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Summary: HIV dynamics studies, based on di�erential equations, have signi�cantly improved the

knowledge on HIV infection. While �rst studies used simpli�ed short-term dynamic models, recent

works considered more complex long-term models combined with a global analysis of whole patients

data based on nonlinear mixed models, increasing the accuracy of the HIV dynamic analysis. However

statistical issues remain, given the complexity of the problem. We proposed to use the SAEM

(Stochastic Approximation EM) algorithm, a powerful maximum likelihood estimation algorithm,

to analyze simultaneously the HIV viral load decrease and the CD4 increase in patients using a long-

term HIV dynamic system. We applied the proposed methodology to the prospective COPHAR2 -

ANRS 111 trial. Very satisfactory results were obtained with a model with latent CD4 cells de�ned

with �ve di�erential equations. One parameter was �xed, the ten remaining parameters (eight with

between patient variability) of this model were well estimated. We showed that the e�cacy of

nel�navir was reduced compared to indinavir and lopinavir.
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1. Introduction

Understanding variability in response to antiretroviral treatment in HIV patients is an

important challenge. HIV dynamic models describe the viral load decrease and the CD4 cells

increase under treatment by modeling the interaction between several types of CD4 cells and

virions (Perelson et al., 1996; Perelson and Nelson, 1997; Wu and Ding, 1999; Nowak and

May, 2000; Rong and Perelson, 2009). They are de�ned as nonlinear di�erential systems

and have generally no closed-form solutions. As available data are measurements of total

number of the CD4 and the total number of virions, these di�erential systems are partially

observed, complicating the parameter estimation. Nonlinear mixed e�ect models (NLMEMs)

are appropriate to estimate model parameters and their inter-patient variability. The �rst

modeling of viral load dynamic, using standard nonlinear regression or mixed models, con-

sidered a short time period and assumed non-infected CD4 cells to be constant (Perelson

et al., 1996; Wu et al., 1998; Ding and Wu, 2001). Another simpli�ed approach assumed

inhibition of any new infection by initiated therapy. Under that unrealistic assumption, the

system can be solved explicitly (Wu et al., 1998; Putter et al., 2002). Putter et al. (2002)

proposed the �rst simultaneous estimation of the viral load and CD4 dynamics based on

a di�erential system under this assumption, but had to focus only on the �rst two weeks

of the dynamic after initiation of an anti-retroviral treatment. These two assumptions are

unsatisfactory when studying long-term response to anti-retroviral treatment for which the

use of complete models expressed as ordinary di�erential equations (ODEs) is mandatory.

Estimation of NLMEMs is complex because the likelihood has no closed form, even for

simple models. Bayesian estimation methods based on Markov Chain Monte Carlo (MCMC)

algorithms and informative priors have �rst been proposed for complex ODE HIV models and

NLMEMs (Putter et al., 2002; Wu et al., 2005; Huang et al., 2006). The choice of informative

prior distributions can be and issue. Furthermore, Bayesian algorithms can be very slow to
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converge, especially in this complex context. Wu et al. (2005) adjusted only viral load with a

dynamic system describing the long-term HIV dynamics and considering drug potency, drug

exposure/adherence and drug resistance during chronic treatment. However, the authors

used a simpli�ed model which does not consider separately the compartments of HIV-

producing infected cells and the latent cells and does not decompose the virus compartment

into infectious and non-infectious virions.

For maximum likelihood estimation in NLMEMs, likelihood approximations such as lin-

earization (Pinheiro and Bates, 1995) or Laplace approximation (Wol�nger, 1993) have

been proposed, leading to inconsistent estimates (Ding and Wu, 2001). Guedj et al. (2007a)

proposed algorithms based on Gaussian quadrature but these algorithms are cumbersome

and were not applied to problems with more than three random e�ects. Wu and Zhang (2002)

proposed a semi-parametric approach. Other new algorithms are stochastic EM algorithms

as Monte Carlo EM (Wu, 2004). Among them, the Stochastic Approximation EM algorithm

(SAEM) has convergence results (Delyon et al., 1999; Kuhn and Lavielle, 2005), even for

ODE models (Donnet and Samson, 2007). It is implemented in the MONOLIX software

and has been mainly applied for the analysis of pharmacokinetics models (Lavielle and

Mentré, 2007). Another complexity of viral load analysis is left censoring which occurs

when viral load are below a limit of quanti�cation (LOQ). The proportion of subjects with

viral load below LOQ has increased with the development of highly active anti-retroviral

treatment. Although it is known that when ignored, this censoring may induce biased

parameter estimates (Samson et al., 2006; Thiébaut et al., 2006), several authors did not

take into account this problem (Ding and Wu, 2001; Wu et al., 2005). Conversely, Hughes

(1999); Fitzgerald et al. (2002); Thiebaut et al. (2005); Guedj et al. (2007a) proposed di�erent

approaches to handle accurately the censored viral load data. Samson et al. (2006) extended

the SAEM algorithm to perform maximum likelihood estimation for left-censored data.
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The �rst objective of this work was to estimate parameter of HIV dynamic models with

the convergent SAEM algorithm. A second objective was to propose and apply statistical

approaches for studying model selection in this context. We applied this approach to data

obtained in patients of the clinical trial COPHAR2 - ANRS 111 (Duval et al., 2009) initiating

an antiviral therapy with two nucleoside analogs (RTI) and one protease inhibitor (PI).

