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Abstract 27 

Metabolic diseases such as obesity are characterized by a subclinical inflammatory state that 28 

contributes to the development of insulin resistance and atherosclerosis. Recent reports also indicate 29 

that (i) there are alterations of the intestinal microbiota in metabolic diseases and (ii) absorption of 30 

endogenous endotoxins (namely lipopolysaccharides, LPS) can occur, particularly during the 31 

digestion of lipids. The aim of the present review is to highlight recently gained knowledge regarding 32 

the links between high fat diets, lipid digestion, intestinal microbiota and metabolic endotoxemia & 33 

inflammation. 34 

35 
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1. Introduction 1 

Nowadays, obesity outbreak is an important health problem due to its association with 2 

metabolic disorders such as type 2 diabetes, hyperlipidemia and hypertension. These metabolic 3 

diseases resulting of genetic, environmental and nutritional factors are characterized by a 4 

subclinical inflammatory state that contributes to the development of insulin resistance and 5 

atherosclerosis [1, 2]. Although the markers of chronic inflammation such as C-reactive protein 6 

predictive of the development of atherosclerosis are clearly established, the factors responsible for 7 

the initiation and maintenance of the chronic inflammation remain to be elucidated [3]. It was 8 

however noticed very recently that (i) there are alterations of the intestinal microbiota in 9 

metabolic diseases and (ii) absorption of endotoxins (namely lipopolysaccharides, LPS) can occur 10 

[4, 5]. Endotoxins, which are components of gram negative bacteria cell wall, can appear in blood 11 

circulation from intestinal microbiota via translocation [6]. 12 

New evidence supports the idea of a link between high fat diet and the release of endotoxins in 13 

plasma of mice and humans [4, 7, 8]. The different results suggest that a chronic fat-rich diet 14 

could result in increased endotoxemia and low-grade inflammation due to the repeated endotoxin 15 

absorption from the gut during the digestion of lipids, which in turn could increase the risk of 16 

insulin resistance and atherosclerosis. Such endoxemia can be defined as “metabolic 17 

endotoxemia”, in contrast with other types of endotoxemia originating from exogenous bacterial 18 

infection or sepsis. Moreover, we recently evidenced that the structure of lipids in food could be 19 

one of the determinants of LPS absorption during fat digestion in non-pathological conditions [9]. 20 

The present review will thus discuss the different issues relating metabolic inflammation, 21 

intestinal microbiota, endogenous endotoxin absorption and the possible modulation by lipid 22 

structure. 23 

 24 

2. Inflammation in metabolic diseases  25 

The low-grade inflammation is a common feature in the patho-physiology of obesity and type 26 

2 diabetes [3, 10, 11]. Moreover, such inflammation increases the risk of insulin resistance and 27 

atherosclerosis [12-16]. The inflammatory response is characterized by the increase of pro-28 

inflammatory cytokines as interleukin-6 (Il-6) and tumor necrosis factor- (TNF-) in plasma 29 

[17]. Nappo et al. have reported that a high-fat meal is able to enhance these inflammatory 30 

cytokines contrary to a high carbohydrate meal [18]. It has been shown that butter and walnuts 31 

elicit postprandial activation of nuclear transcription factor kappa B (NFkB) in the peripheral 32 

blood monuclear cells from healthy subjects [19]. Moreover, patients suffering from coronary 33 

diseases and submitted to a high fat meal  present an increase of IL-6 [20]. A recent study leads by 34 

Tulk & Robinson reports that by increasing the n-3 PUFA content of a high-saturated fat meal in 35 
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men with metabolic syndrome, inflammatory responses were not modified [21]. More recently, 1 

Magné et al. demonstrated a possible implication of visceral adipose tissue in the postprandial 2 

low-grade inflammation after a high-saturated fat meal in healthy rats, with a transient activation 3 

of NFkB [22]. Moreover, the pathogenesis of insulin and leptin resistance associated with the 4 

intake of high fat high carbohydrate meals can be mediated by an increase in SOCS-3 (suppressor 5 

of cytokine signaling-3) in mononuclear cells after such meals, which is concomitant with 6 

increased markers of inflammation [23]. 7 

However, it is still difficult to understand the mechanisms by which a high-fat diet promotes the 8 

low-grade inflammation. In this respect, new studies suggest that the quality of intestinal 9 

