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Abstract

Idiopathic nephrotic syndrome comprises several podocyte diseases of unknown origin, affecting the glomerular podocyte, which

plays a key role in controlling the permeability of the kidney filter to proteins. It is characterized by the daily loss of more than 3 g of

protein in urine, with no inflammatory lesions or cell infiltration. Nephrotic syndrome may be associated with serious complications,

including sodium retention, hyperlipidemia, infectious diseases and thromboembolic events. The molecular mechanisms underlying

non genetic nephrotic syndromes are unknown. We report here that the abundance of c-mip (c-maf inducing protein) increases in the

podocytes of patients with acquired idiopathic nephrotic syndromes, including minimal change nephrotic syndrome (MCNS), a subset

of focal and segmental glomerulosclerosis (FSGS) and membranous nephropathy (MN), in which the podocyte is the main target of

injury. Transgenic mice overproducing c-mip in podocytes developed proteinuria without morphological alterations, inflammatory

lesions or cell infiltration. We found that c-mip turned off podocyte signaling by preventing the interaction of nephrin with the

tyrosine kinase Fyn, thereby decreasing nephrin phosphorylation and . Moreover, c-mip inhibited interactionsin vitro in vivo 

between Fyn and N-WASP and between Nck and nephrin, potentially accounting for cytoskeletal disorganization and the effacement

of foot processes. The intravenous injection of a small interfering RNA (siRNA) targeting c-mip prevented

lipopolysaccharide-induced proteinuria in mice. These results provide new insights into the molecular mechanism of acquired

podocyte diseases.

Introduction

The kidney filters 180 liters of plasma daily, through the glomerular filtration barrier, a highly specialized glomerular structure

consisting of a fenestrated endothelial cell layer, a glomerular basement membrane (GBM), and a layer of epithelial cells called podocytes,

wich cover the external side of the glomerular capillary loop ( ). The podocyte is a terminally differentiated epithelial cell immersed in1 

the urinary space and anchored to the underlying GBM by large cell expansions, known as foot processes ( ). The slit diaphragm is a 402 

nm junction structure that links the interdigitating foot processes from neighboring podocytes ( ). The glomerular filtrate passes first2 

through the fenestrated endothelium, then through the GBM, and finally through the slit diaphragm, which serves as the principal

size-selective macromolecular filter, preventing the passage of large proteins into the urinary space ( ). The effacement of foot processes2 

is a common ultrastructural feature of nephrotic syndrome (defined by massive urinary protein loss), regardless of its etiology ( ). It may3 

result from structural or functional changes in the subcellular compartments of the podocyte, including the cytoskeleton, slit diaphragm,

GBM interface, and apical domains ( ). The molecular mechanisms underlying these alterations remained elusive until the identification4 

of mutations associated with familial forms of steroid-resistant nephrotic syndrome. These mutations were identified in genes encoding

nephrin (NPHS1), a transmembrane protein that functions as an adhesion molecule, podocin (NPHS2), a lipid raft-associated protein,

CD2-associated protein (CD2-AP), an adapter protein, the cytoskeletal protein -actinin4, the transient receptor potential channel 6α
(TRPC6) and phospholipase C , a regulator of activated G protein signals ( ).ε 5 –10 
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In addition to playing a structural role in the slit diaphragm, nephrin is a signaling molecule involved in several intracellular pathways

within podocytes ( ). The clustering of nephrin in lipid rafts as demonstrated by antibody crosslinking induces activation of the11 

Src-family kinase Fyn, which binds to and phosphorylates the cytoplasmic domain of nephrin. The phosphorylated nephrin interacts with

podocin, CD2-AP and the p85 subunit of phosphoinositide-3 kinase (PI3K), thereby activating the Akt signaling pathway ( ).12 –14 

Nephrin phosphorylation promotes the sequential recruitment of Nck and activated Wiskott-Aldrich syndrome protein (WASP) to lipid

rafts. The Nck subfamily of adaptor proteins has two members, Nck1 and Nck2, each containing three N-terminal SH3 domains and a

single C-terminal SH2 domain ( ). The SH3 domain of Nck interacts with N-WASP, whereas the SH2 domain binds to the cytoplasmic13 

domain of nephrin ( ). N-WASP, a member of the WASP family proteins, is a potent inducer of Arp2/3-mediated actin polymerization (13 

). The Nck adaptor protein activates N-WASP and promotes cytoskeletal rearrangement ( ). Within lipid rafts, Fyn interacts with and15 13 

phosphorylates N-WASP ( , ). The interaction of Fyn with CD2-AP and synaptopodin links nephrin-mediated proximal signaling to13 16 

the actin cytoskeleton ( ). The slit diaphragm thus acts as a signaling platform on which multiple signals converge ( ).17 4 

We carried out subtractive and differential screening of mRNA abundance in the T-cells of MCNS patients experiencing a relapse. We

identified (c-maf inducing protein), a gene encoding an 86-kDa protein, as significantly expressed in these patients ( ). Thec-mip 18 

predicted structure of c-mip includes an N-terminal region containing a pleckstrin homology domain (PH), a central region containing

docking sites for 14-3-3 protein, protein kinase C (PKC), and extracellular signal-regulated kinase (ERK), an SH3 domain similar to the

p85 regulatory subunit of PI3K and a C-terminal region containing a leucine-rich repeat (LRR) domain.

We report here a high abundance of c-mip in the podocytes of patients with acquired idiopathic nephrotic syndrome, which covers

three differents types of lesions of unknown origin, including MCNS, a subset of FSGS, and MN, in which the pococyte is the main target

of injury. A feature common to these diseases is generalized edema resulting from massive proteinuria, hypoalbuminemia and sodium

retention. These conditions may be complicated by infectious and thromboembolic events. MCNS and FSGS account for 70  and 20 ,% %
respectively, of the cases of idiopathic nephrotic syndrome in children, and of these two diseases accounts for 25  each of the cases in%
adults ( ). The hallmark of MCNS is an absence of inflammatory injury and immune complex deposits in the glomeruli, whereas19 –21 

FSGS is characterized by the adhesion of the glomerular tuft to Bowman s capsule ( ). MCNS seems to be a single reasonably uniform’ 22 

entity combining immune and podocyte disorders, whereas FSGS appears to be a heterogeneous disease, of immune or non-immune

origins ( ). Membranous nephropathy, which is rare in children, is characterized by the presence of prominent immune complex deposits23 

between the podocytes and the glomerular basement membrane ( ). The effacement of podocyte foot processes is a common lesion24 

suggestive of cytoskeletal alterations.

The production of c-mip was also induced in an experimental mouse model of nephrotic proteinuria induced by LPS. Transgenic mice

overproducing c-mip in the podocytes developed a nephrotic syndrome without inflammatory lesions or cell infiltrations. The c-mip

protein bound Fyn directly and and prevented the interaction of Fyn with nephrin and N-WASP, thereby decreasingin vitro in vivo 

nephrin phosphorylation and causing cytoskeletal disorganization. The knockdown of c-mip by RNA interference (RNAi) techniques

prevented the development of proteinuria in LPS-treated mice. Thus, c-mip appears to be a key player in podocyte dysfunction.