We analyzed simultaneously the HIV viral load decrease and the CD4 increase based on a

long-term HIV dynamic system. We considered three dynamic models and compare them

with respect to their ability to represent HIV-infected patients after initiation of reverse

transcriptase inverse (RTI) and protease inhibitor (PI) drugs therapy.

This article is organized as follows. Section 2 presents three mathematical models for long-

term HIV dynamics. In Section 3, we discuss nonlinear mixed e�ects models and estimation

with the SAEM algorithm, model selection, model identi�ability and covariate testing.

We, then, provide the results obtained in the COPHAR II-ANRS 134 clinical trial using

MONOLIX in Section 4. Section 5 concludes this article with some discussion.

2. Mathematical models for HIV dynamics after treatment initiation

Three nonlinear ordinary di�erential systems modeling the interaction of HIV virus with

the immune system after initiation of antiviral treatment containing reverse transcriptase

inhibitor (RTI) and protease inhibitor (PI) are presented.

2.1 The basic dynamic model

Let TNI , TI and VI denote the concentration of target noninfected CD4 cells, productively

infected CD4 cells and infectious viruses, respectively. Following Perelson and Nelson (1997);

Perelson (2002), it is assumed that CD4 cells are generated through the hematopoietic

di�erentiation process at a constant rate λ. The target cells are infected by the virus at

a rate γ per susceptible cell and virion. Noninfected CD4 cells die at a rate µNI whereas
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infected ones at a rate µI . Infected CD4 cells produce virus at a rate p per infected cell. The

virus are cleared at a rate µV . Two additional parameters ηRTI and ηPI are introduced to

model the e�ect of antiviral therapy containing RTI and PI. RTI prevents susceptible cells

from becoming infected through inhibition of the transcription of the viral RNA into double-

stranded DNA. ηRTI denotes the proportion of susceptible cells prevented to be infected and

is valued between 0 and 1. A value of ηRTI = 1 corresponds to a completely e�ective drug. PI

leads to the production of noninfectious viruses VNI which is modeled trough an additional

equation. VNI are produced at a rate ηPIp where ηPI is a proportion between 0 and 1 and

where ηPI = 1 corresponds to a completely e�ective drug. It is assumed that infectious and

non infectious viruses die at the same rate µV . Under combined PI and RTI action, the

system is written:

dTNI
dt

= λ− (1− ηRTI)γ TNIVI − µNITNI (1)

dTI
dt

= (1− ηRTI)γ TNIVI − µITI
dVI
dt

= (1− ηPI)p TI − µV VI
dVNI
dt

= ηPI p TI − µV VNI

It is assumed that before the treatment initiation, the system has reached an equilibrium

state (the steady state values are given in the Web Appendix A). The measured viral load is

the total viral load V = VI +VNI and the measured CD4 cell count is the total T = TNI +TI .

This basic model is calledMB. Its parameters and their de�nitions are summarized in Table

1.

2.2 The quiescent dynamic model

De Boer and Perelson (1998); Guedj et al. (2007a) proposed a more elaborated model which

distinguishes quiescent CD4 cells, TQ, target (activated) noninfected cells, TNI , and infected

T cells, TI . Only activated CD4 cells become infected with HIV, and quiescent cells are
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assumed to be resistant to infection. Quiescent CD4 cells TQ are generated through the

hematopoietic di�erentiation process at a constant rate λ. As the CD4 cell compartment

is largely maintained by self-renewal, the dynamic model allows the quiescent CD4 cells to

become activated at a low constant rate αQ. Quiescent CD4 cells are assumed to die at a rate

µQ, and to appear by the deactivation of activated noninfected CD4 cells at a rate ρ. The

system of di�erential equations describing this model after treatment initiation is written as:

dTQ
dt

= λ+ ρ TNI − αQTQ − µQTQ
dTNI
dt

= αQTQ − (1− ηRTI)γ TNIVI − ρTNI − µNITNI
dTI
dt

= (1− ηRTI)γ TNIVI − µITI (2)

dVI
dt

= (1− ηPI)p TI − µV VI
dVNI
dt

= ηPI p TI − µV VNI .

As proposed by Perelson et al. (1996), it is assumed that newly produced viruses are fully

infectious before the introduction of a PI treatment and that before the treatment initiation,

the system has reached an equilibrium state (see the Web Appendix A). The measured viral

load is the total viral load V = VI + VNI and the measured CD4 cell count is the total

T = TQ + TNI + TI . This quiescent model is calledMQ. Its parameters and their de�nitions

are summarized in Table 1.

