).2010 

Because mutant SOD1 release by motor neurons was implicated in the disease mechanism, vaccination approaches have been tested in

different ALS lines. Using a bacterially purified recombinant mutant SOD1 protein as the immunogen, in the slowly progressingG93A 

SOD1 line, the vaccination extended their lifespan by 4 weeks. This strategy did not impact the survival of the fast-progressing SOD1G37R 

mice (most probably due to too high expression levels of the transgenic protein). However, direct intraventricular infusion ofG93A 

antibodies raised against the SOD1 protein achieved to prolong lifespan of the fast-progressing SOD1 mice (G93A G93A Urushitani et al. 2007 

). Therefore, immunization could be considered for the treatment of ALS patients, but this strategy would only be pertinent for familial

ALS linked to SOD1 mutations unless one could show that human SOD1 in sporadic ALS patients behaves like mutant SOD1. Indeed,

studies in mice have shown that adding wild-type human SOD1 in mice expressing mutant human SOD1 could speed up the disease (Deng

; ) most likely through a stabilization of the mutant protein by the wild-type one, although wild-type SOD1et al. 2006 Wang et al. 2009a 

could also acquire a toxic deleterious conformation through oxidation ( ; ; ). In anyRakhit et al. 2002 Ezzi et al. 2007 Kabashi et al. 2007 

case, since microglial cells are activated in familial and sporadic ALS cases, finding the motor neuron pathways implicated in microglial

activation could help in slowing motor neuron degeneration.

The role of the adaptive immune system in ALS mice

Besides microglia and astrocytes other cells participate in the inflammatory process occurring in ALS ( ). Evidence of TFig. 1 

lymphocytes infiltration was described in ALS tissues ( ; ; ) and in mutantLampson et al. 1990 Troost et al. 1990 Kawamata et al. 1992 

SOD1 mice ( ; ; ). In ALS patients, lymphocytic infiltration of both T-helper (CD4 )Alexianu et al. 2001 Beers et al. 2008 Chiu et al. 2008 +
and cytotoxic (CD8 ) classes (but predominantly CD8  T cells) was described in the corticospinal tracts and anterior horns of the spinal+ +
cord ( ; ; ; ), leading to a proposed autoimmune reaction orTroost et al. 1989 Lampson et al. 1990 Troost et al. 1990 Kawamata et al. 1992 

viral infection as a cause of ALS disease ( ). However, these hypotheses were weakened by the lack of furtherMcGeer and McGeer 2002 

evidence. The absence of specific antibodies or T cells directly attacking motor neurons or the failure of therapeutic immunization in

mouse models and ALS patients (detailed below) are not in favor of an autoimmune process ( ); moreover, the absence ofAppel et al. 1993 

viral DNA or RNA in tissues of ALS patients do not support a viral hypothesis ( ; ; Swanson et al. 1995 Rosener et al. 1996 Andrews et al.

, ; ). But still, the presence of T cells in the affected tissues of ALS patients and ALS mice raised the1997 2000 Walker et al. 2001 

question of the possible role of these infiltrated cells and different mouse mating strategies were used to show the involvement of T cells in

ALS mice. First, to block recruitment of peripheral cells in the CNS, PU.1 /SOD1 mice were grafted with bone marrow cells/  − − G93A 

lacking the receptor for MCP-1 (CCR2) which recruits CCR2 expressing cells meaning, activated T cells and monocytes. Because CCR2 /−

bone marrow transplanted ALS mice had shortened lifespan as compared to the mice that received wild-type bone marrow, cells coming −

from the periphery into the CNS had an influence on the disease. However, this positive effect could have also come from CCR2 /  − −

microglial cells in the CNS (since all the microglial cells in the PU.1 /SOD1 got replaced by CCR2 cells). Therefore, SOD1/  − − G93A /  − − G93A 

mice were crossed with RAG2 mice that lack functional T and B cells which led to a shorter lifespan. When these mice received SOD1/  − −

or WT bone marrow, they survived longer with a slower disease progression showing that lymphocytes had a beneficial effect on theG93A 

disease ( ). Of note, mutant SOD1 expressed in lymphocytes did not seem to affect the disease. Crossing SOD1Beers et al. 2008 G93A mice

mice that lack T cells, which led to decreased survival of ALS mice, showed the trophic capabilities of T cells in ALS mice (with TCR β /  − −

). To determine the role of subpopulations of T cells, SOD1 mice were bred with CD4 mice. These mice showedChiu et al. 2008 G93A /  − −

the same disease acceleration than SOD1 /RAG2 mice meaning that CD4  T cells were responsible for the neuroprotectionG93A /  − − +
measured, probably by enhancing the expression of neurotrophic factors for motor neurons, such as IGF-1 and also by increasing the

expression of glutamate transporters (GLT-1 and GLAST) as measured in the spinal cord of these mice ( ). Furthermore,Beers et al. 2008 