Results
c-mip is detected in the kidneys of patients with MCNS and other glomerular diseases

The pathogenesis of MCNS involves the dysfunction of lymphocytes and podocytes through an unknown mechanism ( ). This23 

syndrome can be induced into remission (defined by the disappearance of proteinuria) following steroid therapy, but relapses are frequent

and may require the initiation of cyclosporine treatment. Our initial studies of c-mip led us to examine whether the abundance of c-mip

increased in the podocytes of patients with MCNS. We screened 15 adult patients with MCNS relapse ( ). In situ hybridizationTable S1 

(ISH) with an antisense probe revealed a signal that was largely restricted to the podocytes; this finding was confirmed byc-mip 

immunohistochemical analysis with a rabbit polyclonal antibody directed against c-mip ( ). We carried out confocal microscopyFig 1A 

analyses of kidney biopsy specimens labeled with c-mip and nephrin antibodies. We were unable to detect c-mip in normal human kidney,

either in the glomeruli or in extra-glomerular structures, whereas nephrin was clearly visualized ( , upper panel). By contrast, inFig. 1B 

biopsy specimens from MCNS patients in relapse, c-mip was detectable and diffusely distributed along the external side of the capillary

loops ( , lower panel). We analyzed the abundance of c-mip during remission, by carrying out immunolabeling for c-mip on kidneyFig. 1B 

biopsy specimens from five MCNS patients who were steroid sensitive but were nonetheless subject to frequent relapses and therefore

received an additional cyclosporine-based therapy. c-mip was scarcely detected by immunohistochemical analysis in two patients and was

undetectable in the other three patients ( ).Table S1 

We screened patients with idiopathic MN, FSGS, HIV-associated nephropathy (HIVAN), IgA nephropathy and diabetic nephropathy.

All patients presented nephrotic proteinuria at the time of biopsy ( ). Kidney biopsy specimens from patients with primary FSGSTable S1 

were analyzed by both ISH ( ) and immunohistochemistry ( ). We detected c-mip by these methods in only four of the 10fig. S1 fig. S2 

patients studied. In these cases, the course of the disease was complicated by frequent relapses requiring additional cyclosporine treatment.
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The distribution of c-mip was similar to that observed in MCNS biopsies but less nephrin was detected. In the other patients with FSGS in

whom c-mip was not detected, the glomerular disease occurred in the context of obesity and hypertension (4 patients), sarcoidosis (1

patient) and strongyloidiasis (1 patient). These results suggest that c-mip abundance may be increased in a particular subgroup of patients

with FSGS, possibly those with disease of immune origin. The abundance of c-mip was found to be high in 11 of 12 biopsies of patients

with idiopathic MN ( and ). We did not detect mRNA in the glomeruli of patients with nephrotic proteinuria caused byfig. S1 fig. S2 c-mip 

diabetic nephropathy, IgA nephropathy or HIVAN ( and ). These findings suggest that c-mip induction is not aTable S1 fig. S1 

consequence of nephrotic proteinuria.

c-mip overproduction in podocytes inhibits nephrin phosphorylation and causes cytoskeletal disorganizationin vitro 

To understand the effects of c-mip on podocyte function, we established podocyte cell lines that stably expressed a

tetracycline-inducible plasmid encoding c-mip. In non induced cells, c-mip was not detectable in podocytes, which displayed a well

developed actin network with stress fibers (long intracellular bundles of actin filaments) ( ). The induction of c-mip expression byFig. 2A 

tetracycline was associated with a loss of stress fibers ( ).Fig. 2A 

Next, we sought to determine whether these morphological alterations were associated with changes in the abundance of proteins

involved in podocyte signaling. We detected c-mip 48 hours after the addition of tetracycline ( ). The protein has a PH domain andFig. 2B 

some proteins containing this domain are recruited to lipid rafts upon activation ( ). Fyn, which provides the early proximal signal, is25 

located in lipid rafts ( ). We therefore investigated the effects of c-mip on Fyn signaling. Immunoblotting of podocyte protein lysates26 

showed that c-mip overproduction triggered the accumulation of Fyn molecules phosphorylated at the Tyr residue (pTyr -Fyn),528 528 

suggesting that c-mip prevents Fyn activation ( ). Consequently, the amount of phosphorylated nephrin (p-nephrin) was reducedFig. 2B 

upon induction of c-mip, although the total abundance of nephrin appeared unaltered ( ). The induction of c-mip was alsoFig. 2B 

associated with a decrease in the phosphorylation of the Ser residue of Akt (pSer -Akt) ( ). On the other hand, c-mip did not473 473 Fig. 2B 

affect the protein abundance of CD2-AP and podocin ( ). Taken together, these results suggest that c-mip interferes with proximalFig. 2B 

signals, inhibits nephrin activation and promotes actin cytoskeleton disorganization.

c-mip transgenic mice develop nephrotic proteinuria without inflammatory lesions or cell infiltration

To analyze the functional consequences of c-mip upregulation , we used a targeting system in which a single copy of thein vivo 

transgene was inserted into the ( ) locusX-linked hypoxanthine phosphoribosyltransferase 1 hypoxanthine phosphoribosyltransferase Hprt 

by homologous recombination ( ). A cDNA containing the coding sequence of was inserted under the control of the nephrinfig. S3 c-mip 

promoter to drive expression in podocytes. The founders were crossed with wild-type C57Bl/6 and back-crossed repeatedly toc-mip 

obtain a homogeneous C57BL/6 genetic background. All the mice analyzed here were hemizygous males Tg( )  from the F4 to F10[ + ]
generations. Proteinuria and urinary creatinine concentrations were determined in 294 adult Tg( ) mice from the F4 (n 109 mice), F6 (n+ = =
55 mice), F7 (n 70 mice) and F8 F10 (n 60 mice) generations. Tg( ) mice developed nephrotic proteinuria with a strong predominance of= – = +
albumin ( ). Light microscopy analysis of periodic acid-Schiff (PAS) reagent-stained-kidney sections from eight-week-oldFig. 3, A and B 

proteinuric Tg( ) mice showed that glomeruli exhibited a normal architecture with little or no mesangial hypercellularity ( ). Renal+ fig. S4 

function was preserved as shown by the plasma creatinine concentrations measured at 3 and 6 months ( ). The tubular structures andfig. S4 

interstitium displayed no pathological changes, but some tubules were filled with protein ( , upper panel). W detected c-mip in thefig. S5 

peripheral capillary loops of proteinuric mice, whereas it was undetectable in wild-type mice ( , middle panel). No immunoglobulinfig. S5 

or complement deposits were observed on immunofluorescence analysis ( , lower panel). We did not detect c-mip either in tubularfig. S5 

structures or in the interstitium. Pathological examinations of other organs did not reveal any common alterations and no abnormal

mortality was noted during the observation period.