2.3 The latent dynamic model

Funk et al. 2001 considered that not all CD4 cells actively produce virus upon successful

infection. Infected cell pool is split into actively and latently infected cells. Uninfected CD4

cells are infected by the virus, as previously, at a rate (1− ηRTI)γVI . But only a proportion

π of this infected cells are activated CD4 cells, TA, and a proportion (1 − π) are latently

infected CD4 cells, TL. Latently infected CD4 cells die at a rate µL and become activated

at a rate αL. Actively infected cells TA die at a rate µA and only these cells produce virus
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particles. The di�erential system describing this model after treatment initiation is written:

dTNI
dt

= λ− (1− ηRTI)γ TNIVI − µNITNI (3)

dTL
dt

= (1− π)(1− ηRTI)γ TNIVI − αLTL − µLTL
dTA
dt

= π(1− ηRTI)γ TNIVI + αLTL − µATA
dVI

dt
= (1− ηPI)p TA − µV VI (4)

dVNI

dt
= ηPI p TA − µV VNI .

As previously, it is assumed that before treatment initiation, the system has reached an

equilibrium state (see the Web Appendix A). The measured viral load is the total viral load

V = VI + VNI and the measured CD4 cell count is the total T = TNI + TL + TA. This latent

model is calledML. Its parameters and their de�nitions are summarized in Table 1.

[Table 1 about here.]

3. Statistical Methods

3.1 The nonlinear mixed e�ects model

Let N be the number of patients. For patient i, we measure ni viral loads at times (tij), j =

1, . . . , ni andmi CD4 cells at times (τij), j = 1, . . . ,mi. Let us de�ne vi = (vi1, . . . , vi ni) where

vij is the observed log10 HIV viral load (cp/mL) for individual i at time tij, i = 1, . . . , N ,

j = 1, . . . , ni, and zi = (zi1, . . . , zimi) where zij is the the CD4 cell count (cells/mm3) for

individual i at time τij, i = 1, . . . , N , j = 1, . . . ,mi. The observed log10 viral load and the

CD4 cell count of all patients are analyzed simultaneously using a nonlinear mixed e�ects

model, where V and T are the total number of virus (cp/mm3) and CD4 cells (cells/mm3):

vij = log10(1000 V (tij;ψi)) + eV,ij, eV,i ∼ N (0, σ2
V Ini) (5)

zij = T (τij;ψi) + T (τij;ψi) eT,ij, eT,i ∼ N (0, σ2
T Imi)

ψi = h(φi), φi ∼ N (µ,Ω).
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Note that V is expressed in cp/mm3 and the observed v in log10-cp/mL, hence the 1000

in equation (5). Here (eV,ij) and (eT,ij) represent the residual errors. We assume a constant

error model for the log viral load and a proportional error model for the CD4 concentration.

Several error models will be tested for the CD4 count. Di�erent parametric models for V

and T were previously proposed. These models are functions of individual parameters ψi,

which are assumed to be independent of the residual errors (eV,i, eT,i). The parameters ψi

are assumed to be some transformation h(φi) of a Gaussian random vector φi with mean µ

(the vector of �xed e�ects) and variance-covariance Ω (the covariance matrix of the random

e�ects). As inhibition parameters ηRTI and ηPI take their values in [0, 1], they are de�ned as

the logistic transformation of a Gaussian random variable. For modelMQ, π is de�ned as the

logistic transformation of a Gaussian random variable. Others parameters are non-negative

parameters and de�ned as the exponential transformation of Gaussian random variables.

The observation model is complicated by the detection limit of assays. When viral load

data vij is below the limit of quanti�cation LOQ, the exact value vij is unknown and the

only available information is vij 6 LOQ. These data are classically named left-censored

data. Let denote Iobs = {(i, j)|vij > LOQ} and Icens = {(i, j)|vij 6 LOQ} the index sets of

respectively the uncensored and censored observations. Finally, we observe

vobsij =

 vij if (i, j) ∈ Iobs

LOQ if (i, j) ∈ Icens.

3.2 Parameters estimation

Let θ = (µ,Ω, σ2
T , σ

2
V ) be the set of unknown population parameters. Maximum likelihood

estimation of θ is based on the likelihood function of the observations (vobs, z):

l(vobs, z ; θ) =
N∏
i=1

∫ ∫
p(vobs

i , vcens
i , zi, φi; θ) dφi dv

cens
i (6)

where p(vobsi , vcens
i , zi, φi; θ) is the likelihood of the complete data (vobsi , vcensi , zi, φi) of the i-th

subject. As the random e�ects φi and the censored observations vcens
i are unobservable and
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as the regression functions are nonlinear, the foregoing integral has no closed form. Therefore

the maximum likelihood estimate is not available in a closed form.

