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Abstract
Summary

HIV dynamics studies, based on differential equations, have significantly improved the knowledge on HIV infection. While first

studies used simplified short-term dynamic models, recent works considered more complex long-term models combined with a global

analysis of whole patients data based on nonlinear mixed models, increasing the accuracy of the HIV dynamic analysis. However

statistical issues remain, given the complexity of the problem. We proposed to use the SAEM (Stochastic Approximation EM)

algorithm, a powerful maximum likelihood estimation algorithm, to analyze simultaneously the HIV viral load decrease and the CD4

increase in patients using a long-term HIV dynamic system. We applied the proposed methodology to the prospective

COPHAR2-ANRS 111 trial. Very satisfactory results were obtained with a model with latent CD4 cells defined with five differential

equations. One parameter was fixed, the ten remaining parameters (eight with between patient variability) of this model were well

estimated. We showed that the efficacy of nelfinavir was reduced compared to indinavir and lopinavir.

Author Keywords HIV dynamics ; Non linear mixed effects models ; SAEM algorithm ; Model selection

MESH Keywords Algorithms ; Anti-HIV Agents ; therapeutic use ; Computer Simulation ; HIV Infections ; drug therapy ; epidemiology ; Humans ; Likelihood Functions ;
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Introduction

Understanding variability in response to antiretroviral treatment in HIV patients is an important challenge. HIV dynamic models

describe the viral load decrease and the CD4 cells increase under treatment by modeling the interaction between several types of CD4 cells

and virions ( ; ; ; ; ).Perelson et al., 1996 Perelson and Nelson, 1997 Wu and Ding, 1999 Nowak and May, 2000 Rong and Perelson, 2009 

They are defined as nonlinear differential systems and have generally no closed-form solutions. As available data are measurements of

total number of the CD4 and the total number of virions, these differential systems are partially observed, complicating the parameter

estimation. Nonlinear mixed effect models (NLMEMs) are appropriate to estimate model parameters and their inter-patient variability. The

first modeling of viral load dynamic, using standard nonlinear regression or mixed models, considered a short time period and assumed

non-infected CD4 cells to be constant ( ; ; ). Another simplified approach assumedPerelson et al., 1996 Wu et al., 1998 Ding and Wu, 2001 

inhibition of any new infection by initiated therapy. Under that unrealistic assumption, the system can be solved explicitly (Wu et al., 1998

; ). proposed the first simultaneous estimation of the viral load and CD4 dynamics based on aPutter et al., 2002 Putter et al. (2002) 

differential system under this assumption, but had to focus only on the first two weeks of the dynamic after initiation of an anti-retroviral

treatment. These two assumptions are unsatisfactory when studying long-term response to anti-retroviral treatment for which the use of

complete models expressed as ordinary differential equations (ODEs) is mandatory.

Estimation of NLMEMs is complex because the likelihood has no closed form, even for simple models. Bayesian estimation methods

based on Markov Chain Monte Carlo (MCMC) algorithms and informative priors have first been proposed for complex ODE HIV models

and NLMEMs ( ; ; ). The choice of informative prior distributions can be and issue.Putter et al., 2002 Wu et al., 2005 Huang et al., 2006 

Furthermore, Bayesian algorithms can be very slow to converge, especially in this complex context. adjusted only viralWu et al. (2005) 

load with a dynamic system describing the long-term HIV dynamics and considering drug potency, drug exposure/adherence and drug

resistance during chronic treatment. However, the authors used a simplified model which does not consider separately the compartments of

HIV-producing infected cells and the latent cells and does not decompose the virus compartment into infectious and non-infectious virions.