We assessed the amount of c-mip protein in MCNS and Tg( ) glomeruli, by incubating tissue sections with an anti-c-mip antibody,+
followed by an FITC-conjugated secondary antibody, and examining three-dimensional images throughout the entire thickness of the

glomeruli (20 images per glomerulus), by confocal microscopy. We quantified the fluorescence of the most representative slice from the

image stack. Given the differences in size between the glomeruli of mice and humans, precluding direct comparison, we quantified the

site-specific fluorescent labeling lining the capillary loop, and normalized the value obtained by dividing it by total glomerular area, for

each glomerulus ( and ).table S2 fig. S6 

Electron microscopy analysis of glomeruli in Tg( ) mice revealed the effacement of foot processes with flattened podocytes (as+
usually observed in patients with nephrotic proteinuria), whereas wild-type mice had normal foot processes ( ). SlitFig. 3, C and D 

diaphragms appeared narrow in most glomeruli and were absent in some areas, with the formation of occluding junctions between

neighboring foot processes. These features were not observed in normal littermates. The podocyte foot processes were significantly wider

in Tg( ) than in wild-type mice ( ). The glomerular basement membrane (GBM) appeared normal. The tubules and interstitium+ Fig. 3E 

were normal. Immunogold labeling revealed that c-mip was predominantly, but not exclusively located in the major and secondary foot

processes close to the slit diaphragm ( ).fig. S4 
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We followed the course of glomerular disease in Tg( ) mice, from birth until the age of one year. Semi-quantitative determinations of+
urinary protein levels were carried out with a dipstick in newborn mice of the F7 generation ( ). Proteinuria was detected in 70  oftable S3 %
five day-old mice and in 79  of three-old mice. Electron microscopy studies showed numerous areas of foot process effacement and foot%
processes with an abnormal morphology ( ). We then determined urinary protein concentrations in four groups of mice, at variousfig. S7 

ages, from one to 12 months ( ). Based on these concentrations, it was clear that glomerular disease was established in these micefig. S8A 

by the age of one to three months. Histological analyses of kidney sections, including 30 to 50 glomeruli per mouse were carried out blind,

and scores were determined for ten mice for each age group. At three months of age, glomeruli of proteinuric Tg( ) mice exhibited a+
normal morphology ( ). At six months of age, 25  of glomeruli showed mesangial hypercellularity. At one-year of age,fig. S8B %
approximately 25  of the glomeruli displayed a clear expansion of the mesangial matrix and some FSGS-like lesions, as observed in some%
patients with MCNS who will develop FSGS. We found no correlation between the protein concentration in urine and the extent of the

mesangial changes.

The podocytes of c-mip transgenic mice have an abnormal phenotype

We performed confocal microscopy analysis for various markers of mature podocytes. Nephrin and phosphorylated nephrin exhibited

a continuous linear distribution along the peripheral capillary loop in wild-type mice. In Tg( ) glomeruli, the abundance of nephrin was+
less abundant at the podocyte membrane, where granular staining was observed and lower amounts of nephrin phosphorylation were

detected ( ). Our studies suggested that c-mip interfered with podocyte proximal activation ( ). Consistent with thesefig. S9 in vitro Fig. 2B 

findings, eight-and ten-week-old Tg( ) mice had less phosphorylated nephrin than their wild-type littermates, although the total abundance+
of nephrin was unchanged ( ). These alterations were associated with an increase in the abundance of the inactive forms of FynFig. 4A 

(pTyr -Fyn) and Akt ( ). No c-mip was detected in wild-type mice, suggesting that the abundance of c-mip may be kept low528 Fig. 4B 

under normal conditions. The inactivation of Akt was confirmed by immunofluorescence analyses of kidney sections. The pSer -Akt473 

form was visualized along the peripheral capillary loop at the site of the podocytes in wild-type mice but was not detected in Tg( ) mice (+
). The amount of pSer -Akt was also significantly lower in the kidneys of patients with MCNS than in those of patients withFig._ 4C 473 

IgA nephropathy or diabetic nephropathy ( and ), highlighting the pathophysiological relevance of this mouse model to theFig. 4C fig. S10 

human disease.

c-mip binds Fyn and inhibits the interactions of Fyn with nephrin and N-WASP

Because Akt was inactive in glomeruli from MCNS biopsies and in c-mip Tg mice, and as c-mip decreased the amount of nephrin

phosphorylation , we investigated whether c-mip interfered with Fyn-mediated proximal signaling. In a preliminary analysis, c-mipin vitro 

protein was not detected in human embryonic kidney (HEK) cells ( ). In coimmunoprecipitation experiments with protein lysatesfig. S11A 

from transfected HEK cells, c-mip bound Fyn ( , upper panel). Endogenous Fyn was also immunoprecipitated with c-mip (fig. S12A fig.

, upper panel). This interaction seemed to be direct because purified recombinant c-mip was immunoprecipitated with recombinantS12A 

Fyn ( , middle panel). Coimmunoprecipitation analysis with deletion mutants of c-mip revealed that c-mip interacted with Fynfig. S12A 

through its PH domain ( , lower panel).fig. S12A 

We next coexpressed c-mip, nephrin and Fyn (to mimic biochemical events seen in nephrotic syndromes) and determined whether

nephrin retained its ability to interact with Fyn. Coimmunoprecipitation experiments showed that c-mip prevented the interaction of

nephrin with Fyn ( , upper panel). We then investigated whether the inability of nephrin to interact with Fyn influenced itsfig. S12B 

phosphorylation status. Coexpression of nephrin and Fyn induced the phosphorylation of nephrin at residue Tyr ; this phosphorylation1208 

event was prevented by coexpression of c-mip ( , lower panel).fig. S12B 

Activated Fyn binds and phosphorylates N-WASP ( , ), facilitating the anchoring of the cytoskeleton to lipid rafts ( ).13 16 27 

Immunoprecipitation experiments with protein lysates from transfected HEK cells indicated that Fyn bound to N-WASP but that this

interaction was blocked in the presence of c-mip ( ). We found that c-mip was coimmunoprecipitated with Fyn from glomerularfig. S12C 

extracts from Tg( ) mice, but not those from wild-type mice ( ). The amount of nephrin immunoprecipitated with Fyn in Tg( )+ Fig. 5A +
mice was lower than in wild-type mice ( ). Moreover, Tg( ) mice displayed lower amounts of nephrin phosphorylation, evenFig. 5B +
though the amounts of nephrin immunoprecipitated in wild-type and Tg( ) mice were comparable ( ). Nck binds N-WASP through+ Fig. 4A 

its SH3 domain and nephrin through its SH2 domain ( , , ). The interactions of Fyn with N-WASP ( ) and Nck with12 13 16 Fig. 5C 

nephrin ( ) were weaker in the presence of c-mip. Together, these results suggest that c-mip interacts with Fyn and altersFig. 5, D and E 

proximal signaling and cytoskeleton reorganization by disrupting the interactions of Fyn with N-WASP and nephrin, respectively.