We propose to use the Stochastic Approximation Estimation Maximisation (SAEM) algo-

rithm, a stochastic version developed by Delyon et al. (1999) of the Expectation-Maximization

algorithm introduced by Dempster et al. (1977). This algorithm computes the E-step of

the EM algorithm through a stochastic approximation scheme. It requires a simulation of

one realization of the non observed data in the posterior distribution at each iteration,

avoiding the computational di�culty of independent samples simulation of the Monte-Carlo

EM and shortening the time consumption. SAEM algorithm is a stochastic algorithm, for

which almost-sure convergence toward the maximum likelihood estimation is ensured under

general conditions (Delyon et al., 1999). As the simulation of the non observed data in the

posterior distribution is not direct for NLMEMs, Kuhn and Lavielle (2005) proposed to

combine the SAEM algorithm with a MCMC method to realize this simulation step. Donnet

and Samson (2007) proposed a version of the SAEM algorithm adapted to mixed models

de�ned by di�erential equations. The SAEM algorithm also enables to take into account the

left-censored viral load data accurately with convergent estimator (Samson et al., 2006). The

combination of the two extensions of SAEM for di�erential equations and for left-censored

data handling is used in the following analyzes.

3.3 Model selection

Model selection aims at identifying a model that best �ts the available data with the smallest

possible dimension. The two most popular model selection criteria are the Akaike Information

Criterion (AIC) and the Bayesian Information Criterion (BIC). Following the simulation

results of Bertrand et al. (2008), the best model is de�ned here as the model with the lowest

BIC. Let PM be the number of parameters in the model M, lM the likelihood function of

the observations (vobs, z) and θ̂M the maximum likelihood estimate of θ in model M. The
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BIC penalizes the minimized deviance by log(N) times the number of free parameters.

BIC(M) = −2 log lM(vobs, z; θ̂M) + log(N)PM.

Using BIC requires to compute the log-likelihood of modelM. Following (5), for any model

M, the likelihood l of the observations (vobs, z) can be decomposed as follows (we omit the

subscriptM to simplify the notation):

l(vobs, z; θ) =

∫
p(vobs, z, φ; θ) dφ =

∫
h(vobs, z|φ; θ)

π(φ; θ)

π̃(φ; θ)
π̃(φ; θ) dφ (7)

where π is the probability distribution density of φ and π̃ any absolutely continuous distribu-

tion with respect to π. Then, l(vobs, z; θ) can be approximated via an Importance Sampling

integration method:

(1) draw φ(1), φ(2), . . . , φ(K) with the distribution π̃(·; θ),

(2) let l̂K(vobs, z; θ) = 1
K

∑K
k=1 h(vobs, z|φ(k); θ)π(φ(k);θ)

π̃(φ(k);θ)

l̂K(vobs, z; θ) is a consistant estimator of the observed likelihood: E(̂lK(vobs, z; θ)) = l(vobs, z; θ)

and Var(̂lK(vobs, z; θ)) = O(K−1). Furthermore, if π̃ is the conditional distribution p(φ|vobs, z; θ),

the variance of the estimator is null and l̂K(vobs, z; θ) = l(vobs, z; θ) for any value of K. That

means that an accurate estimation of l(vobs, z; θ) can be obtained with a small value of K if

the sampling distribution is close to the conditional distribution p(φ|vobs, z; θ).

We recommend the following procedure: for i = 1, 2, . . . , N , one estimates empirically the

conditional mean E(φi|vobs
i , zi; θ̂) and the conditional variance-covariance matrix Var(φi|vobs

i , zi; θ̂)

of φi as described above. Then, the φ
(k)
i are drawn with the sampling distribution π̃ as follows:

φ
(k)
i = E(φi|vobs, z; θ̂) + Var

1
2 (φi|vobs, z; θ̂)× T (k)

i

where (T
(k)
i ) is a sequence of i.i.d. random vectors and where the components of T (k)

i are

independent variables distributed with a t−distribution with ν degrees of freedom. The

numerical results presented here were obtained with ν = 5 d.f.

Note that recently, several authors proposed conditional Information Criteria for linear
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mixed models, see Liang et al. (2008) for example. The use of such criteria seems promising

but extension to non linear mixed model is not straightforward.

3.4 Model identi�ability

If the ODE model is not identi�able, any estimation method may produce unreliable and

misleading results. Then, identi�ability of the model parameters has to be checked before

applying the HIV dynamic model to the data. Usually, many of the model components may

not be measurable and several parameters may not be identi�able. We need a trade-o�

between model complexity and parameter identi�ability based on clinical data. If a model

has too many components, it may be di�cult to analyze. If a model is too simple, some

important clinical factors cannot be incorporated, although the viral dynamic parameter can

be identi�ed and estimated. Various works on system identi�cation of nonlinear HIV models

can be found for example in Perelson and Nelson (1997); Xia and Moog (2003); Je�rey and

Xia (2005); Guedj et al. (2007b); Wu et al. (2008). Xia and Moog (2003) proposed a HIV

dynamic model de�ned with a system of 4 ODEs and checked the algebraical identi�ability.