T cells also modulated the reactivity of microglial cells since SOD1 /CD4 mice showed attenuated staining with microglialG93A /  − −

activation markers. This observation also means that acceleration of disease did not correlate with the level of microglial activation or that

microglial activated morphology did not predict their toxic function ( ).Beers et al. 2008 
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Concerning the kinetics of infiltration of T cells that could be influenced by alterations in the BBB permeability described in ALS

mice ( ; ), CD4  T cells were present at onset of disease and accumulated with disease progressionZhong et al. 2008 Zhong et al. 2009 +
while CD8  T cells were only present at the end-stage of disease in SOD1 mice consistent with observations in postmortem tissues of+ G93A 

ALS patients, where the majority of the lymphocytes were CD8  ( ). No B cells were observed in the spinal cord of these+ Troost et al. 1990 

ALS mice ( ) or in human ALS spinal cords ( ; ). The lack of contribution of BChiu et al. 2008 Troost et al. 1990 Engelhardt et al. 1993 

cells in SOD1 mice was shown by mating them with Ig- mice (where B cell development is blocked at pro-B stage) resulting in noG93A μ /  − −

difference in survival. In addition, no evidence of altered phenotype of B cells expressing mutant SOD1 was found ( ).Naor et al. 2009 

Analyzing the T cell immune response and lymphocyte proliferation in SOD1 mice showed that ALS mice had impaired T cellG93A 

function and increased number of apoptotic T cells ( ). In addition, spleen size and weight as well as spleen cellsBanerjee et al. 2008 

counts were reduced at the end-stage of the disease in SOD1 mice ( ). This T cell malfunction was hypothesized toG93A Banerjee et al. 2008 

occur in parallel to the motor neuron dysfunction. Indeed, a significant reduction in thymic progenitor-cell content and abnormal thymic

histology was observed in ALS animals ( ). Importantly, ALS patients also showed reduction in blood levels of T cellSeksenyan et al. 2009 

receptor rearrangement excision circles (sjTRECs) and a restricted T cell repertoire accompanied by an increase in pro-apoptotic markers (

).Seksenyan et al. 2009 

A reconstitution strategy (adoptive transfer with polyclonal wild-type T regulator (Treg CD4  CD25 ) or T effector (Teff CD4  CD25+ + +
)) cells beginning at the presymptomatic stage in ALS mice, added another evidence to the T cell impairment since it delayed motor−

neuron loss and extended survival with Treg rather delaying symptom onset and Teff increasing latency between disease onset and entry

into late stage, suggesting that these two subsets act on independent pathways ( ). This impairment in T cell responseBanerjee et al. 2008 

could explain the fact that copolymer-1 (cop-1), a glatiramer acetate derivate (GA), treatment was not efficient in ALS mice (or modestly

in females only ( ). Cop-1 is an FDA-approved treatment for MS that has also shown some benefit in mouse models ofBanerjee et al. 2008 

Alzheimer s and Parkinson s disease ( ; ; ; ). Although the’ ’ Benner et al. 2004 Frenkel et al. 2005 Butovsky et al. 2006 Laurie et al. 2007 

action of cop-1 is not clearly established, it seems to act as an immunomodulatory agent by enhancing the CD4  Th2-like response,+
resulting in anti-inflammatory effects. A previous study using different doses of TV-5010 (another GA derivate) on three different mutant

SOD1 mouse lines had shown the same outcome of no delay in disease onset or survival of ALS mice ( ); conversely,Haenggeli et al. 2007 

another study reported that GA immunization in low copy (SOD1 ), but not high copy, SOD1 mice delayed disease progressionG93A-low G93A 

( ). A phase II clinical trial for GA was conducted on ALS patients and had no impact on disease progression, but sinceAngelov et al. 2003 

it was well tolerated GA could still be used as a supplement treatment for future trials targeting the immune system (Meininger et al. 2009 

).