RNAi directed against c-mip prevents induction of proteinuria in LPS-treated mice

To determine whether the silencing of endogenous c-mip could prevent the development of proteinuria, we took advantage of our

observations that the increase in c-mip abundance in LPS-treated mice occurred at the same time as the induction of proteinuria ( ).Fig. 6A 

In this model, we confirmed that c-mip was present in podocyte foot processes and that it bound Fyn ( ). We detected c-mip mostlyFig. 6A 

in flattened podocytes, rather than in podocytes with normal foot processes ( ). No c-mip was detected in splenocytes fromfig. S13 
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LPS-treated mice. However, we nevertheless investigated whether the induction of c-mip in podocytes from LPS-treated mice required

T-cell activation. In SCID mice, which lack both cellular and humoral immunity, LPS injection induced significant proteinuria and an

increase in c-mip abundance in podocytes ( ).Fig. 6B 

We used RNA interference to knock down c-mip in vivo. We injected fluorescently labeled c-mip siRNA (10 mg/kg) into the internal

jugular vein and then, 30 min later, we injected LPS (200 g in PBS) into the peritoneum. Proteinuria was decreased by 70  inμ %
LPS-treated mice injected with siRNA ( ), compared to those injected with LPS alone (urinary protein/creatinine ratio, 4.52  1.75Fig. 6C ±
compared to 19.51 1.35, respectively). The transfection reagent (Invivofectamine) slightly increased the proteinuria above the values±
observed for non-injected wild type mice (6.5  1.41 compared to 2.25  0.9, respectively), an effect that may be due to its cationic± ±
structure. Confocal immunofluorescence analysis showed that c-mip siRNA was efficiently delivered to podocytes ( ). TheFig. 6C 

abundance of c-mip in podocytes was lower in mice injected with c-mip siRNA and LPS, and increased in mice receiving LPS alone (Fig.

). The amount of nephrin and phosphorylated nephrin appeared to be reduced in many glomeruli of LPS-treated mice, as compared6C 

with mice treated with both siRNA and LPS ( ). The amount of phosphorylated Akt (pSer -Akt) was significantly reduced in LPSFig. 7A 473 

mice, whereas no significant difference was observed between siRNA-LPS and normal mice ( ). These results suggest that it mayFig. 7B 

be possible to prevent proximal signaling disorders and the development of proteinuria by inhibiting increases in the abundance of c-mip.

Discussion

The molecular pathogenesis of the most common acquired glomerular diseases associated with nephrotic syndrome remains to be

elucidated. In this study, we provide evidence that: (i) the abundance of c-mip is selectively increased in the podocytes of patients with

MCNS during relapse and decreased during remission; (ii) c-mip is detected in only a few patients with FSGS, confirming the

heterogeneous nature of this entity, and in most patients with MN but not in other diseases with proteinuria in the nephrotic range analyzed

to date; (iii) the overeproduction of c-mip in the podocytes of transgenic mice induces heavy proteinuria with podocyte foot process

effacement, but without inflammatory lesions and immune complex deposits; (iv) c-mip binds Fyn and prevents thein vivo 

phosphorylation of nephrin and the recruitment of N-WASP and Nck, thus disturbing downstream signaling events, ultimately resulting in

cytoskeleton disorganization and protein leakage; (v) the silencing of endogenous c-mip by RNAi prevents the induction of proteinuria in

LPS-treated mice.

The higher abundance of c-mip in the podocytes of patients with MN, a glomerular disease characterized by subepithelial immune

complex deposits, was unexpected. Like patients with MCNS, massive proteinuria in MN occurs in the absence of inflammatory cells (24 

). In both experimental and human MN, immune complexes forming electron-dense deposits lead to complement activation and generation

of the C5b-9/Mac complex, which in turn, induces alterations in the podocyte membrane and slit diaphragm, resulting in proteinuria ( ).28 

However, there are several lines of evidence to suggest that the mechanisms underlying the induction of proteinuria may be more complex.

First, the remission of nephrotic syndrome may be observed in patients with MN, despite the persistence of electron-dense deposits ( ),29 

which suggests that additional mechanisms may be required to alter slit diaphragm signaling. Second, active and passive Heymann

nephritis can be induced in rats lacking complement component C6 and incapable of forming C5b-9 (also known as Mac) ( , ),30 31 

suggesting that the local activation of complement is not required for proteinuria induction. Third, the transplantation of kidneys from rats

with Heymann nephritis, an experimental rat model of MN, into syngeneic hosts induces the clearing of subepithelial immune deposits

with no decrease in proteinuria ( ). Fourth, both MCNS and MN podocytopathies are associated with a decrease in nephrin abundance32 

and changes in the distribution of nephrin ( ), as observed in our c-mip transgenic mice. The injuries initiating the nephrotic syndrome33 

differ in these two diseases targeting podocytes, but our results suggest that the underlying mechanisms may have signaling pathways in

common and should be reconsidered in the light of our findings concerning c-mip induction.

T lymphocytes and podocytes constitutively produce several proteins such as CD2-AP, Fyn, and Nck, that play a key role in signaling

and cytoskeleton reorganization in both these cell types. Mutations or experimental ablations of the genes encoding CD2-AP and Fyn are

associated with glomerular filtration defects and immune disorders, respectively ( , ). By contrast, c-mip is, to our knowledge, the34 35 

first gene, shown to be quiescent under basal conditions but induced in both cell types in pathological situations, thus forming a bridge

between immune alterations and podocyte dysfunction.

Tg mice expressing c-mip specifically in podocytes under the control of the nephrin promoter develop a glomerular disease

characterized by heavy proteinuria with a predominance of albumin, diffuse effacement of foot processes and an absence of immune

deposits. The similarities between kidney biopsy findings for patients with podocyte diseases and c-mip Tg mice suggests that mice

constitute a suitable model suitable for investigations of the mechanisms underlying nephrotic proteinuria.

We have deciphered the molecular mechanisms downstream from c-mip induction that lead to changes in signaling at the slit

diaphragm, resulting in cytoskeletal disorganization and protein leakage through the glomerular capillary wall. Our studies, in stably

transfected podocyte cell lines with inducible c-mip expression and a transgenic mouse model, provide support for a critical inhibitory role

of c-mip in podocyte proximal signaling. Fyn was mostly detected in an inactive form in podocytes overexpressing and c-mip in vitro in
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, consistent with a blockade of proximal signaling. We provide evidence that c-mip binds Fyn and prevents the interaction of nephrinvivo 

with Fyn, thereby decreasing nephrin phosphorylation. The inability of Fyn to phosphorylate nephrin may facilitate the interaction of

nephrin with -arrestin2 and its subsequent endocytosis and degradation ( ). In agreement with our data, nephrinβ 36 in vitro 

phosphorylation abundance was found lower in the podocytes of adult Tg( ) mice that in those of wild-type mice. The phosphorylation of+
Akt was consistently lower in the glomeruli of patients with MCNS, but increased in those of patients with diabetic nephropathy, except in

areas of glomerulosclerosis.

Nephrin phosphorylation promotes the recruitment of Nck and subsequent interactions of Fyn with N-WASP in lipid rafts. Thus,

decrease in nephrin phosphorylation disrupts the interactions of this protein with Nck and N-WASP. These alterations hamper nephrin

signaling and lead to cytoskeletal disorganization, a key event in the induction of proteinuria ( , ). These data suggest that c-mip13 37 

dissociates Fyn-mediated early podocyte proximal signals from cytoskeletal organization in podocytes.