For maximum likelihood estimation in NLMEMs, likelihood approximations such as linearization ( ) orPinheiro and Bates, 1995 

Laplace approximation ( ) have been proposed, leading to inconsistent estimates ( ). Wolfinger, 1993 Ding and Wu, 2001 Guedj et al.

proposed algorithms based on Gaussian quadrature but these algorithms are cumbersome and were not applied to problems with(2007a) 

more than three random effects. proposed a semi-parametric approach. Other new algorithms are stochastic EMWu and Zhang (2002) 
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algorithms as Monte Carlo EM ( ). Among them, the Stochastic Approximation EM algorithm (SAEM) has convergence results (Wu, 2004 

; ), even for ODE models ( ). It is implemented in the MONOLIXDelyon et al., 1999 Kuhn and Lavielle, 2005 Donnet and Samson, 2007 

software and has been mainly applied for the analysis of pharmacokinetics models ( ). Another complexity ofLavielle and Mentr , 2007 é
viral load analysis is left censoring which occurs when viral load are below a limit of quantification (LOQ). The proportion of subjects

with viral load below LOQ has increased with the development of highly active anti-retroviral treatment. Although it is known that when

ignored, this censoring may induce biased parameter estimates ( ; ), several authors did not takeSamson et al., 2006 Thi baut et al., 2006 é
into account this problem ( ; ). Conversely, ; ; Ding and Wu, 2001 Wu et al., 2005 Hughes (1999) Fitzgerald et al. (2002) Thiebaut et al.

; proposed different approaches to handle accurately the censored viral load data. (2005) Guedj et al. (2007a) Samson et al. (2006) 

extended the SAEM algorithm to perform maximum likelihood estimation for left-censored data.

The first objective of this work was to estimate parameter of HIV dynamic models with the convergent SAEM algorithm. A second

objective was to propose and apply statistical approaches for studying model selection in this context. We applied this approach to data

obtained in patients of the clinical trial COPHAR2 - ANRS 111 ( ) initiating an antiviral therapy with two nucleosideDuval et al., 2009 

analogs (RTI) and one protease inhibitor (PI). We analyzed simultaneously the HIV viral load decrease and the CD4 increase based on a

long-term HIV dynamic system. We considered three dynamic models and compare them with respect to their ability to represent

HIV-infected patients after initiation of reverse transcriptase inverse (RTI) and protease inhibitor (PI) drugs therapy.

This article is organized as follows. Section 2 presents three mathematical models for long-term HIV dynamics. In Section 3, we

discuss nonlinear mixed effects models and estimation with the SAEM algorithm, model selection, model identifiability and covariate

testing. We, then, provide the results obtained in the COPHAR II-ANRS 134 clinical trial using MONOLIX in Section 4. Section 5

concludes this article with some discussion.

Mathematical models for HIV dynamics after treatment initiation

Three nonlinear ordinary differential systems modeling the interaction of HIV virus with the immune system after initiation of

antiviral treatment containing reverse transcriptase inhibitor (RTI) and protease inhibitor (PI) are presented.

The basic dynamic model

Let , and denote the concentration of target noninfected CD4 cells, productively infected CD4 cells and infectious viruses,TNI TI VI 

respectively. Following ; , it is assumed that CD4 cells are generated through thePerelson and Nelson (1997) Perelson (2002) 

hematopoietic differentiation process at a constant rate . The target cells are infected by the virus at a rate  per susceptible cell andλ γ
virion. Noninfected CD4 cells die at a rate whereas infected ones at a rate . Infected CD4 cells produce virus at a rate per infectedμNI μI p 

cell. The virus are cleared at a rate . Two additional parameters and are introduced to model the effect of antiviral therapyμV  η RTI  η PI 

containing RTI and PI. RTI prevents susceptible cells from becoming infected through inhibition of the transcription of the viral RNA into

double-stranded DNA. denotes the proportion of susceptible cells prevented to be infected and is valued between 0 and 1. A value of  η RTI 

 1 corresponds to a completely effective drug. PI leads to the production of noninfectious viruses which is modeled trough an η RTI = VNI 

additional equation. are produced at a rate where is a proportion between 0 and 1 and where  1 corresponds to aVNI  η PI p  η PI  η PI =

completely effective drug. It is assumed that infectious and non infectious viruses die at the same rate . Under combined PI and RTIμV 

action, the system is written:

It is assumed that before the treatment initiation, the system has reached an equilibrium state (the steady state values are given in the 

). The measured viral load is the total viral load  and the measured CD4 cell count is the total  .Web Appendix A V = VI +VNI T = TNI +TI 

This basic model is called

. Its parameters and their definitions are summarized in .Table 1 

The quiescent dynamic model
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; proposed a more elaborated model which distinguishes quiescent CD4 cells, ,De Boer and Perelson (1998) Guedj et al. (2007a) TQ 

target (activated) noninfected cells, , and infected T cells, . Only activated CD4 cells become infected with HIV, and quiescent cellsTNI TI 

are assumed to be resistant to infection. Quiescent CD4 cells are generated through the hematopoietic differentiation process at aTQ 

constant rate . As the CD4 cell compartment is largely maintained by self-renewal, the dynamic model allows the quiescent CD4 cells toλ
become activated at a low constant rate . Quiescent CD4 cells are assumed to die at a rate , and to appear by the deactivation ofαQ μQ 

activated noninfected CD4 cells at a rate . The system of differential equations describing this model after treatment initiation is written ρ
as:

As proposed by , it is assumed that newly produced viruses are fully infectious before the introduction of a PIPerelson et al. (1996) 

treatment and that before the treatment initiation, the system has reached an equilibrium state (see the ). The measuredWeb Appendix A 

viral load is the total viral load   and the measured CD4 cell count is the total  . This quiescent model is calledV = VI + VNI T = TQ +TNI +TI 

. Its parameters and their definitions are summarized in .Table 1 

The latent dynamic model

considered that not all CD4 cells actively produce virus upon successful infection. Infected cell pool is split intoFunk et al. 2001 

actively and latently infected cells. Uninfected CD4 cells are infected by the virus, as previously, at a rate (1  ) . But only a−  η RTI γVI 

proportion of this infected cells are activated CD4 cells, , and a proportion (1  ) are latently infected CD4 cells, . Latently π TA −  π TL 

infected CD4 cells die at a rate and become activated at a rate . Actively infected cells die at a rate and only these cells produceμL αL TA μA 

virus particles. The differential system describing this model after treatment initiation is written:

As previously, it is assumed that before treatment initiation, the system has reached an equilibrium state (see the ).Web Appendix A 

The measured viral load is the total viral load   and the measured CD4 cell count is the total    . This latentV = VI + VNI T = TNI + TL + TA 

model is called

. Its parameters and their definitions are summarized in .Table 1 

Statistical Methods
The nonlinear mixed effects model

Let be the number of patients. For patient , we measure viral loads at times ( ),  1, , and CD4 cells at times ( ),  1, N i ni tij j = … ni mi τij j =

, . Let us define  ( , ) where is the observed log HIV viral load (cp/mL) for individual at time ,  1, , , … mi vi = vi 1, … v in i vij 10 i tij i = … N j =
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1, , , and  ( , , ) where is the the CD4 cell count (cells/mm ) for individual at time ,  1, , ,  1, , . The… ni zi = zi 1 … z im i zij 
3 i τij i = … N j = … mi 

observed log viral load and the CD4 cell count of all patients are analyzed simultaneously using a nonlinear mixed effects model, where 10 

and are the total number of virus (cp/mm ) and CD4 cells (cells/mm ):V T 3 3 

Note that is expressed in cp/mm and the observed in log10-cp/mL, hence the 1000 in . Here ( ) and ( )V 3 v equation (5) eV , ij eT , ij 

represent the residual errors. We assume a constant error model for the log viral load and a proportional error model for the CD4

concentration. Several error models will be tested for the CD4 count. Different parametric models for and were previously proposed.V T 