microbiota might be involved.  10 

 11 

3. Alterations of intestinal microbiota in metabolic diseases  12 

The intestinal microbiota, which is species specific and innate, may though be modified in some 13 

conditions [18]. Moreover, Turnbaugh et al. suggested that intestinal microbiota might affect 14 

energy balance [24]. A high fat diet in mother rats can influence the gut microbiota in rat pups and 15 

increase their adiposity and body weight [25]. Conversely, germ-free animals are protected from 16 

diet-induced obesity by increasing fatty acid metabolism [26, 27].  17 

Several recent studies report alterations in the composition of intestinal microbiota in the course 18 

of obesity, with differences in quantity and proportion of two dominant gut bacteria: Bacteroidetes 19 

and Firmicutes [28]. For example, ob/ob mice have a 50 % reduction on Bacteroidetes and a 20 

proportional increase in Firmicutes in comparison with lean mice [29]. In human, the microbiota 21 

appears to be different between lean and obese subjects [24, 30] with a decrease of Gram negative 22 

bacteria of the phylum Bacteroidetes in obese subject [31]. However, Duncan et al. did not 23 

observe such differences in Bacteroidetes/Firmicutes between lean and obese subjects [32], while 24 

Zhang et al. report that obese subjects present greater amounts of Bacteroidetes in their 25 

microbiota compared to lean ones [33]. Therefore, the relative content of each bacterial species in 26 

different pathophysiological conditions remains a subject of debate. 27 

Such alterations of the gut microbiota in obesity are important to characterize because they could 28 

trigger endogenous endotoxin (LPS) absorption from microbiota Gram negative bacteria. Indeed, 29 

recent data report the presence of low-doses of these pro-inflammatory LPS in the plasma of 30 

obese humans [10], in type 2 diabetes [34] or in patients with Crohn disease [35]. Moreover, a 31 

study by Cani et al. has shown that antibiotic treatment modifies the gut microbiota, reduces 32 

metabolic endotoxemia and the cecal content of LPS in both high fat-fed and ob/ob mice [5]. The 33 

quality of intestinal microbiota was correlated with intestinal barrier integrity, whose loss may 34 

lead to pro-inflammatory endotoxemia [36, 37]. It was recently shown in healthy humans that the 35 
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administration of probiotic-containing yoghurt may improve the gut barrier function, decreasing 1 

endotoxin release and reducing low-grade chronic inflammation [38]. Prebiotics such as 2 

oligofructose can also increase Bifidobacteria in mice gut, which is associated with decreased 3 

endotoxemia [39]. 4 

Consequently, the intestinal microbiota can be under the influence of the diet, which in turn may 5 

increase the intestinal absorption of LPS that can play a role in the low-grade-inflammation 6 

observed in obesity. 7 

  8 

4. Proinflammatory properties of endotoxins from Gram negative bacteria (LPS) 9 

LPS, which represent about 80% of the cell wall mass of Gram negative bacteria, are toxic 10 

compounds localized on the surface of bacterial cells as a part of the outer membrane. They are 11 

constituted by an antigen-O specific chain, by a core region which represents a hetero-12 

oligosaccharide, and by a lipid A region highly conserved and representing the toxic part of the 13 

LPS [40] (Figure 1A). 14 

 15 

In pathological conditions such as infection of chronic diseases in humans, Gram negative 16 

bacteria can colonize the oral cavity and respiratory tract; they generate LPS that can lead to 17 

sepsis [41]. During a bacterial infection, LPS concentration in blood (so-called endotoxemia, 18 

normally low in healthy humans) is increased and is able to trigger the production of pro-19 

inflammatory factors as cytokines [42, 43]. For example, the average endotoxin concentration was 20 

reported to be higher in peritoneal dyalisis patients that present systemic inflammation (0.44 21 

±0.18 EU/ml), compared to healthy controls (0.013 ±0.007 EU/ml, P<0.0001) [44]. 22 

 23 

Indeed, LPS are taken up by the Lipopolysaccharide Binding-Protein (LBP) a 65kDa protein 24 

produced by the liver and present in the blood at concentrations of approximately 2-20 µg/mL  25 

[45], and transferred to the glycophosphatidylinositol-linked receptor CD14 (cluster of 26 

differentiation-14) [46], expressed on the plasma membrane of various cell types, like monocytes, 27 

macrophages [47] or human intestinal epithelial cell lines [48]. Besides this membrane-bound 28 