Conclusion

Neuroinflammation is part of ALS physiopathology and immune cells participate in the disease progression. Although microglial cells

are activated prior to the appearance of the symptoms, motor neuron dysfunction seems to be the primary affection in ALS. Factors

coming from sick motor neurons would be at the origin of microglial activation leading to increased neurotoxicity and diminished

neuroprotective action of the glial cells. This glial cell reactivity becoming self-sustained would amplify the neuroinflammatory process,

hitting back at the suffering motor neurons and increasing their vulnerability to the primary source of damage ( ). DegeneratingFig. 1 

motor neurons or reactive glial factors would also influence the blood spinal cord barrier tightness allowing leakage of potential neurotoxic

factors from the periphery and increasing the attraction of lymphoid cells from the periphery. CD4  T lymphocytes entering the spinal+
cord can release trophic factors that could act directly on motor neurons or modify microglial reactivity to lead to a more trophic

environment. However, mutant proteins that lead to ALS (in first instance mutant SOD1) act in different cell types and modify their

response to the injury. The different studies highlighted in this review converge to the conclusion that the immune system participates to

motor neuron degeneration in ALS. To this point, the main question is, therefore, why anti-infammatory drugs have not yet proven their

benefice to ALS patients? Several explanations could be emphasized including (1) a potential interaction with Riluzol in the clinical trials,

(2) results in animal pre-clinical trials that are often based on the beneficial effect of presymptomatic administration of the drug. Indeed, all

of the potential therapeutic compounds used in mice starting after the onset has shown less benefit than when used at presymptomatic

stages. (3) A prescreening of the factors on mutant SOD1 linked ALS models that might not reflect the multifactorial causes of ALS and

which explains the current keen interest on building new ALS models expressing new mutated genes responsible for ALS. (4) The

adaptive immune response in ALS is defective which could cause imbalance of the immune response to the neurodegeneration and could

influence the response to therapies targeting the immune system. (5) The immune reaction is finely tuned, microglial cells can exert both

neurotoxic or neurotrophic functions on motor neurons, depending on their activation state and specific microenvironment therefore

anti-inflammatory drugs could have beneficial effects at specific stages of the disease and for a defined period of time highlighting the

need to better understand the mechanisms of cell interactions, to clarify the different actors of neuroinflammation and the time course of

expression/regulation of the inflammatory pathways potentially implicated in motor neuron death.
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Targeting the symptomatic phase of the disease being the only way to slow down motor neuron degeneration in a disease mainly of

sporadic etiology like ALS, neuroinflammation is still one of the most promising candidate pathway for therapeutic intervention.
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Fig. 1
Immune cells of the CNS including microglia and T lymphocytes affect motor neuron survival. Control situation: the presynaptic neurona 

releases glutamate (Glu), which binds to glutamate receptors (GluRs) on the postsynaptic motor neuron resulting in excitation through

calcium influx. Extracellular glutamate is quickly cleared from the synaptic cleft by astrocytes through EAAT2 transporters. In a

non-inflamed environment, microglial cells remain in a resting or surveying  state, most likely releasing factors with neurotrophic influence (“ ”
) ALS situation: decreased expression of astrocytic glutamate transporters EAAT2 could lead to prolonged glutamate excitationblue arrows b 

of motor neurons and participate in their degeneration (excitotoxic hypothesis). Activated microglial cells and astrocytes produce toxic factors

( ). Among the factors released by astrocytes, macrophage- colony stimulating Factor (M-CSF) and monocyte chemoattractantpink arrows 

protein-1 (MCP-1) are capable of activating microglial cells, increasing their proliferation (M-CSF) or migration (MCP-1) ( ).green arrows 

Microglial cells are also prone to self-activation by releasing Tumor Necrosis Factor-  (TNF ) for which they express the receptors 1 and 2α α
(TNFR1/2) and M-CSF acting on the receptor fms. Activated microglial cells will produce more reactive oxygen species (ROS) like nitric

oxide (NO) through the inducible NO synthase and superoxide (O ) through activation of NADPH oxidases (Nox1/2), but also2 
 ·−

proinflammatory cytokines like interleukines 1  and 6 (IL-1 , IL-6) and prostaglandins (PGE2) through activation of the cyclooxygenase 2β β
(COX2). Extracellular ATP, likely coming from damaged motor neurons, binds to microglial purinergic P2 receptors, therefore, contributing

to microglial activation. Motor neurons can also participate to glial cell activation by releasing mutant SOD1 co-secreted with chromogranine

(Cg) that can bind to CD14 acting in concert with the Toll-like receptors (TLR2/4). The adaptive immune system is also part of the

degenerating motor neuron response. T lymphocytes (CD4  and CD8 ) coming from the periphery enter the spinal cord during the+ +
inflammatory process in ALS. CD4  lymphocytes seem to have a neuroprotective effect by directly releasing anti-inflammatory factors like+
interleukines 4 and 10 (IL-4, IL-10) or by acting on microglial cells to increase their neurotrophic function (production of insulin-like growth

factor-1 (IGF-1)). The role of infiltrating CD8  T cells remains unclear and B cells are not present in ALS spinal cords. Dendritic+
(antigen-presenting) cells secrete MCP-1, which probably participates in the infiltration of peripheric immune cells. All together, the

inflammatory environment and increased oxidative stress take part in the degeneration of the motor neurons that leads to muscle atrophy in

ALS.
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