These models are functions of individual parameters , which are assumed to be independent of the residual errors ( , ). Theψi eV,i eT,i 

parameters are assumed to be some transformation ( ) of a Gaussian random vector with mean (the vector of fixed effects) andψi h φi φi  μ

variance-covariance  (the covariance matrix of the random effects). As inhibition parameters and take their values in 0, 1 , theyΩ  η RTI  η PI [ ]

are defined as the logistic transformation of a Gaussian random variable. For model

, is defined as the logistic transformation of a Gaussian random variable. Others parameters are non-negative parameters and defined π
as the exponential transformation of Gaussian random variables.

The observation model is complicated by the detection limit of assays. When viral load data is below the limit of quantification vij 

, the exact value is unknown and the only available information is  . These data are classically named left-censored data.LOQ vij vij ≤ LOQ 

Let denote  ( , )|   and  ( , )|   the index sets of respectively the uncensored and censored observations.Iobs = { i j vij ≥ LOQ } Icens = { i j vij ≤ LOQ }

Finally, we observe

Parameters estimation

Let  be the set of unknown population parameters. Maximum likelihood estimation of is based on the likelihood θ
function of the observations ( , ):vobs z 

where  is the likelihood of the complete data ( , , ) of the -th subject. As the random effects and thezi φi i φi 

censored observations  are unobservable and as the regression functions are nonlinear, the foregoing integral has no closed form.

Therefore the maximum likelihood estimate is not available in a closed form.

We propose to use the Stochastic Approximation Estimation Maximisation (SAEM) algorithm, a stochastic version developed by 

of the Expectation-Maximization algorithm introduced by . This algorithm computes theDelyon et al. (1999) Dempster et al. (1977) 

E-step of the EM algorithm through a stochastic approximation scheme. It requires a simulation of one realization of the non observed data

in the posterior distribution at each iteration, avoiding the computational difficulty of independent samples simulation of the Monte-Carlo

EM and shortening the time consumption. SAEM algorithm is a stochastic algorithm, for which almost-sure convergence toward the

maximum likelihood estimation is ensured under general conditions ( ). As the simulation of the non observed data inDelyon et al., 1999 

the posterior distribution is not direct for NLMEMs, proposed to combine the SAEM algorithm with a MCMCKuhn and Lavielle (2005) 

method to realize this simulation step. proposed a version of the SAEM algorithm adapted to mixed modelsDonnet and Samson (2007) 

defined by differential equations. The SAEM algorithm also enables to take into account the left-censored viral load data accurately with

convergent estimator ( ). The combination of the two extensions of SAEM for differential equations and forSamson et al., 2006 

left-censored data handling is used in the following analyzes.

Model selection

Model selection aims at identifying a model that best fits the available data with the smallest possible dimension. The two most

popular model selection criteria are the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Following the

simulation results of , the best model is defined here as the model with the lowest BIC. LetBertrand et al. (2008) 

be the number of parameters in the model

,

the likelihood function of the observations ( , ) andvobs z 

the maximum likelihood estimate of in model θ
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. The BIC penalizes the minimized deviance by log( ) times the number of free parameters.N 

Using BIC requires to compute the log-likelihood of model

. Following ( ), for any model5 

, the likelihood of the observations ( , ) can be decomposed as follows (we omit the subscriptl vobs z 

to simplify the notation):

where is the probability distribution density of and any absolutely continuous distribution with respect to . Then, ( , ) π  φ  π̃  π l vobs z;  θ
can be approximated via an Importance Sampling integration method:

draw , , , with the distribution ( ; ), φ (1)  φ (2) …  φ ( K )  π̃ ·  θ

let 

( , ) is a consistant estimator of the observed likelihood:l ̂K vobs z;  θ

( ( , ))  ( , ) and Var( ( , )) l ̂K vobs z;  θ = l vobs z;  θ l ̂K vobs z;  θ =

( ). Furthermore, if is the conditional distribution ( | , ), the variance of the estimator is null and ( , )  (K 1 −  π̃ p  φ vobs z;  θ l ̂K vobs z;  θ = l v

