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Robust Rician Noise Estimation for MR Images

In this paper, a new object-based method to estimate noise in magnitude MR images is proposed. The main advantage of this object-based method is its robustness to background artefacts such as ghosting. The proposed method is based on the adaptation of the Median Absolute Deviation (MAD) estimator in the wavelet domain for Rician noise. The MAD is a robust and efficient estimator initially proposed to estimate Gaussian noise. In this work, the adaptation of MAD operator for Rician noise is performed by using only the wavelet coefficients corresponding to the object and by correcting the estimation with an iterative scheme based on the SNR of the image. During the evaluation, a comparison of the proposed method with several state-of-the-art methods is performed. A quantitative validation on synthetic phantom with and without artefacts is presented. A new validation framework is proposed to perform quantitative validation on real data. The impact of the accuracy of noise estimation on the performance of a denoising filter is also studied. The results obtained on synthetic images show the accuracy and the robustness of the proposed method. Within the validation on real data, the proposed method obtained very competitive results compared to the methods under study.

Introduction

In MR image analysis, the estimation of the noise level in an image is a mandatory step that must be addressed to assess the quality of the analysis and the consistency of the image processing technique. The noise variance is also an important measure for many image processing techniques such as denoising or registration. Furthermore, procedures that employ statistical analysis techniques, such as functional MR imaging or voxel-based morphometry, often based their conclusions on assumptions about the underlying noise characteristics [START_REF] Sendur | Multiple hypothesis mapping of functional mri data in orthogonal and complex wavelet domains[END_REF].

Usually, the real and imaginary parts of the MR complex raw data are considered corrupted by white additive Gaussian noise, where the noise variance is assumed to be the same in both parts (real and imaginary) [START_REF] Gudbjartsson | The Rician distribution of noisy MRI data[END_REF][START_REF] Henkelman | Measurement of signal intensities in the presence of noise in MR images[END_REF]. By taking the magnitude of the complex data, the noise is transformed into Rician noise [START_REF] Aja-Fernandez | Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach[END_REF][START_REF] Gudbjartsson | The Rician distribution of noisy MRI data[END_REF][START_REF] Henkelman | Measurement of signal intensities in the presence of noise in MR images[END_REF][START_REF] Koay | Analytically exact correction scheme for signal extraction from noisy magnitude MR signals[END_REF][START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF]. Noise in magnitude MR images can be well modeled by a Rician distribution when computed from a single complex raw data [START_REF] Constantinides | Signal-to-noise measurements in magnitude images from nmr phased arrays[END_REF][START_REF] Dietrich | Influence of multichannel combination, parallel imaging and other reconstruction techniques on mri noise characteristics[END_REF][START_REF] Henkelman | Measurement of signal intensities in the presence of noise in MR images[END_REF][START_REF] Koay | Analytically exact correction scheme for signal extraction from noisy magnitude MR signals[END_REF], but may not model the noise correctly for other types of acquisitions. For example, in multichannel signal acquisition reconstructed by the sum of squares of the complex images, the noise distribution can be described by noncentral χ-distribution [START_REF] Constantinides | Signal-to-noise measurements in magnitude images from nmr phased arrays[END_REF][START_REF] Dietrich | Influence of multichannel combination, parallel imaging and other reconstruction techniques on mri noise characteristics[END_REF][START_REF] Dietrich | Measurement of signal-to-noise ratios in mr images: Influence of multichannel coils, parallel imaging, and reconstruction filters[END_REF]. Moreover, in case of parallel imaging (i.e. multichannel signal acquisition with parallel reconstruction), the noise amplitude varies according to the spatial localization in the image and can follow Rician or χ-distribution according to the reconstruction technique [START_REF] Dietrich | Influence of multichannel combination, parallel imaging and other reconstruction techniques on mri noise characteristics[END_REF][START_REF] Dietrich | Measurement of signal-to-noise ratios in mr images: Influence of multichannel coils, parallel imaging, and reconstruction filters[END_REF][START_REF] Dietrich | Magnetic resonance noise measurements and signal-quantization effects at very low noise levels[END_REF].