(mCD14) state, CD14 is also found in a circulating soluble (sCD14) form [49], increasing during 29 

septic diseases [50, 51]. Moreover, sCD14 is involved in the bioactivity of circulating endotoxin, 30 

and can be considered as a potent marker of endotoxin in plasma [52]. Both forms of CD14 are 31 

able to bind the complex LPS-LBP and mediate signal transduction, including the activation of 32 

the transcription factor nuclear factor-қB (NFқB) via a toll like receptor-4 (TLR4) dependant way 33 

associate with MD-2 [53]. This signalling cascade results in the release of pro-inflammatory 34 

cytokines such as Interleukin (IL)-6, or tumor necrosis factor alpha (TNF-) [54], maintaining the 35 
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low-grade inflammation (Figure 1B). These different receptors are also present on the surface of 1 

intestinal cells. Indeed, intestinal cells are able to produce, express and release molecules of LBP, 2 

CD14 and TLR4. The same series of events described above concerning immunity cells also take 3 

place at intestinal level. Epithelial cells interact with LPS, and so, are active in intestinal immune 4 

system [55]. 5 

However, in the case of septic shock, LBP is able to transfer LPS to plasma lipoproteins like HDL 6 

and chylomicrons, which neutralize endotoxin activity [56-59]. This neutralization results from 7 

the binding of the lipoproteins to their receptors, particularly on the liver, inducing increased 8 

biliary secretion of LPS [60, 61]. In addition to LBP, the phospholipid transfer protein (PLTP) 9 

implicated in the development of atherosclerosis [62] is able to link LPS and to detoxify the 10 

organism during septic shock [63, 64].  11 

 12 

However, in non-pathological conditions, the healthy human body also contains numerous 13 

endogenous bacteria (~10
14

) [6]. In this case, Gram negative bacteria reside as a majority in the 14 

gut in which they constitute, together with Gram positive bacteria, the intestinal microbiota. 15 

Intestinal absorption of endogenous LPS from this microbiota would result in the same pro-16 

inflammatory mechanisms as described above, though to a much lesser extent: low-grade 17 

inflammation or so-called metabolic inflammation as observed in obesity. 18 

 19 

5. Links between high fat diets, inflammation and endotoxemia  20 

Extrinsic factors such as the diet can affect the inflammatory response to exogenous LPS. For 21 

example, mice submitted to a high saturated fat and cholesterol diet increase their sensitivity to 22 

LPS injection [65]. However, very recent studies also support the concept that dietary fats can 23 

induce absorption of endogenous LPS from the intestinal microbiota and subsequent 24 

inflammatory response. 25 

The pioneering article by Cani et al. (2007) reported that a four-week high fat diet in mice (72% 26 

energy as fat) increases plasma endotoxin levels (endotoxemia) in comparison with a control diet, 27 

and that chronic low-dose infusion of LPS leads to weight gain and insulin resistance [4]. In turn 28 

CD14-KO mice resisted to increased weight gain, endotoxemia and insulin resistance induced by 29 

a high fat diet [4]. Importantly, Shi et al. have also shown that TLR4-KO mice are protected from 30 

NFkB-induced inflammation and development of insulin resistance [66]. Both works thus show a 31 

link between innate immunity and lipid-induced insulin resistance. Moreover, the increase in 32 

plasma LPS is lower when mice are submitted to a diet containing 35% energy as fat compared 33 

with mice fed a high-fat diet [7].  In humans, Amar et al. found a link between food intake and 34 

plasma endotoxin, with a positive correlation between energy intake and endotoxemia [7]. 35 
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On an acute basis, Erridge et al. showed in humans that an acute high fat bolus (50 g butter on 1 

toast) was sufficient to promote a transient increase in endotoxemia, 30 min after ingestion, in 2 

lean to obese occasional smokers [8]. Because these authors considered that smoking could 3 

contribute to elevation of plasma endotoxin via the absorption of LPS by lung [67], they examined 4 

endotoxemia for 4 hours in men receiving no meal, a high-fat meal, no meal and 3 cigarettes, or a 5 

high-fat meal and 3 cigarettes [8]. Fat was found to be the only significant parameter impacting on 6 

postprandial endotoxemia [8]. Consistently, Ghoshal et al. show in mice that forced feeding with 7 

triolein leads to an increase of endotoxemia after 90 minutes [68]. Conversely, feeding with 8 

tributyrin or chemically preventing chylomicron secretion blunted postprandial endotoxemia [68].  9 