Assuming that the non infected cells are observed, their system allows to derive some

su�cient conditions which ensure the algebraic identi�ability of the model. Unfortunately, the

di�erent models that we consider do not allow to separate the problem into two independent

problems as proposed by Xia and Moog (2003) or by Wu et al. (2008) and the identi�ability

of the complete set of the parameters must be discussed on the whole. This problem has

no closed form algebraic conditions. As an alternative, we propose to examine the algebraic

identi�ability problem by performing some sensitivity analysis.

Nevertheless, even if algebraic identi�ability is useful, it is not completely appropriate

for a population approach where the distribution of the individual parameters is also part

of the (statistical) model. In other word, if a parameter is not algebraically identi�able,

it can be statistically identi�able (an example is given in the Web Appendix A) and the
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reverse is also true: some parameters can be di�cult to estimate with a very poor design,

even if the model is algebraically identi�able. Then, practical identi�ability should also

be considered (see Guedj et al. (2007b) for example). As a practical diagnostic tool, we

propose to use the Fisher Information Matrix for detecting some over-parametrization in

the model. From our experience, very large standard errors (or NaN) indicate some issues

in the parametrization, but the reverse is not necessarily true . . .We recommend to perform

several runs with slightly di�erent initial guesses. Then, convergence to di�erent solutions

can indicate a lack of identi�ability, rather than the presence of several isolated local maxima

of the likelihood.

3.5 Covariate testing

Another statistical issue in NLMEMs is the utilization of covariates to explain part of inter-

individual parameter variability. Comparing models with and without covariates can be

performed through model selection with the BIC criterion. For nested models, the likelihood

ratio test can be applied by computing the log-likelihoods of the nested models. The Wald

test can be used based on the covariates estimated e�ects and their standard errors.

3.6 The MONOLIX software

Monolix is a free software (http://software.monolix.org), which implements a wide variety

of stochastic algorithms such as SAEM, Importance Sampling, MCMC, and Simulated

Annealing, all dedicated to the analysis of NLMEMs. The objectives are: a) parameter

estimation by computing the maximum likelihood estimator of the parameters without any

approximation of the model and standard error for the maximum likelihood estimator; b)

model selection by comparing several models using some information criteria (AIC, BIC),

testing hypotheses using the Likelihood Ratio Test, testing parameters using the Wald Test

and c) Goodness of �t. Monolix version 2.4 was used in this work. We used the code BiM
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(release 2.0, April 2005) which implements a variable stepsize method for sti� initial value

problems for ODEs.

4. Application to the COPHAR II - ANRS 134 trial

4.1 Material and Methods

In the COPHAR II- ANRS 134 trial, an open prospective non-randomized interventional

study, 115 HIV-infected patients adults started an antiviral therapy with at least 2 RTIs

and one of three di�erent PIs. 48 patients were treated with indinavir (and ritonavir as a

booster)(I), 38 with lopinavir (and ritonavir as a booster) (L) and 35 with nel�navir (N).

Patients were followed one year after treatment initiation. Viral load and CD4 cell count were

measured at screening, at inclusion and at weeks 2(or 4), 8, 16, 24, 36 and 48. Plasma HIV-

1-RNA were measured by Roche monitored with a limit of quanti�cation of 50 copies/ml.

The results of this trial are reported in Duval et al. (2009). The proportion of virological

failure was higher in the nel�navir group and similar for indinavir and lopinavir, although

lopinavir is supposed to be a more potent PI now widely used. Observed viral load and CD4

cell count are displayed in Figure 1 which clearly shows a large inter-subject variability.

[Figure 1 about here.]

The modelsMB,MQandMLwere compared using the BIC criterion. The identi�ability

of the selected model was studied, the e�ect of the PI group is tested by adding a covariate

on ηPI:

logit(ηPI,i) = µ+ βTRTi + bi (8)

where TRTi is the PI administrated to patient i (L, I or N). The reference group is the

lopinavir group (βL = 0). BIC and Wald test were used to study the di�erences in the 3 PI

groups: no PI e�ect (LIN), only two groups: L vs. IN (L-IN) or LI vs N (LI-N), three groups

L-I-N.
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4.2 Results

We compared the three dynamic models. For each model, the complete set of �xed e�ects

(Table 1) were estimated. Furthermore, variability on all the parameters was assumed without

any correlation between the random e�ects. The population parameters were estimated with

the SAEM algorithm and the log-likelihoods were estimated by Monte Carlo Importance

Sampling. The BIC computed for the three models . The latent model MLwas selected

as the best model among the three candidate models: BIC(ML)=8758, BIC(MQ)=9077,

BIC(MB)=9134. Furthermore, the �ts for both the viral load and the CD4 counts were

better with model ML(σV = 0.46 and σT = 0.25) than with model ML(σV = 0.62 and

σT = 0.27) or modelMB(σV = 0.67 and σT = 0.27).