In this paper, we consider only the cases where the Rician model can be used. Conventionally, the Rician noise is i ) described by Rayleigh distribution in the background [START_REF] Aja-Fernandez | Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach[END_REF][START_REF] Gudbjartsson | The Rician distribution of noisy MRI data[END_REF][START_REF] Henkelman | Measurement of signal intensities in the presence of noise in MR images[END_REF][START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF] (i.e. the signal of air in the background is considered to be zero), and ii ) approximated by Gaussian noise in the foreground when Signal Noise Ratio (SNR) is high enough (> 3 [START_REF] Nowak | Wavelet-based rician noise removal for magnetic resonance imaging[END_REF]). These models for background and foreground noise distribution have been used in the majority of noise estimation methods [START_REF] Aja-Fernandez | Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach[END_REF][START_REF] Sijbers | Estimation of the noise in magnitude MR images[END_REF][START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF]. However, the Rayleigh model of the background can fail when ghosting artefacts are present (i.e. non-zero signal) [START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF], and the Gaussian approximation of foreground is no longer valid for images with low SNR [START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF].

In the past, measuring the Rician noise variance has been done by using one or more MR images. A relatively simple approach to estimate the Rician noise variance is to use the difference between two matched images of the same object [START_REF] Murphy | Signal-to-noise measures for magnetic resonance imagers[END_REF]. Although the technique is simple to implement, its efficiency relies heavily on the correct alignment of the two images. Therefore, techniques that use a single image may be preferred. The first methods using a single image were based on manual selection of uniform signal or non-signal regions [START_REF] Henkelman | Measurement of signal intensities in the presence of noise in MR images[END_REF][START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF]. However such techniques are time consuming and have a high intra and inter user variability.

Naturally, some automatic techniques have been proposed [START_REF] Aja-Fernandez | Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach[END_REF][START_REF] Sijbers | Estimation of the noise in magnitude MR images[END_REF][START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF][START_REF] Van Kempen | Influence of background estimation on the superresolution properties of nonlinear image restoration algorithms[END_REF]. Usually, these methods use the histogram of the background and some properties of the Rayleigh distribution. A common manner to measure the Rician noise variance in magnitude MR images with large enough background areas is to estimate it from the mode of the histogram [START_REF] Sijbers | Estimation of the noise in magnitude MR images[END_REF][START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF][START_REF] Van Kempen | Influence of background estimation on the superresolution properties of nonlinear image restoration algorithms[END_REF]. Recently, a new noise Rician variance estimation method based on maximum likelihood (ML) estimation from a partial histogram was presented by Sijbers [START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF]. More recently, Aja et al. [START_REF] Aja-Fernandez | Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach[END_REF] presented a set of new methods for noise estimation based on local statistics that are able to estimate the noise variance from the background but also from the imaged object in a very simple and efficient manner.

In this paper, an adaptation of the Median Absolute Deviation (MAD) estimator in the wavelet domain is proposed for Rician noise. This robust and efficient estimator has been proposed by Donoho [START_REF] Donoho | De-noising by Soft-Thresholding[END_REF] for Gaussian noise and since has been widely used in image processing. We propose to adapt this operator for Rician noise by using only the wavelet coefficients corresponding to the object and then iteratively correcting the MAD estimation with an analytical scheme based on the SNR of the image [START_REF] Koay | Analytically exact correction scheme for signal extraction from noisy magnitude MR signals[END_REF]. The second aim of this paper is to compare some of the previously mentioned state-of-the-art methods against our method using synthetic data (with and without artefacts) and clinical datasets.

The structure of this paper is as follows: Section 2 gives a brief overview of the theoretical aspects of the noise properties in MR images. Section 3 presents the proposed Rician MAD estimator. Section 4 describes the state-of-the-art methods used during the comparison. Section 5 presents the synthetic data experiments, Section 6 the real data experiments and the section 7 the study on denoising performance. Finally, Section 8 discusses the applicability of the proposed method and future extensions of the proposed work.

Noise in MR images

As mentioned in the introduction, when MR images are computed using the magnitude of a single complex raw data, the distribution of noise can be modeled with a Rician distribution [START_REF] Dietrich | Influence of multichannel combination, parallel imaging and other reconstruction techniques on mri noise characteristics[END_REF][START_REF] Dietrich | Measurement of signal-to-noise ratios in mr images: Influence of multichannel coils, parallel imaging, and reconstruction filters[END_REF][START_REF] Gudbjartsson | The Rician distribution of noisy MRI data[END_REF][START_REF] Henkelman | Measurement of signal intensities in the presence of noise in MR images[END_REF][START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF]:

p(m) = m σ 2 n exp(- m 2 + A 2 2σ 2 n )I 0 ( Am σ 2 n ). ( 1 
)
where σ n is the standard deviation (STD) of Gaussian noise in the complex domain, A is the amplitude of the signal without noise, m is the value in the magnitude image and I 0 is the zeroth order modified Bessel function [START_REF] Rice | Mathematical Analysis of Random Noise[END_REF]. This model is used by the majority of the noise estimation methods [START_REF] Aja-Fernandez | Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach[END_REF][START_REF] Sijbers | Estimation of the noise in magnitude MR images[END_REF][START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF]. Most of these methods can be classified as: i) methods that use background areas to estimate the noise variance and ii ) methods that use the image object itself.