, ) for any value of . That means that an accurate estimation of ( , ) can be obtained with a small value of if theobs z;  θ K l vobs z;  θ K 

sampling distribution is close to the conditional distribution ( | , ).p  φ vobs z;  θ

We recommend the following procedure: for  1, 2, , , one estimates empirically the conditional mean  and thei = … N 

conditional variance-covariance matrix  of as described above. Then, the  are drawn with the sampling distribution asφi  π̃

follows:

where ( ) is a sequence of random vectors and where the components of  are independent variables distributed with a i.i.d. t –
distribution with degrees of freedom. The numerical results presented here were obtained with  5 d.f. ν  ν =

Note that recently, several authors proposed conditional Information Criteria for linear mixed models, see forLiang et al. (2008) 

example. The use of such criteria seems promising but extension to non linear mixed model is not straightforward.

Model identifiability

If the ODE model is not identifiable, any estimation method may produce unreliable and misleading results. Then, identifiability of the

model parameters has to be checked before applying the HIV dynamic model to the data. Usually, many of the model components may not

be measurable and several parameters may not be identifiable. We need a trade-off between model complexity and parameter

identifiability based on clinical data. If a model has too many components, it may be difficult to analyze. If a model is too simple, some

important clinical factors cannot be incorporated, although the viral dynamic parameter can be identified and estimated. Various works on

system identification of nonlinear HIV models can be found for example in ; ; Perelson and Nelson (1997) Xia and Moog (2003) Jeffrey

; ; . proposed a HIV dynamic model defined with a system of 4and Xia (2005) Guedj et al. (2007b) Wu et al. (2008) Xia and Moog (2003) 

ODEs and checked the algebraical identifiability. Assuming that the non infected cells are observed, their system allows to derive some

sufficient conditions which ensure the algebraic identifiability of the model. Unfortunately, the different models that we consider do not

allow to separate the problem into two independent problems as proposed by or by and theXia and Moog (2003) Wu et al. (2008) 

identifiability of the complete set of the parameters must be discussed on the whole. This problem has no closed form algebraic conditions.

As an alternative, we propose to examine the algebraic identifiability problem by performing some sensitivity analysis.

Nevertheless, even if algebraic identifiability is useful, it is not completely appropriate for a population approach where the

distribution of the individual parameters is also part of the (statistical) model. In other word, if a parameter is not algebraically identifiable,

it can be statistically identifiable (an example is given in the ) and the reverse is also true: some parameters can beWeb Appendix A 

difficult to estimate with a very poor design, even if the model is algebraically identifiable. Then, practical identifiability should also be

considered (see ) for example). As a practical diagnostic tool, we propose to use the Fisher Information Matrix forGuedj et al. (2007b 

detecting some over-parametrization in the model. From our experience, very large standard errors (or NaN) indicate some issues in the
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parametrization, but the reverse is not necessarily true  We recommend to perform several runs with slightly different initial guesses.…
Then, convergence to different solutions can indicate a lack of identifiability, rather than the presence of several isolated local maxima of

the likelihood.

Covariate testing

Another statistical issue in NLMEMs is the utilization of covariates to explain part of inter-individual parameter variability.

Comparing models with and without covariates can be performed through model selection with the BIC criterion. For nested models, the

likelihood ratio test can be applied by computing the log-likelihoods of the nested models. The Wald test can be used based on the

covariates estimated effects and their standard errors.