LPS induces podocyte foot process effacement ( ) and decreases the abundance of mRNA ( ). We show here that many38 nephrin 39 

glomeruli in LPS mice display a segmental loss of nephrin and phosphorylated nephrin, and lower amounts of Akt phosphorylation. These

phenotypes were not observed in mice injected with c-mip siRNA. These results suggest that the increase in c-mip abundance in podocytes

is sufficient to induce nephrotic syndrome, providing support for the hypothesis that c-mip inhibits proximal signaling. In addition to

podocytes, LPS affects other cell compartments, including endothelial and tubular cells, but several findings suggest that the decrease in

proteinuria results from a specific effect of c-mip siRNA on podocytes. First, genome-wide expression studies of glomerular mRNA from

LPS-treated and control mice, combined with immunohistochemistry, have shown that LPS predominantly affects podocytes and their

actin cytoskeleton ( ). Indeed, LPS induces the downregulation of many podocyte genes, including -actinin-4, nephrin, podocin,39 α
synaptopodin and Fyn ( ). LPS-induced proteinuria in SCID mice is correlated with an increase in the abundance of c-mip in podocytes,39 

in the absence of T or B cell infiltration of the kidney and patent tubular or interstitial lesions.

Finally, the fact that transgenic mice expressing c-mip develop nephrotic syndrome, whereas silencing of endogenous c-mip prevents

its development in LPS-treated mice suggests that c-mip plays an essential role in this disorder and identifies this protein as a potential key

target for the development of new treatments.

Materials and Methods
Patients

The cohort of adult patients analyzed in this study was from our clinical department. The characteristics of these patients are

summarized in . All adult patients with MCNS relapse had proteinuria levels exceeding 3 g per 24 h and severeTable S1 

hypoalbuminemia at the time of blood sampling, which was performed before steroid treatment. The diagnosis of kidney disease was

confirmed by renal biopsy. MCNS and MN were clinically classified as idiopathic in all cases.

The control cohort included adult patients with glomerular diseases with proteinuria in the nephrotic range. Normal renal samples were

supplied by the hospital tissue bank (biological resource platform, H pital Henri Mondor). They were obtained from patients undergoingô
nephrectomy for a polar kidney tumor.

Immunohistochemistry and confocal microscopy

hybridization (ISH) was performed as described elsewhere ( ). For immunofluorescence analyses, podocytes were culturedIn situ 40 

on Lab-Tek slides (Nalge Nunc, Rochester, New York) at a subconfluent density, then fixed by incubation with 2  paraformaldehyde and%
4  sucrose in phosphate-buffered saline (PBS) for 10 min at room temperature. Cells were permeabilized by incubation with 0.3  Triton% %
X-100 for 10 min, and blocked by incubation in 1  bovine serum albumin (BSA) for 30 min. The slides were incubated overnight at 4 C% °
with the indicated antibodies. They were then washed and incubated with the appropriate secondary biotinylated antibody (Vector

Laboratories) for 10 min at room temperature, followed by a fluorescein-avidin DCS (Vector Laboratories). F-actin was visualized by

incubation with FITC-conjugated phalloidin (Molecular Probes, Eugene, OR, USA). The slides were covered with Vectashield mounting

medium containing DAPI, and viewed with a fluorescence microscope (Zeiss, Germany) using blue and green filters.

Immunohistochemistry studies on kidney sections were performed as described elsewhere ( ). Immunofluorescence studies on40 

kidney tissues were performed on 4 m cryostat sections fixed in acetone for 10 min, air-dried for 30 min at room temperature, thenμ
incubated in PBS for 3 min and blocked with 1  BSA in PBS. The sections were incubated with the indicated antibodies for one hour at%
room temperature, washed with PBS and incubated with FITC or Texas red-conjugated secondary antibodies. For dual fluorochrome

labeling, the slides were simultaneously incubated with rabbit anti-cmip antibody and mouse anti-synaptopodin antibody. The slides were

then washed with PBS and simultaneously incubated with FITC-conjugated goat anti-rabbit IgG and cyanine 3-conjugated sheep

anti-mouse IgG. Sections were examined by fluorescence microscopy (Zeiss). The relative amounts of c-mip protein in MCNS kidney

biopsy specimens and Tg( ) mice were determined as follows. Immunofluorescence staining was performed on tissue sections of the same+
thickness from MCNS kidney biopsy specimens and Tg( ) kidney tissues. Kidney sections from five biopsies and six three-month-old Tg(+
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) mice, totalling fifty glomeruli each, were analyzed. Tissue sections were viewed under a confocal laser scanning microscope+
LSM510-META (Carl Zeiss, Germany) with a Plan-Apochromat 63x, 1.4 numerical aperture oil immersion objective. Acquisitions were

performed with an argon laser (excitation wavelength 488 nm) and fluorescence emission was collected with the META channel between

500 and 600 nm. The pinhole was set at 1.0 Airy unit (0.8 mm optical slice thickness). The images were processed with ImageJ software (

, version 1.39e). The lower and upper thresholds of fluorescence intensity (F) were fixed at 2000 and 4095 pixels,http://rsb.info.nih.gov/ij/ 

respectively. We used a high cutoff value for the lower threshold to eliminate non specific signals. The area of specific labeling (lining the

capillary loops) was normalized with respect to total glomerular area (S  labeled area/total area) to account for the differences in total=
glomerular areas between mice and humans. This ratio was determined for each glomerulus. The semiquantification (Q) of site-specific

fluorescent labeling was determined as follows: Q  F  S.= ×

Plasmid constructs, cell culture and transient transfections

A cDNA encoding c-mip was obtained from patients with MCNS and a cDNA encoding N-WASP was obtained from a podocyte cell

line ( ). The sequences of primers and the PCR conditions are summarized in . Reverse transcription was performed with41 table S4 

Superscript II (Invitrogen, Inc, CA) and PCR amplification was performed with the Phusion high-fidelity DNA polymerase (Finnzyme,

Finland). The cDNA products were inserted into the pDonor plasmid. The full-length c-mip and N-WASP cDNAs were transferred into

pDest40 by recombination (Invitrogen). The Fyn plasmids were kindly provided by Marylin D Resh (Memorial Sloan-Kettering Cancer

Center) and Jacques Huot (Centre de recherche du CHUQ, H tel Dieu de Quebec, Canada).ô

Transient transfection assays were carried out in HEK 293 cells (American type Culture Collection), which were maintained in

DMEM containing 10  fetal calf serum. The cells were transiently transfected by the Nanofectine-1 method, according to the instructions%
provided by the manufacturer (PAA, Austria). The cells were allowed to recover for 24 hours, washed three times in cold PBS, and lysed.

Cells from the same number of passages were used to minimize variations in transfection efficiency.

The native recombinant c-mip was generated with the baculovirus expression system, by inserting the human cDNA betweenc-mip 

the BamH I and XhoI restriction sites of the transfer vector, pBacPAK9, in accordance with the manufacturer s instructions (Clontech,’
PaloAlto, CA). Sf9 insect cells were then cotransfected with the recombinant vector and baculovirus BacPak6 viral DNA. A high-titer

recombinant viral stock was obtained and used for subsequent infection of Sf9 cells. Insect cells were infected at a multiplicity of infection

of 10 in BacPAK complete medium. Ninety hours after infection, cells were harvested and lysed on ice by incubation for 5 min in

complete Lysis-B, EDTA-free buffer (Roche Diagnostic GmbH, Mannheim, Germany). The recombinant c-mip was purified by a

combination of preparative electrophoresis and gel electroelution ( ). The concentration of recombinant c-mip protein wasfig. 7B 

determined by densitometric analysis of Coomassie Blue-stained gels containing known amounts of BSA as standard.