• For the background-based methods, where the signal is usually considered as zero in background (i.e. SNR = 0), the Rician distribution is a Rayleigh distribution [START_REF] Edelstein | A signal-to-noise calibration procedure for NMR imaging systems[END_REF][START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF]:

p(m) = m σ 2 n exp(- m 2 2σ 2 n ). (2) 
Based on the properties of the Rayleigh distribution, the mean mb and the variance σ 2 b of the noise in the background can be related to σ n :

m b = π 2 σ n (3) 
σ 2 b = 4 -π 2 σ 2 n ( 4 
)
The assumption that SNR = 0 in the background may not be valid in the presence of ghosting artefacts [START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF], while the Rayleigh distribution assumption can be corrupted by using reconstruction filters [START_REF] Dietrich | Influence of multichannel combination, parallel imaging and other reconstruction techniques on mri noise characteristics[END_REF][START_REF] Dietrich | Measurement of signal-to-noise ratios in mr images: Influence of multichannel coils, parallel imaging, and reconstruction filters[END_REF][START_REF] Landman | Diffusion Tensor Estimation by Maximizing Rician Likelihood[END_REF], by the suppression of the signal by the scanner [START_REF] Dietrich | Measurement of signal-to-noise ratios in mr images: Influence of multichannel coils, parallel imaging, and reconstruction filters[END_REF][START_REF] Landman | Diffusion Tensor Estimation by Maximizing Rician Likelihood[END_REF] or by zero-padding in the Fourier domain [START_REF] Landman | Diffusion Tensor Estimation by Maximizing Rician Likelihood[END_REF]. Finally, the noise level in the background may not be representative of the noise level inside the tissue [START_REF] Dietrich | Influence of multichannel combination, parallel imaging and other reconstruction techniques on mri noise characteristics[END_REF][START_REF] Landman | Diffusion Tensor Estimation by Maximizing Rician Likelihood[END_REF]. • For the object-based methods with high SNR (i.e. SNR > 3) [START_REF] Gudbjartsson | The Rician distribution of noisy MRI data[END_REF][START_REF] Nowak | Wavelet-based rician noise removal for magnetic resonance imaging[END_REF], the Rician distribution can be well approximated using a Gaussian distribution:

p(m) ≈ 1 2πσ 2 n exp(- (m 2 -A 2 + σ 2 n ) 2 2σ 2 n ). (5) 
This approximation enables us to use all the classical methods proposed for Gaussian noise estimation. Nevertheless, for low SNR, this approximation is no longer valid [START_REF] Gudbjartsson | The Rician distribution of noisy MRI data[END_REF][START_REF] Nowak | Wavelet-based rician noise removal for magnetic resonance imaging[END_REF][START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF].

Proposed method

In order to relax the assumptions performed by background-based methods (i.e. no signal in the background) and the object-based methods (Gaussian noise approximation), we propose an adaptation of the MAD estimator in wavelet domain [START_REF] Donoho | De-noising by Soft-Thresholding[END_REF][START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF] for Rician noise.

MAD estimator

The wavelet transformation is usually used to obtain a space-frequency representation of images. By using the usual notation for 3D wavelet decomposition: LLL denotes the low sub-band containing the feature information whereas LHH, LHL, LLH, HLL, HLH, HHL and HHH denote the high sub-bands containing the detailed information. The highest sub-band HHH is essentially composed of coefficients that correspond to the noise [START_REF] Donoho | De-noising by Soft-Thresholding[END_REF][START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF]. The capacity of the wavelet transforms to distinguish between noise and structure has been used in denoising methods to remove or reduce the coefficients corresponding to the noise components over the detailed sub-bands [START_REF] Donoho | De-noising by Soft-Thresholding[END_REF][START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF]. The fact that the highest sub-band HHH is mainly composed of the coefficients corresponding to the noise has been used by Donoho [START_REF] Donoho | De-noising by Soft-Thresholding[END_REF][START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF] to propose a robust estimation of noise variance. Based on the MAD estimator, this method enables the estimation of the noise variance in presence of Gaussian noise:

σ = median(|y i |) 0.6745 (6) 
where y i are the wavelet coefficients of the HHH sub-band and σ the estimation of noise in magnitude image. The noise in magnitude image σ will be called "magnitude noise" as in [START_REF] Koay | Analytically exact correction scheme for signal extraction from noisy magnitude MR signals[END_REF] in the following. As long as the y i coefficients corresponding to the object are considered and the SNR is high enough, the Gaussian approximation of Rician noise leads to σn = σ.