The MONOLIX software

Monolix is a free software ( ), which implements a wide variety of stochastic algorithms such as SAEM,http://software.monolix.org 

Importance Sampling, MCMC, and Simulated Annealing, all dedicated to the analysis of NLMEMs. The objectives are: a) parameter

estimation by computing the maximum likelihood estimator of the parameters without any approximation of the model and standard error

for the maximum likelihood estimator; b) model selection by comparing several models using some information criteria (AIC, BIC),

testing hypotheses using the Likelihood Ratio Test, testing parameters using the Wald Test and c) Goodness of fit. Monolix version 2.4

was used in this work. We used the code BiM (release 2.0, April 2005) which implements a variable stepsize method for stiff initial value

problems for ODEs.

Application to the COPHAR II - ANRS 134 trial
Material and Methods

In the COPHAR II- ANRS 134 trial, an open prospective non-randomized interventional study, 115 HIV-infected patients adults

started an antiviral therapy with at least 2 RTIs and one of three different PIs. 48 patients were treated with indinavir (and ritonavir as a

booster)(I), 38 with lopinavir (and ritonavir as a booster) (L) and 35 with nelfinavir (N). Patients were followed one year after treatment

initiation. Viral load and CD4 cell count were measured at screening, at inclusion and at weeks 2(or 4), 8, 16, 24, 36 and 48. Plasma

HIV-1-RNA were measured by Roche monitored with a limit of quantification of 50 copies/ml. The results of this trial are reported in 

. The proportion of virological failure was higher in the nelfinavir group and similar for indinavir and lopinavir,Duval et al. (2009) 

although lopinavir is supposed to be a more potent PI now widely used. Observed viral load and CD4 cell count are displayed in Figure 1 

which clearly shows a large inter-subject variability.

The models

,

and

were compared using the BIC criterion. The identifiability of the selected model was studied, the effect of the PI group is tested by

adding a covariate on : η PI 

where TRT is the PI administrated to patient (L, I or N). The reference group is the lopinavir group (  0). BIC and Wald test were i i βL =

used to study the differences in the 3 PI groups: no PI effect (LIN), only two groups: L vs. IN (L-IN) or LI vs N (LI-N), three groups

L-I-N.

Results

We compared the three dynamic models. For each model, the complete set of fixed effects ( ) were estimated. Furthermore,Table 1 

variability on all the parameters was assumed without any correlation between the random effects. The population parameters were

estimated with the SAEM algorithm and the log-likelihoods were estimated by Monte Carlo Importance Sampling. The BIC computed for

the three models. The latent model

was selected as the best model among the three candidate models: BIC(

) 8758, BIC(=
) 9077, BIC(=
) 9134. Furthermore, the fits for both the viral load and the CD4 counts were better with model=
(  0.46 and  0.25) than with modelσV = σT =

(  0.62 and  0.27) or modelσV = σT =

(  0.67 and  0.27).σV = σT =

We then studied the identifiability of
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. First we studied the mathematical identifiability by performing a sensitivity analysis on a single simulated individual that showed that

individual fitting does not allow to estimate simultaneously three sets of parameters: ( , ), ( , , , ) and ( , ) (see p μV γ  π p μA ηPI ηRTI Web

for more details).Appendix B 

The sensitivity analysis showed that only the ratio / can be estimated. The problem of estimating both and was also found inp μV p μV 

the Fisher Information Matrix obtained after running the SAEM algorithm with very high estimated standard errors (236  and 240% %
respectively). Therefore, we assumed that did not vary and was fixed to the value 30/day ( ; μV Ramratnam et al., 1999 Guedj et al., 2007a 

). Fixing to any other value around 30/day didn t change the estimation of the other parameters, except . We also found that both  andμV ’ p γ

could be correctly estimated (their s.e. were estimated to 43  and 11 ) but not their inter-patient variability. We therefore decided toμL % %

estimate these two parameters, but considering that they do not vary in the population. For the third set, the sensitivity analysis clearly

showed that, using the data from only one patient, only the product (1  )(1  ) can be estimated. Then, we tried to fix or − ηPI − ηRTI ηPI ηRTI 

but the results were clearly deteriorated. That means that the probability distribution of (1  )(1  ) cannot be described assuming− ηPI − ηRTI 