Immunoprecipitations and Western blot analyses

The primary antibodies used in this study included anti-phospho-Akt (Ser and Thr ), anti-Akt, anti-N-WASP (Cell Signaling),473 308 

anti-phospho-Fyn (Tyr , Tyr ), anti-Fyn (BD Biosciences), anti-Nck 1/2, anti-Akt 1/2/3 (Santa Cruz), rabbit anti-CD2-AP (Santa Cruz528 418 

Biotechnology), guinea pig anti-nephrin (Progen, Heidelberg, Germany) and rabbit anti-podocin (kindly provided by Dr. Corinne

Antignac, INSERM U574, Paris, France) antibodies. The antibody against phosphorylated nephrin was provided by Dr Lawrence B.

Holzman (University of Michigan Medical School, Ann Arbor, Michigan, USA). The c-mip polyclonal antibody was produced in rabbits

immunized with acrylamide gel sections containing the c-mip protein. The specificity of the c-mip antibody was checked by Western

blotting and IHC, by first incubating the antibody with the recombinant c-mip protein purified from supernatants of baculovorus-infected

Sf9 cells. In both cases, this prior incubation resulted in an absence of signal ( ). The recombinant Fyn protein was purchasedfig. S9, A D –
from EMD Biosciences (San Diego, CA).

Cell protein extracts from podocyte or HEK 293 cells were prepared in lysis buffer B (150 mM NaCl, 10 mM Tris HCl pH 7.5, 2 mM

DTT, 10  glycerol, 1 mM EDTA, 1  NP40, 1 mM protease inhibitors, 1 mM NaF, and 1 mM sodium orthovanadate).% %

Glomerular protein extracts were prepared in lysis buffer A (50 mM Tris HCl pH 7.5, 150 mM NaCl, 2 mM EDTA, 1  NP-40, 0.5% %
sodium deoxycholate, 0.1  SDS, 1 mM PMSF, 1 mM protease inhibitors, 1 mM NaF, and 1 mM sodium orthovanadate). The protein%
lysates were resolved by SDS-PAGE and analyzed by Western blotting with the indicated antibodies. Similar procedures were used to

prepare total kidney lysates, except that the protein extracts were dialyzed overnight at 4 C in the same buffer. Immunoprecipitations were°
carried out with 2 mg of precleared glomerular or total kidney protein lysates and 4 g of antibody. The complexes were precipitated withμ
75 l of protein A/G sepharose (GE Healthcare Bio-science AB, Uppsala, Sweden). For coimmunoprecipitation, cell lysates containingμ
equal amounts of protein were precleared by incuation with protein G-Sepharose for one hour at 4 C. The beads were saturated with 5° %
BSA for 4 hours before use. The precleared protein lysates were incubated with the appropriate antibody for 2 hours at 4 C, and 50 l of° μ
protein G-Sepharose beads were then added and the incubation was continued overnight at 4 C. The beads were washed six times with the°
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lysis buffer B supplemented with 0.5  NP-40 and bound proteins were resolved by SDS-PAGE, in a 10  polyacrylamide gel, transferred% %
to nitrocellulose membranes and processed for immunoblotting. The controls for the immunoprecipitations included the use of non

immune rabbit IgG (Alpha Diagnostics Intl. Inc., San Antonio, USA) instead of primary antibody.

Generation of stable podocyte cell lines with inducible expressionc-mip 

Conditionally immortalized mouse podocytes have been described elsewhere ( ). Inducible podocyte cell lines were generated with41 

the T-Rex system (Invitrogen, Life Technologies). Before transfection, podocytes were maintained at 60  confluence, under permissive%
conditions: RPMI 1640 medium containing 10  FCS, 100 U/ml penicillin, 100 g/ml streptomycin, 50 U/ml -INF, at 33 C. Podocytes% μ γ °
were cotransfected with a expression plasmid (pcDNA4/TO) and a regulatory plasmid (pcDNA6/TR) encoding the Tet repressor. Inc-mip 

the absence of tetracycline, the Tet repressor binds to the promoter of the inducible expression plasmid, preventing transcription.c-mip 

Cotransfection was performed with 1 g c-mip-pcDNA4/TO and 6 g pcDNA6/TR, with the Amaxa system (Amaxa GmbH, K hn,μ μ ö
Germany). A plasmid encoding the LacZ gene was used as a control. After transfection, the cells were allowed to recover for 24 hours in

fresh RPMI medium, under permissive conditions. Dual selection was then performed by adding blasticidin (5 g/ml) and zeocin (125 μ μ
g/ml). Podocytes were cultured under these conditions for four weeks, for the isolation of stable cell lines expressing both the Tet repressor

and . Differentiation was induced by maintaining stable podocyte cell lines at 37 C without -interferon for 14 days in the presencec-mip ° γ
of blasticidin and zeocin. The expression of c-mip was induced on day 14, by adding tetracycline to the medium culture (1 g/ml) andμ
incubating for 48 hours. Podocytes were then lysed for protein extraction.

Generation of c-mip transgenic mice

Transgenic mice were obtained using a targeting system based on the reconstitution of a functional X-linked HPRT locus (absent from

the parental embryonic stem cells), by homologous recombination, such that only embryonic stem cells with the correct integration survive

HAT selection ( ). Three plasmids were used to construct the HPRT targeting vectors. The first, kindly provided by Chris R.J. Kennedy42 

(Ottawa Health Research Institute, Canada), comprises an 8.3 kb fragment of the murine promoter and the 5 -untranslated region of the′
nephrin gene ( ). The full-length coding sequence of the human was inserted into the XhoI site, downstream from the nephrin43 c-mip 

segment. A 13.275 kb fragment containing the transgene (nephrin segment and c-mip) was excised by digestion with NarI and PvuI. The

transgene was blunted by treatment with the Klenow fragment and ligated to the EcoRI-digested, blunted and dephosphorylated-pEntr1A

gateway vector, with the Quick ligase (New England Biolabs, France). The transgene was then subcloned, by homologous recombination,

into the pDest vector, upstream of the promoter and the exon 1 of the human HPRT gene. The recombinant clones were checked by

restriction analysis with BamHI, EcoRV and Hind II. The resulting plasmid was linearized with the AgeI restriction enzyme and

micro-injected into BPES (hybrid c57BL/6 and 129) embryonic stem cells. Homologous recombinants were selected on

HAT-supplemented medium containing 0.1 mM hypoxanthine, 0.0004 mM aminopterine, and 0.016 mM thymidine (Sigma Chemical,

France). HAT-resistant clones were confirmed by PCR and expanded by culture for ten days. Targeted BPES (hybrid C57BL/6/129) cells

were injected into wild-type blastocytes, enhancing the contribution of the embryonic stem lineage to chimera and ensuring 100  germ%
line transmission. Male chimeras with 100  brown coat color were crossed with wild-type (Wt) C57BL/6 females to obtain agouti%
offspring. Female agouti offspring were backcrossed with Wt C57BL/6 males to obtain hemizygous male mice. Successive backcrosses

were performed in order to obtain a homogeneous C57BL/6 genetic background (more than five generations). Mice were genotyped by

PCR analysis of tail genomic DNA. We used one pair of primers specific for the transgene (the 5  primer was located in the nephrin′
promoter, whereas the 3  primer was specific for c-mip) and another pair of murine primers that detects the wild-type HPRT allele in′
heterozygous females, but not the reconstituted HPRT allele (containing part of the human HPRT gene) in homozygous females. The sizes

of the and PCR products were 817 and 300 bp, respectively.c-mip HPRT 

All experiments involving animals were conducted in accordance with French laws.