Rician adaptation

To obtain an unbiased estimation of σ n for all the SNR values, we propose to use the correction procedure introduced by Koay et al in [START_REF] Koay | Analytically exact correction scheme for signal extraction from noisy magnitude MR signals[END_REF]. This analytical correction is based on an iterative estimation of the SNR in presence of Rician noise. In our case, the estimation σ, obtained using the MAD estimator on the object, is used to initialize the procedure:

σn = σ2 /ξ(θ) (7) 
where θ is the SNR value and ξ is the correction factor, which is expressed as:

ξ(θ) = 2 + θ 2 - π 8 × exp - θ 2 2 (2 + θ 2 )I 0 θ 2 4 + θ 2 I 1 θ 2 4 2 (8) 
where I 1 is the first order modified Bessel function. The correction factor is iteratively applied until convergence of the procedure or when a given number of iterations t is achieved. The distance |θ t -θ t-1 | can be used as stop criterion.

The resulting iterative correction scheme can be written as:

θ t = ξ(θ t-1 ) 1 + m o σ -2 (9)
where m o is the mean signal of the object and σ the first estimation from MAD estimator. The correction factor ξ(θ t ) from the last iteration is finally used in Eq. 7.

Object extraction

The STD estimation of the "magnitude noise", σ, is solely based on the wavelet coefficients corresponding to the object. To extract the object we take advantage of the wavelet transform. Since the noise information is mainly contained in the highest sub-bands, the LLL sub-band contains a less noisy version of the image which can be used to facilitate the segmentation procedure. At the first level of decomposition, the size of LLL and HHH are identical. Thus, at this level of decomposition, we proposed to segment the object in the LLL sub-band and to use the obtained mask to extract the y i coefficients corresponding to the object in the HHH sub-band. The segmentation is performed using a simple K-means (k=2) classification [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF].

For an image with a low level of noise, the MAD estimation tends to be spoiled since the HHH sub-band is mainly composed of information corresponding to the high gradient (HG) areas (i.e. edges) of the image. To further increase the accuracy of the estimation at low noise levels, voxels with the highest local gradient are excluded from the estimation (i.e. removed from the segmented mask). Accordingly, we eliminate all those voxels whose the local gradient magnitude is higher than the median local gradient magnitude in the LLL subband. A comparison of the MAD estimation of the "magnitude noise" STD over the segmented mask with and without HG is proposed in the experiment section.

The use of more elaborate wavelet decomposition such as Dual-Tree (DTWT) or Complex Dual-Tree (DTCWT) [START_REF] Selesnick | The dual-tree complex wavelet transform[END_REF] can improve wavelet-based image processing [START_REF] Meyer | Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B[END_REF]. In our method we use classical wavelet transform (WT) [START_REF] Mallat | A theory for multiresolution signal decomposition: The wavelet representation[END_REF] as implemented in http://taco.poly.edu/WaveletSoftware/standard3D.html.

A comparison of the MAD estimator applied on WT and on DTWT is provided in the experiments section.

Evaluated Methods

In this section, we provide a brief description of the five methods used during the experiments. The original papers can be referred to for more details.

Background-based methods

The first is a method proposed by Sijbers et al. [START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF] which is based on the maximum likelihood estimation principle over a partial histogram H p . The ML estimate is found by maximizing the likelihood function L with respect to the standard deviation of noise σ n using the first K bins of the histogram with a Rayleigh distribution assumption for the background:

σn = arg max σn L(σ n , H p ) (10) 
The optimal number of bins, K, of the partial histogram is automatically estimated from the bias and the variance of the estimator σn .

The two other background estimators were recently proposed by Aja et al. 

with local means and:.

σn = 4 -π 2 N N -1 mode(v) (12) 
with local variances, where N is is the number of data points used to calculate the local variances.