that only one of these two parameters is a random variable. Thus, we assumed that both and vary in the population because bothηPI ηRTI 

are statistically identifiable (see discussion on that in ).Web supplement 

reports BIC and estimated s for the different merging of the PI group (BIC and LL are different from becauseTable 3  β ’ Table 2 

parameter was fixed in ). Adding a covariate treatment to explain the variability of did not modify the identifiability of theμV Table 3 ηPI 

model. Different starting values always gave similar results for the s. The smallest BIC was for LI-N implying a different effect of β ’
nelfinavir versus lopinavir and indinavir that were grouped. The estimated parameters of that model are reported in Table 4. The efficacy

of PI was 0.99 for lopinavir-indinavir and 0.75 for nelfinavir, i.e. nelfinavir efficacy for blocking infectious viruses was 25  less η PI %

important than for lopinavir and indinavir, which are boosted PI. The LRT for the nelfinavir effect was very significant (  10 forp = 12 −

comparison of models LIN and LI-N), no significant improvement was found when separating L and I (comparison of models LI-N vs

L-I-N:  0.32 ). The Wald tests also agreed that only was significatively different from zero.p = βN 

This model provided good fits of both viral load and CD4 cells as can be seen on the visual predictive check ( ) and on someFigure 2 

individual fits for patients in each treatment group ( ).Figure 3 

We also tested several error models for the CD4 count. assumed a constant error model for the CD4 count at theThiebaut et al. (2005) 

power 0.25 (   ). For this error model as well as for the constant error model, the log-likelihood was lower ( 2   8680)z 1/4 = T 1/4 +  ε − × LL =
and the proportional error model was preferred ( 2   8635) for the final model.− × LL =

Convergence of SAEM takes about 20mn on a Dual Core laptop. The total time for estimating the population parameters with SAEM,

the Fisher Information Matrix, the individual parameters and the log-likelihood is about 1 hour.

Discussion

This article proposed the SAEM algorithm to estimate parameters of nonlinear mixed model based on partially observed complex HIV

differential systems. The estimation of the parameters of such a mixed model is a dificult statistical and computational challenge. The HIV

differential systems defining these mixed models are non linear, consequently without any analytical solution. Furthermore, the ODE

system is generally , the classic ODE solver such as Runge-Kutta not being adapted to solve numerically the system. We used thestiff 

code BiM (release 2.0, April 2005) which implements a variable order-variable stepsize method for (stiff) initial value problems for ODEs.

The analysis of such data is also complicated by the left-censoring of the viral load data due to the lower limit of experimental devices

detection, and it is well known that omitting to correctly handle this censored data provides biased estimates of dynamic parameters. The

SAEM algorithm has theoretical convergence properties and is computationally efficient on these dynamic models.

In this article, we applied it to a clinical trial in HIV infection, using all the data (both viral load and CD4 measurements) obtained

during 48 weeks of follow-up in naive patients starting a treatment while most studies of HIV dynamics model studied only viral load data

during a shorter period (2 6 weeks) after the initiation of anti-retroviral treatment.–

We compared several HIV dynamic models and showed that the latent model was the best one using the BIC criterion. We also

studied the practical identifiability of this model. Using likelihood ratio test to compare the efficacy of the three studied PI, we found a

significant difference in the efficacy of nelfinavir compared to lopinavir or indinavir. This is in agreement with the results of the trial (

) in which virological failure was found in 33  of patients treated with nelfinavir and only in 5  of patients treated byDuval et al; 2009 % %
indinavir or lopinavir.