Proteinuria, serum albumin and creatinine analysis

Individual mice were housed in metabolic cages (Techniplast, France). Urine was collected over a 24-hour period and this process was

repeated five times for each individual. Proteinuria (mg/ml) and serum albumin and creatinine concentrations (mg/ml) were measured with

the appropriate kits from Advia Chemistry 1650 (Bayer Healthcare AG, Leverkusen, Germany). The urine of neonates was analyzed with

urine dipsticks (Multistix; Bayer, Pittsburgh, Pa.). Urine samples (5 l) were analyzed by SDS-PAGE and the gels were stained withμ
Coomassie Brilliant Blue.

Light and electron microscopy studies

For light microscopy, kidney from wild-type and c-mip-transgenic mice were incubated for 16 hours in Dubosq-Brazil, dehydrated,

embedded in paraffin, cut into sections and stained with hematoxylin and eosin (H&E) or periodic acid-Schiff (PAS) reagent. We analyzed

30 to 50 glomeruli from each mouse.
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The kidney specimens used for electron microscopy were cut into small pieces, fixed by incubation with 2.5  glutaraldehyde in 0.1 M%
cacodylate buffer for one hour at pH 7.4, washed in the same buffer, post-fixed by incubation in 1  OsO for 45 min and placed in 0.5% 4 %

aqueous uranyl acetate for 1 hour at 4 C. Tissues were dehydrated in graded ethanol, infiltrated with a mixture of propylene oxide and°
Epon resin and embedded in Epon. Semi-thin sections were cut on an ultramicrotome (Leica, EM UC6) and stained with toluidine blue for

the selection of glomeruli. Ultrathin sections were cut and post-stained with uranyl acetate and lead citrate, then examined under a Philips

Tecnai 12 electron microscope. To identify targeting of endogenous c-mip in the podocyte, mice (n 3) were treated by intraperitoneal=
injection of LPS (200 g in a final volume of 200 l). Twenty-four hours later, mice were anesthetized and perfused through the leftμ μ
ventricule with 0.2  glutaraldehyde in 0.1 M cacodylate buffer. Kidney specimens were then processed as above.%

Measurement of foot processes, glomerular basement membrane and slit pores

Negatives of electron micrographs (magnification  6000) were scanned at a resolution of 600 dpi on an Epson Perfection 1200 Photo×
scanner (Epson Europe, Amsterdam). Measurements were made on the resulting photographs with Leica QWin Pro V2.4 software (Leica

Imaging Systems Ltd, Cambridge, UK). The system was calibrated using the marker bar on the electron micrographs. Five random open

capillary loops in each of five randomly selected glomeruli per specimen were chosen for measurements of the length and width of the

glomerular basement membrane with the image analysis software. We also manually counted the number of podocyte foot processes in

each loop and expressed the results as the number of foot processes per 10 m glomerular basement membrane length. A mean result for μ
25 capillary loops was obtained. For each specimen, the width of 100 individual slit pores was determined from the same set of digitized

electron micrographs. Slit pore width was determined by measuring the diameter of the narrowest region of the pore between two adjacent

foot processes. The width of podocyte foot processes was measured with the same marker bar on the negatives of electron micrographs.

Mann-Whitney tests were used for statistical analysis.

activity and stability assays of Stealth RNAi (siRNA)In vitro 

We selected three sequences from the open reading frame and that are conserved between humans, rats and mice for testing in vitro.

The siRNA sequences were G6 (forward strand: UCCUGCUAUGAAGAGUUCAUCAACA), G8 (forward strand:

CGGACCUUUCUCAGCAAGAUCCUCA), and G10 (forward strand: AAGAGUUCAUCAACAGCCGCGACAA). The siRNA were

synthesized by Invitrogen (Invitrogen, CA). The sense strand was inactivated by chemical modifications, preventing its loading into the

RISc complex, thereby reducing off-target effects. To avoid a microRNA effect (siRNA binding the 3 UTR region and affecting′
translation), the seed region was used in a Smith-Waterman alignment analysis against human, mouse, and rat coding regions (

).www.invitrogen.com/rnaidesigner 

We assessed the in vitro activity of the siRNA by cotransfecting HEK cells (6  10 cells/well) with the expression plasmid (150× 4 c-mip 

ng) and various concentrations of the siRNAs (2, 10 and 20 nM) using Lipofectamine 2000 (Invitrogen). Cells were lysed 24 hours after

transfection and total RNA was purified. We quantified c-mip RNA by Q-PCR using the following forward (5 ′
-CTGAACGAGCTCAACGCAGGCAT-3 ) and reverse (5 -GACAATGTGGCTTCCTGAGACACCA-3 ) primers. The expression of ′ ′ ′

was inhibited by 60  by the siRNA G6  and by 85  for G8  and G10 . We selected siRNA G8  for experiments. Thec-mip % “ ” % “ ” “ ” “ ” in vivo 

stability of siRNA and its delivery to podocytes were confirmed with an siRNA targeting cyclophilin B coupled to Alexa Fluor 647 (a gift

from Dr Xavier De Mollerat, Invitrogen, CA).

siRNA treatment

Six to eight-week-old male BALB/c mice weighing 20 22 g were purchased from the Charles River Laboratory (France). Labeled–
(Alexa Fluor 647)-Stealth siRNA (10 mg/kg) was mixed with Invivofectamine (ratio: 1/1, w/v), according to the manufacturer sc-mip ’
instructions (Invitrogen, CA) and the Invivofectamine-c-mip siRNA complex (100 l final volume) was injected into the internal jugularμ
vein of mice (n 10). LPS (200 g in a final volume of 200 l) was injected intraperitoneally into the mice 30 min after the siRNA= μ μ
injection. Control mice were injected with an equal amount of either LPS (n 5) or Invivofectamine alone (n 5). Mice were kept in= =
metabolic cages and urine was collected over a 24-hour period. The mice were then killed and their kidneys were collected and processed

for immunohistochemical analysis. The efficiency of siRNA delivery was determined by immunofluorescence analysis on kidney

cryosections fixed in formalin. The presence and distribution of c-mip were analyzed by immunohistochemistry.

To determine whether podocyte induction of c-mip by LPS required T-cell or B-cell activation, SCID mice, which are deficient in T

and B cells, were injected with LPS under similar conditions. We then analyzed the presence of c-mip by immunohistochemistry.