Most recently, we have shown in healthy non-smoking humans that the digestion of a mixed 10 

breakfast, containing various types of lipids (animal, vegetal) in emulsified and non-emulsified 11 

forms, results in a transient elevation of endotoxin in plasma and an increase of sCD14 [9]. This 12 

can explain the significant peak of inflammatory cytokine IL-6 that we observed 2 h after the 13 

mixed meal (Figure 2A). Moreover, LPS appeared to be partly transported by chylomicrons 14 

(Figure 2A), as observed by endotoxemia measurements and LPS immunogold labelling on 15 

purified chylomicrons [9]. 16 

Altogether, these results show that high fat diet can result in increased endotoxemia, which in turn 17 

could be triggered by repeated ingestions of single high fat meals. Indeed, lipid digestion and 18 

chylomicrons secretion can promote intestinal absorption of LPS from gut microbiota [9, 68], 19 

which could contribute to postprandial inflammatory responses [69, 70] and thus to the onset and 20 

maintenance of chronic low-grade inflammation.  21 

 22 

6. New insights: where dietary fat properties and lipid absorption kinetics might impact on 23 

endotoxemia and inflammation 24 

Elevated postprandial lipemia, due to postprandial chylomicron concentration, is known to 25 

have a deleterious impact on cardiovascular risk [71]. Particularly, new interest has recently arised 26 

in the literature regarding the metabolic importance of the kinetics of lipid absorption during 27 

digestion, which can be modulated by dietary fat structure [72, 73]. In food products, most fatty 28 

acids are esterified in the form of triacylglycerols (TAG) that are digested in the stomach and in 29 

the small intestine through the action of specific lipases [74-76]. After the pancreatic lipolysis, 30 

free fatty acids and 2-monoacylglycerols are released, which are mainly absorbed by enterocytes. 31 

In the latter, lipolysis products are re-esterified as TAG, secreted into lymph and further released 32 

in the bloodstream in chylomicrons [74, 77]. 33 

The recent findings about postprandial endotoxemia and inflammation suggest a new role of 34 

the lipid digestion/chylomicron secretion phase, in promoting an immune response. Very recently, 35 
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we have shown that the postprandial lipemia of rats was increased when fed a fine emulsion of 1 

sunflower oil with lecithin as emulsifier, compared to unemulsified sunflower oil [9]. This finding 2 

was consistent with another recent report in humans showing that the absorption of n-3 PUFA was 3 

higher from an emulsion than from the originate oil [78]. Most importantly, our results show that 4 

postprandial endotoxemia was increased after emulsion vs oil feeding, with AUC of LPS being 5 

correlated with AUC of TAG during digestion (Figure 2B, [9]). This correlation appears to be 6 

due to the role of chylomicrons in postprandial LPS transport [9, 68]. 7 

Now, it appears that the kinetics of postprandial lipemia and chylomicron secretion can be 8 

modified by dietary fat properties. Regarding fatty acid composition of dietary fat, Mekki et al. 9 

observed that butter in a meal resulted in (i) lower postprandial lipemia and chylomicron 10 

accumulation and (ii) smaller chylomicrons, than emulsified vegetable oil [79]. Regarding TAG 11 

molecular structure, dietary fats that contain mostly SFA at the sn-2 position of their TAG are 12 

reported to induce a higher and more prolonged postprandial lipemia [80]. Moreover, obese 13 

subjects can be more sensitive than lean ones regarding the modulation of postprandial lipemia by 14 

different TAG structures [81]. In general, long chain saturated fatty acids esterified to the sn-1 and 15 

sn-3 positions are less prone to be absorbed, due to their possible saponification as calcium soaps 16 

in the gastrointestinal tract that are excreted in stools [82-84]. Moreover, long chain saturated fatty 17 

acids present a higher solid proportion (so-called solid fat content, SFC) at 37°C, which is 18 

reported to play an important role in limiting fat absorption [85, 86], especially in obese humans 19 