We then studied the identi�ability ofML. First we studied the mathematical identi�ability

by performing a sensitivity analysis on a single simulated individual that showed that

individual �tting does not allow to estimate simultaneously three sets of parameters: (p, µV ),

(γ, π, p, µA) and (ηPI , ηRTI) (see Web Appendix B for more details).

The sensitivity analysis showed that only the ratio p/µV can be estimated. The problem

of estimating both p and µV was also found in the Fisher Information Matrix obtained after

running the SAEM algorithm with very high estimated standard errors (236% and 240%

respectively). Therefore, we assumed that µV did not vary and was �xed to the value 30/day

(Ramratnam et al., 1999; Guedj et al., 2007a). Fixing µV to any other value around 30/day

didn't change the estimation of the other parameters, except p. We also found that both

γ and µL could be correctly estimated (their s.e. were estimated to 43% and 11%) but not

their inter-patient variability. We therefore decided to estimate these two parameters, but

considering that they do not vary in the population. For the third set, the sensitivity analysis

clearly showed that, using the data from only one patient, only the product (1−ηPI)(1−ηRTI)

can be estimated. Then, we tried to �x ηPI or ηRTI but the results were clearly deteriorated.
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That means that the probability distribution of (1 − ηPI)(1 − ηRTI) cannot be described

assuming that only one of these two parameters is a random variable. Thus, we assumed

that both ηPI and ηRTI vary in the population because both are statistically identi�able (see

discussion on that in Web supplement).

Table 3 reports BIC and estimated β's for the di�erent merging of the PI group (BIC

and LL are di�erent from Table 2 because parameter µV was �xed in Table 3). Adding a

covariate treatment to explain the variability of ηPI did not modify the identi�ability of

the model. Di�erent starting values always gave similar results for the β's. The smallest

BIC was for LI-N implying a di�erent e�ect of nel�navir versus lopinavir and indinavir that

were grouped. The estimated parameters of that model are reported in Table 4. The e�cacy

of PI ηPI was 0.99 for lopinavir-indinavir and 0.75 for nel�navir, i.e. nel�navir e�cacy for

blocking infectious viruses was 25% less important than for lopinavir and indinavir, which are

boosted PI. The LRT for the nel�navir e�ect was very signi�cant (p = 10−12 for comparison

of models LIN and LI-N), no signi�cant improvement was found when separating L and I

(comparison of models LI-N vs L-I-N: p = 0.32 ). The Wald tests also agreed that only βN

was signi�catively di�erent from zero.

[Table 2 about here.]

[Table 3 about here.]

This model provided good �ts of both viral load and CD4 cells as can be seen on the visual

predictive check (Figure 2) and on some individual �ts for patients in each treatment group

(Figure 3).

[Figure 2 about here.]

[Figure 3 about here.]

We also tested several error models for the CD4 count. Thiebaut et al. (2005) assumed a
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constant error model for the CD4 count at the power 0.25 (z1/4 = T 1/4 + ε). For this error

model as well as for the constant error model, the log-likelihood was lower (−2×LL = 8680)

and the proportional error model was preferred (−2× LL = 8635) for the �nal model.

Convergence of SAEM takes about 20mn on a Dual Core laptop. The total time for estimat-

ing the population parameters with SAEM, the Fisher Information Matrix, the individual

parameters and the log-likelihood is about 1 hour.

5. Discussion

This article proposed the SAEM algorithm to estimate parameters of nonlinear mixed model

based on partially observed complex HIV di�erential systems. The estimation of the param-

eters of such a mixed model is a di�cult statistical and computational challenge. The HIV

di�erential systems de�ning these mixed models are non linear, consequently without any

analytical solution. Furthermore, the ODE system is generally sti�, the classic ODE solver

such as Runge-Kutta not being adapted to solve numerically the system. We used the code

BiM (release 2.0, April 2005) which implements a variable order-variable stepsize method

for (sti�) initial value problems for ODEs. The analysis of such data is also complicated

by the left-censoring of the viral load data due to the lower limit of experimental devices

detection, and it is well known that omitting to correctly handle this censored data provides

biased estimates of dynamic parameters. The SAEM algorithm has theoretical convergence

properties and is computationally e�cient on these dynamic models.

In this article, we applied it to a clinical trial in HIV infection, using all the data (both

viral load and CD4 measurements) obtained during 48 weeks of follow-up in naive patients

starting a treatment while most studies of HIV dynamics model studied only viral load data

during a shorter period (2-6 weeks) after the initiation of anti-retroviral treatment.

We compared several HIV dynamic models and showed that the latent model was the best

one using the BIC criterion. We also studied the practical identi�ability of this model. Using
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likelihood ratio test to compare the e�cacy of the three studied PI, we found a signi�cant

di�erence in the e�cacy of nel�navir compared to lopinavir or indinavir. This is in agreement

with the results of the trial (Duval et al; 2009) in which virological failure was found in 33% of

patients treated with nel�navir and only in 5% of patients treated by indinavir or lopinavir.