The HIV dynamic model used in this study has some limitations. First, it does not take into account the fact that HIV undergoes rapid

mutation in the presence of anti-retroviral therapy. Of course, considering such phenomenon in the model may introduce many more

parameters. We attempted to keep the model itself as simple as possible and the goodness of fit were satisfactory. Second, we considered a
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constant treatment effect, however, the effect of antiviral treatment may change over time, due to pharmacokinetics intra-patient

variability, fluctuating patient adherence, emergence of drug resistance mutations and/or other factors. proposed viralHuang et al. (2006) 

dynamic models to evaluate antiviral response as a function of time-varying concentrations of drug in plasma. A more elaborate model

would thus promisingly include this additional extension. Nevertheless, these limitations did not offset the major findings from our

modeling approach, although further improvement may be brought. In conclusion, the SAEM algorithm is an useful tool for model

development and parameter estimation in this context of HIV dynamics.
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Figure 1
Observed viral load decrease (left) and CD4 increase (right) after treatment initiation in the three PI groups: lopinavir (top), indinavir (middle)

and nelfinavir (bottom)
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Figure 2
Visual predictive checks for the latent model

. The observed viral loads and CD4 counts are displayed with dots, the predicted median with a solid line and a 90  prediction interval with%
dotted lines.
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Figure 3
Examples of individual fits obtained with the latent model

: ID 67 (lopinavir), ID 11 (indinavir) and ID 105 (nelfinavir). The  represent the non censored observations and the  the limit of= = = + *
quantification.
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Table 1
Parameters of each HIV dynamic model (

: basic model,

: quiescent model,

: latent model

Parameter unit description

λ cells/mm /day3 Rate of production of infected CD4 cells ★ ★ ★
γ Infection rate of CD4 cell per virion ★ ★ ★
μNI day 1− Death rate of uninfected CD4 cells ★ ★ ★

μI day 1− Death rate of infected CD4 cells ★ ★

μQ day 1− Death rate of quiescent CD4 cells ★

μL day 1− Death rate for latently infected CD4 cells ★

μA day 1− Death rate for actively infected CD4 cells ★

μV day 1− Death rate of virions ★ ★ ★

p Number of virions production by CD4 cell ★ ★ ★
ρ day 1− Rate of reversion to the quiescent state ★

αQ Activation rate of quiescent CDA cells ★

αL Activation rate of latently infected CD4 cells ★

π Proportion of infected CD4 cells that become activated ★
 η RTI Efficacy of NRTI ★ ★ ★

 η PI Efficacy of PI ★ ★ ★

Number of parameters 8 11 11

Table 2
Comparison of different covariate models for PI group. The estimated standard errors are in parenthesis. Here, p (resp. p ) is the p-value of the Wald test used for testing  0 (resp.  0).βN  β I 

βN = βI =

Model −2  log-likelihood× BIC βN
p  β N βI

pβI

LIN 8646 (6) 8741 (6)
LI-N 8635 (6) 8734 (6) −5.6 (2.6) 0.045

L-I-N 8631 (6) 8735 (6) −4.9 (2.3) 0.036 −1.1 (4.0) 0.790
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Table 3
Estimated fixed effects and standard deviations of the random effects for the latent model

. The estimated standard errors are in parenthesis. See for the definition of the fixed and random effects.eq. (5) 

Parameter (S.E.); Inter-patient variability (S.E.)

λ (cells/mm /day)3 2.61 (0.25) 0.55 (0.044)

γ 0.0021 (0.0009) 0 (fixed)

(day )μNI 
1 − 0.0085 (0.0010) 0.44 (0.073)

(day )μL 
1 − 0.0092 (0.0009) 0 (fixed)

(day )μA 
1 − 0.289 (0.016) 0.399 (0.047)

(day )μV 
1 − 30 (fixed) 0 (fixed)

p 641 (110) 0.9 (0.13)
αL 1.6e-5 (1.7e-6) 0.678 (0.33)

π 0.443 (0.038) 0.45 (0.047)

 η RTI 0.90 (0.17) 2.93 (1.8)

 η PI 0.99 (0.003) 3.19 (2)

βN −5.6 (2.6)

σV 0.464 (0.024)

σT 0.254 (0.009)