[81]. Some studies have also shown that differently emulsified lipids [87-90] and differently 20 

structured dairy products [91-95] result in different lipolysis and lipemia profiles, as previously 21 

reviewed [72, 96, 97]. We may thus wonder whether the biochemical and physicochemical 22 

properties of dietary fats could contribute to modulate LPS absorption during digestion, due to 23 

their effects on overall lipid absorption and chylomicron secretion. 24 

In induced septic endotoxemia in animal models, the composition of dietary lipids was 25 

reported to affect inflammatory response and even death outcomes. For example in mice, it was 26 

shown, that a high saturated fat and cholesterol diet increased the sensitivity of mice to LPS, and 27 

the release of Il-6 and TNF- [65]. Rats fed medium-chain TAG during 1 week presented a higher 28 

survival score and lower liver alterations after intraveinous infusion of a dose of LPS than their 29 

counterparts fed with corn oil presenting 100% death and acute liver alterations by infiltration & 30 

activation of Küpffer cells [98]. During digestion, short- and medium chain fatty acids are 31 

absorbed directly by the portal vein to be oriented towards -oxidation in the liver [74, 99]. 32 

Moreover, other recent results in rats show that medium chain TAG would protect against 33 

lipotoxicity and insulin resistance induced by high fat diet, compared to long chain saturated TAG 34 

that are usually reported to be deleterious [100]. Dietary phospholipids may also present 35 
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nutritional benefits in the regulation of lipemia and chronic metabolic outcomes in the context of 1 

high fat diets [72, 101]. 2 

Consequently, choosing adapted molecular lipid fomulations (fatty acid profile, PL vs TAG) 3 

and modifying the kinetics of lipid absorption and chylomicron secretion can be possible 4 

strategies to reduce postprandial endotoxin absorption and/or the metabolic consequences 5 

regarding low-grade inflammation (Figure 3). 6 

 7 

7. Conclusion 8 

The relationship between fat-rich diets and endotoxemia is an emerging concept, which could 9 

explain the onset and maintenance of the subclinical inflammatory state that enhances the 10 

development of insulin resistance. Recent results support the concept that the digestion of 11 

dispersed dietary lipids can enhance absorption of endogenous endotoxins. The long-term 12 

consequences of such postprandial endotoxemia in the context of high fat diets in humans, and the 13 

underlying mechanisms, remain to be further explored. Moreover, adapted lipid formulations and 14 

their physical structuration can change both the extent and kinetics of postprandial endotoxemia. 15 

Therefore, optimizing the quantity, composition, physicochemical properties and emulsification 16 

state of dietary fats can be possible strategies to limit postprandial endotoxemia, with the aim of 17 

preventing low-grade inflammation. In the current context of obesity and cardiovascular disease 18 

outbreak, the links between dietary lipid properties, inflammation and interactions with intestinal 19 

microbiota appear to be complex, thus justifying the need for interdisciplinary studies in the 20 

future.  21 
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Figure caption 1 

Figure 1. (A) Typical structure of bacterial endotoxins (lipopolysaccharides, LPS). (B) 2 

Proinflammatory cascade induced by LPS. 3 

LBP: Lipopolysaccharide-binding protein; mCD14: membrane cluster of differentiation 14; 4 

TLR4: toll-like receptor 4; MD2: myeloid differentiation protein-2; NFkB: nuclear factor kB; IL6: 5 

interleukin-6 (inflammatory cytokine). 6 

 7 

Figure 2. (A) Digestion of a mixed breakfast with 33 g lipids induces postprandial increase in 8 

plasma LPS, sCD14 and IL-6 in healthy humans; LPS being partly adsorbed onto chylomicrons 9 

(adapted from Laugerette et al. [9]). 10 

(B) Postprandial endotoxin accumulation (AUC of endotoxemia during 6 h of digestion) depends 11 

on dietary fat presence and emulsification state in force fed lean rats (adapted from Laugerette et 12 

al. [9]). 13 

 14 

Figure 3. Possible impact of dietary lipids on postprandial lipid and LPS absorption and metabolic 15 

outcomes. 16 

Obesity and Type 2 Diabetes are characterized by altered profile of intestinal microbiota and by 17 

altered lipid metabolism. 18 

During lipid digestion, endotoxins from microbiota are absorbed along with lipids and can be 19 

vehicled by chylomicrons. 20 

In a healthy pattern, lipids are mostly oxidized and endotoxins are cleared by the liver. 21 

In a metabolic dysfunction pattern (obesity, type 2 diabetes), lipids are more oriented towards 22 

storage in the adipose tissue and more circulating endotoxins contribute to generate low-grade 23 

inflammation. 24 
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