The HIV dynamic model used in this study has some limitations. First, it does not take

into account the fact that HIV undergoes rapid mutation in the presence of anti-retroviral

therapy. Of course, considering such phenomenon in the model may introduce many more

parameters. We attempted to keep the model itself as simple as possible and the goodness of

�t were satisfactory. Second, we considered a constant treatment e�ect, however, the e�ect of

antiviral treatment may change over time, due to pharmacokinetics intra-patient variability,

�uctuating patient adherence, emergence of drug resistance mutations and/or other factors.

Huang et al. (2006) proposed viral dynamic models to evaluate antiviral response as a

function of time-varying concentrations of drug in plasma. A more elaborate model would

thus promisingly include this additional extension. Nevertheless, these limitations did not

o�set the major �ndings from our modeling approach, although further improvement may

be brought. In conclusion, the SAEM algorithm is an useful tool for model development and

parameter estimation in this context of HIV dynamics.

Supplementary Materials

Web Appendices referenced in Section 2 and Section 4 are available under the Paper Infor-

mation link at the Biometrics website http://www.biometrics.tibs.org.
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Figure 1. Observed viral load decrease (left) and CD4 increase (right) after treatment
initiation in the three PI groups: lopinavir (top), indinavir (middle) and nel�navir (bottom)
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Figure 2. Visual predictive checks for the latent model ML. The observed viral loads
and CD4 counts are displayed with dots, the predicted median with a solid line and a 90%
prediction interval with dotted lines.
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Figure 3. Examples of individual �ts obtained with the latent model ML: ID=67
(lopinavir), ID=11 (indinavir) and ID=105 (nel�navir). The + represent the non censored
observations and the ∗ the limit of quanti�cation.
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Table 1

Parameters of each HIV dynamic model (MB: basic model,MQ: quiescent model,ML: latent model

Parameter unit description MB MQ ML

λ cells/mm3/day Rate of production of infected CD4 cells ? ? ?
γ Infection rate of CD4 cell per virion ? ? ?
µNI day−1 Death rate of uninfected CD4 cells ? ? ?
µI day−1 Death rate of infected CD4 cells ? ?
µQ day−1 Death rate of quiescent CD4 cells ?
µL day−1 Death rate for latently infected CD4 cells ?
µA day−1 Death rate for actively infected CD4 cells ?
µV day−1 Death rate of virions ? ? ?
p Number of virions production by CD4 cell ? ? ?
ρ day−1 Rate of reversion to the quiescent state ?
αQ Activation rate of quiescent CDA cells ?
αL Activation rate of latently infected CD4 cells ?
π Proportion of infected CD4 cells that become activated ?
ηRTI E�cacy of NRTI ? ? ?
ηPI E�cacy of PI ? ? ?

Number of parameters 8 11 11
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Table 2

Comparison of di�erent covariate models for PI group. The estimated standard errors are in parenthesis. Here, pβN

(resp. pβI ) is the p-value of the Wald test used for testing βN = 0 (resp. βI = 0).

Model −2× log-likelihood BIC βN pβN βI pβI

LIN 8646 (6) 8741 (6)
LI-N 8635 (6) 8734 (6) -5.6 (2.6) 0.045
L-I-N 8631 (6) 8735 (6) -4.9 (2.3) 0.036 -1.1 (4.0) 0.790
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Table 3

Estimated �xed e�ects and standard deviations of the random e�ects for the latent modelML. The estimated
standard errors are in parenthesis. See eq. (5) for the de�nition of the �xed and random e�ects.

Parameter (S.E.) ; Inter-patient variability (S.E.)

λ (cells/mm3/day) 2.61 (0.25) 0.55 (0.044)
γ 0.0021 (0.0009) 0 (�xed)

µNI (day−1) 0.0085 (0.0010) 0.44 (0.073)
µL (day−1) 0.0092 (0.0009) 0 (�xed)
µA (day−1) 0.289 (0.016) 0.399 (0.047)
µV (day−1) 30 (�xed) 0 (�xed)

p 641 (110) 0.9 (0.13)
αL 1.6e-5 (1.7e-6) 0.678 (0.33)
π 0.443 (0.038) 0.45 (0.047)
ηRTI 0.90 (0.17) 2.93 (1.8)
ηPI 0.99 (0.003) 3.19 (2)
βN -5.6 (2.6)
σV 0.464 (0.024)
σT 0.254 (0.009)
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Web Appendix A

The steady state values of modelMBare given by:

TNI(0) =
µIµV
p γ

, (1)

TI(0) =
µV VI(0)

p
,

VI(0) =
λ− µNITNI(0)

γ TNI(0)
, (2)

VNI(0) = 0

1



The steady state values of modelMQare given by:

TQ(0) =
λ+ ρ TNI(0)

αQ + µQ
(3)

TNI(0) =
µV µNI
γ p

TI(0) =
µV VI(0)

p

VI(0) =
αQ TQ(0)

γ TNI(0)
− ρ+ µNI

γ

VNI(0) = 0

The steady state values of modelMLare given by:

TNI(0) =
µAµV (αL + µL)

γp(αL + πµL)
(4)

TA(0) =
µV VI(0)

p

TL(0) =
(1− π)γ TNI(0)VI(0)

αL + µL

VI(0) =
λ− µNITNI(0)

γ TNI(0)

VNI(0) = 0.