Statistics

The data presented are means  SEM and were prepared with GraphPad Prism software, version 4.0. Mann-Whitney and±
Kruskal-Wallis tests were used to evaluate the significance of differences. Values of P < 0.05 were considered significant.
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Fig. 1
The abundance of c-mip increases in the glomeruli of patients with MCNS. Representative immunohistochemical analysis of serial(A) 

sections from normal human kidney (NHK) and kidney biopsy specimens from patients with MCNS relapse. Scale bars, 20 M Confocalμ (B) 

microscopy analysis of nephrin (red) and c-mip (green) expression in normal human kidney tissues (upper panel) and MCNS biopsies (lower

panel). The basal amount of c-mip was below the limit of detection, whereas c-mip was visualized along the peripheral capillary loops in

patients with MCNS. The c-mip and nephrin were colocalized in the glomerulus. Scale bars, 10 M.μ

Fig. 2
Stable overexpression of in podocytes induces phenotypic alterations. Confocal microscopy analysis of phalloidin staining. c-mip (A) c-mip –
overexpressing podocytes display a loss of stress fibers, whereas the actin network is well preserved in non-induced stable transfectants.c-mip 

Scale bars, 10 M. Western blot of protein lysates from non-induced ( ) and induced ( ) stable transfectants. The induction ofμ (B) − + c-mip 

c-mip inhibits the phosphorylation of nephrin and triggers the inactivation of Fyn and Akt. Data from two independent experiments are

shown.
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Fig. 3
c-mip transgenic mice develop nephrotic proteinuria without inflammatory lesions or cell infiltrations. Proteinuria was assessed by the(A) 

proteinuria/creatinine ratio (Upr/Ucr). Upr/Ucr was 3.5  0.75 in eight-week-old female heterozygotes (Tg / , n 26 mice), 61  12.5 in male± + − = ±
hemizygote Tg( ) transgenic mice (n 34 mice) and 2.6  0.5 wild-type (WT) mice (n 12 mice). Urine samples (5 l) and BSA (15 g)+ = ± = (B) μ μ
were resolved by SDS-PAGE and gels stained with Coomassie Blue. Kidney sections from eight-week-old c-mip transgenic mice were(C) 

examined. Tg( ) mice display podocyte flattening and the effacement of foot processes. The effacement of foot processes is associated with+
the disappearance of slit diaphragms, which are replaced by occluding junctions (arrow). Scale bars, Tg( ): upper and middle micrographs,+
0.5 M; lower micrograph, 0.1 M. The foot processes are evenly spaced in wild-type mice. Scale bars, upper micrograph, 1 M; lowerμ μ (D); μ
microgaph, 0.1 M. Morphometric analysis of foot process effacement indicating that the width of the podocyte sole in Tg( ) mice isμ (E) +
twice that in the wild-type. N 3 mice per genotype were analyzed. Data are means  SEM. Mann-Whitney test,  P <0.05.= ± *

Fig. 4
Podocytes of c-mip transgenic mice have an abnormal phenotype. Immunoprecipitation of nephrin from two different Tg( ) glomerular(A) +
lysates, followed by Western blotting for phosphorylated nephrin and total nephrin. The amount of phosphorylated nephrin is reduced (right

panel). Data from two independent experiments are shown. Western-blot analysis of glomerular protein lysates from 10-week-old(B) 

wild-type mice and Tg( ) mice. Fyn is mostly present in the inactive form, whereas the amount of pSer -Akt is reduced. Data from two+ 473 

independent experiments are shown. Lower abundance of phosphorylated Akt (pSer -Akt) in the glomeruli (G) of patients with MCNS(C) 473 

disease and in Tg( ) mice than in normal human kidney (NHK) and wild-type mice, respectively. Scale bars, 10 M.+ μ
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Fig. 5
Interactions between nephrin, Nck and N-WASP are altered in c-mip Tg( ) mice. Immunoprecipitation (IP) of Fyn, N-WASP, and Nck from+
glomerular lysates of wild-type and Tg( ) mice. c-mip coimmunoprecipitates with Fyn in Tg( ) glomerular lysates. The amount of+ (A) + (B) 

nephrin present in Fyn complexes is lower in glomerular lysates from Tg( ) mice than in those from wild-type mice. The interactions of+ (C) 

N-WASP with Fyn is decreased in Tg( ) mice compared to wild-type mice. Immunoprecipitation of Nck from wild-type and Tg( )+ (D) +
glomerular lysates, followed by Western blotting with an anti-nephrin antibody. The interactions of Nck with nephrin are decreased in Tg( )+
mice compared to wild-type mice. Immunoprecipitation of nephrin from three different Tg( ) glomerular lysates, followed by Western(E) +
blotting with anti-Nck antibody. The interaction of nephrin with Nck is reduced in Tg( ) mice compared to wild-type mice. Reprobing with an+
antibody against nephrin showed that equal amounts of nephrin were immunoprecipitated.

Fig. 6
Knockdown of c-mip prevents the development of nephrotic proteinuria. Detection of c-mip in LPS-treated Balb/c mice.(A) 

Immunohistochemistry analysis showing a greater abundance of c-mip in podocytes (upper panel). Scale bars, 20 M. Immunoprecipitation ofμ
glomerular extracts from LPS treated mice with anti-Fyn or mouse IgG (lower panel). Increased abundance of c-mip in the podocytes of(B) 

LPS-treated SCID mice than in those of untreated SCID mice. Scale bars, 20 M. Effects of c-mip siRNA injection in LPS-treated Balb/cμ (C) 

mice. Balb/c mice (n 10 mice) received a single injection of c-mip siRNA (10 mg/kg) coupled to Alexa Fluor 647 into the internal jugular=
vein, and after 30 min, were injected intraperitoneally with LPS (200 g). Controls include mice injected with LPS (n 5 mice) orμ =
Invivofectamine (n 5 mice) and non-injected mice (NI, n 5 mice). Urine was collected over a 24-hour period and the kidneys were harvested= =
and processed for immunohistochemistry. Alexa Fluor 647 staining of kidney sections demonstrated that c-mip-siRNA duplexes were

delivered to podocytes (upper panel). Scale bars, 10 M. Immunohistochemistry analysis showed that mice treated with LPS and c-mipμ
siRNA contained less c-mip than mice treated with LPS only (middle panel). Scale bars, 10 M. RT-qPCR analysis of expression inμ c-mip 

mouse kidney (lower panel, left). mRNA abundance is expressed with respect to glyceraldehyde-3-phosphate deshydrogenase (GAPDH).

Data are means  SEM (p<0.05, Kruskal-Wallis test). Proteinuria was significantly lower in c-mip siRNA-treated mice than in mice treated±
with LPS alone (p 0.0017, Kruskal-Wallis test) (lower panel, left).=
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Figure 7
c-mip siRNA prevents the inactivation of nephrin and Akt

Confocal microscopy analysis of phosphorylated nephrin (green) and total nephrin (red) in kidney sections. The relative abundances of(A) 

nephrin and phosphorylated nephrin were assessed by quantifying the specific glomerular fluorescence intensity (lining the capillary loops) in

three-dimensional stacks of images taken by confocal microscopy and normalized with respect to total glomerular area. Twenty glomeruli

were analyzed for each set of conditions. The data presented are means  SEM. The amount of phosphorylated nephrin was lower in±
LPS-treated mice than in siRNA-treated mice. The decrease in nephrin abundance is less marked in these mice. Scale bars, 10 M. μ (B) 

Confocal microscopy analysis of phosphorylated Akt (pSer -Akt) in kidney sections from mice treated with LPS alone or with LPS and473 

siRNA. Scale bars, 10 M. Data are means  SEM. The amount of pSer -Akt is significantly lower in LPS-treated mice (n 3 mice), than inμ ± 473 =
LPS- and siRNA-treated mice (n 3 mice) (20 glomeruli were analyzed per mouse, p< 0.05, Kruskal-Wallis test).=