Web Appendix B

Algebraic conditions of parameters identi�ability of the three dynamics mod-
els can not be found in a closed form. Thus, we decided to examine the identi-
�ability problem by simulation, i.e. by performing some sensitivity analysis.
We selected a set of parameter θA = (θA1 , θ

A
2 , . . . , θ

A
11) (some typical values

for a �responder�) and computed the predicted (log) viral load fθA(t) and the
predicted CD4 cells count gθA(t) obtained with this set of parameters. Then,
for k = 1, 2, . . . , 11,

1. we modi�ed the kth component of θA by setting θ̃Ak = 0.7× θAk ,

2. we created a new set of parameters θ̃A by modifying θA �as less as
possible� and such that fθ̃A and gθ̃A are �as close as possible� to fθA

and gθA .
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The table displays θA and 3 di�erent set of parameters θ̃A that give the
same predicted viral loads and CD4 counts:

λ 2.5 2.5 2.5 2.5
γ 0.00225 0.001575 0.00225 0.00225
π 0.46 0.46853 0.46 0.46
αL 1.5e-005 1.5e-005 1.5e-005 1.5e-005
p 620 629.25 434 620
µNI 0.008 0.008 0.008 0.008
µL 0.008 0.008 0.008 0.008
µA 0.3 0.30156 0.3 0.3
µV 30 30 21.006 30
ηPI 0.95 0.9081 0.95 0.665

ηRTI 0.92 0.92 0.92 0.988

We repeated this analysis with another set of parameters θB (some typical
values for a �non responder�). The table below displays θB and 3 di�erent set
of parameters θ̃B that give the same predicted viral loads and CD4 counts:

λ 2.5 2.5 2.5 2.5
γ 0.00225 0.001575 0.00225 0.00225
π 0.46 0.46644 0.46 0.46
αL 1.5e-005 1.5e-005 1.5e-005 1.5e-005
p 620 724.91 434 620
µNI 0.008 0.008 0.008 0.008
µL 0.008 0.008 0.008 0.008
µA 0.3 0.34932 0.3 0.3
µV 30 30 20.997 42.849
ηPI 0.3 0.16081 0.3 0.2

ηRTI 0.3 0.3 0.3 0.3798

In other words,

• γ, π, p, µA and ηPI are not identi�able simultaneously,

• p and µV are not identi�able simultaneously,

• ηPI and ηRTI are not identi�able simultaneously.

Figure 1 displays fθA and gθA in blue and fθ̃A and gθ̃A in green. Figure 2
displays fθB and gθB in blue and fθ̃B and gθ̃B in green.
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Figure 1: Predicted viral load and CD4 cell count pro�les obtained with
di�erent set of parameters (responder pro�les)

This sensitivity analysis only considers the problem of �tting the struc-
tural model for a given subject. This method is not completely appropriate
for a population approach where the distribution of the individual parame-
ters is also part of the (statistical) model. In other word, if a parameter is not
algebraically (or structurally) identi�able, it can be statistically identi�able.
Consider the following �toy example�:

yij = Aitij +Bitij + εij

This model is clearly not algebraically identi�able. Assuming now that Ai
and Bi are random variables, statistical identi�ability of the population pa-
rameters depends on the population distribution of Ai and Bi. We see in
Figure 3 the convergence of the SAEM algorithm for di�erent initializations
and di�erent distributions. The population parameters A and B are not
identi�able when Ai and Bi are normally distributed. They are identi�able
when Ai and Bi are de�ned using a logit transformation.

In our viral kinetic model, even if only the product (1− ηPI)(1− ηRTI) is
structurally identi�able, both ηPI and ηRTI are statistically identi�able.

In summary, identi�ability of non linear mixed e�ects models does not
reduce to algebraic identi�ability and pracival identi�ability should also be
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Figure 2: Predicted viral load and CD4 cell count pro�les obtained with
di�erent set of parameters (non responder pro�les)

addressed. As a practical diagnostic tool, we propose to use the Fisher In-
formation Matrix for detecting some over-parametrization in the model. We
are aware that it is not completely satisfactory but from our experience, we
know for certain that very large s.e. (or NaN) indicate some issue in the
parametrization. Unfortunately, the reverse is not necessarily true.
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Figure 3: Convergence of SAEM with di�erent initial values and di�erent
population distributions. Left: normal distribution (A + B is identi�able) ,
Right: logit transformation (both A and B are identi�able).
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