Object-based methods

The two object-based methods are the MAD estimator and the estimator based on local variances v proposed by Aja et al. in [START_REF] Aja-Fernandez | Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach[END_REF]. This estimator has been proposed when no background is available in the image and is based on a Gaussian approximation of the noise within the object:

σn = mode(v) (13) 
5 Experiments on Synthetic data

In this section, the description of the material used such as the Rician noise simulation or the ghosting artefacts construction is first described. The estimation of the STD of "magnitude noise" is then studied. To achieve this, the capability of the proposed method based on MAD estimator to estimate σ over the HHH subband is studied on a constant image and on a T1-w phantom. A validation framework is finally proposed to study the accuracy and the robustness of the STD estimation of Rician noise σ n provided by the different methods.

Material

Phantom data

To evaluate the different methods, synthetic T1-weighted MR data from the Brainweb database [START_REF] Cocosco | Brainweb: Online interface to a 3D MRI simulated brain database[END_REF][START_REF] Collins | Design and construction of a realistic digital brain phantom[END_REF][START_REF] Kwan | MRI simulation-based evaluation of image-processing and classification methods[END_REF] was corrupted with different levels of Rician noise (2 to 15%). In this paper, 2% of noise is equivalent to N (0, ν 2 100 ), where ν is set to 255, the maximum intensity of the original 8bit encoded image. All the synthetic data are converted into 32bit encoded images before adding noise, in order to avoid quantification artefact during experiment on phantom [START_REF] Dietrich | Magnetic resonance noise measurements and signal-quantization effects at very low noise levels[END_REF]. The Rician noise was built from white Gaussian noise in the complex domain:

• I r = A + η 1 , η 1 N (0, σ n ) • I i = η 2 , η 2 N (0, σ n )
where A is the noise free "ground truth" from Brainweb, I r is the real component, I i is the imaginary component, and σ n is the standard deviation of the added white Gaussian noise. The noisy image is computed as:

m = I 2 r + I 2 i ( 14 
)
As shown in [START_REF] Aja-Fernandez | Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach[END_REF], the size of the background has an impact on the accuracy of the background-based methods. Smaller backgrounds lead to more difficult estimations. In order to perform a fair comparison, zero padding of the Brain-web volume of 181 × 217 × 181 voxels was perfromed to obtain a volume of 256 × 217 × 256 voxels.

Original 2%

% 15%

Fig. 1. Simulation of Rician noise for different levels.

Intensity inhomogeneities

MR images are normally affected by intensity inhomogeneities produced during the image acquisition process. Such inhomogeneities can affect the noise measurement process. To investigate the effect of such inhomogeneities on the performance of the different noise estimation methods, the bias field in in the Brainweb simulator was applied to the data. For our experiments, a 20% inhomogeneity level was chosen. As the bias field only affects the imaged object, the background methods should not be impacted by this artefact.

Ghosting artefacts

Ghosting artefacts were implemented by using a repeated filtered version of the original image. First, the image is low-pass filtered with two gaussian kernels of different size (3 × 3 × 3 and 5 × 5 × 5). Then, the absolute difference of the two filtered images is added to the original image with a half field of view offset (see Fig. 2).

Compared methods

During our experiments on σ n estimation, we compared the following methods: • a background-based method proposed by Sijbers [START_REF] Sijbers | Automatic estimation of the noise variance from the histogram of a magnetic resonance image[END_REF]; denoted as "ML" and described in section 4.1. The Sijbers method was applied using a histogram with 1000 bins. Local Variances in Object, and described in section 4.2. For this method, a local neighborhood of 3 × 3 × 3 voxels was used. In contrast to the background, the object has smaller homogeneous areas. As a result, we have reduced the spatial extends of our local neighborhood. • the classical MAD estimator estimated on the object [START_REF] Donoho | De-noising by Soft-Thresholding[END_REF]. The object was segmented in the wavelet domain without removing high gradient areas. • the proposed robust MAD for Rician noise estimated on the object and denoted as RMAD (see section 3).

Validation of σ estimation

On a constant image

First, the capability of the MAD estimator to estimate the STD of "magnitude noise" in an easy case (i.e. without structure information within the highest wavelet subband) has been studied. To achieve this, an image with constant intensity c close to the mean intensity of tissues included in the mask (i.e. c = 100) has been created. Different levels of Rician noise were then applied from 2% to 15%. The true value of σ and the estimation provided by the MAD estimation σ was compared. Equation 15 was used to compute the STD of the applied "magnitude noise" σ. The experiment was repeated ten times, each with a new instantiation of noise, for each noise level.

σ = σ 2 n .ξ(θ) (15) 
The SNR θ is simply computed as θ = c/σ n .

Figure 3 shows the result of the experiment. For all the levels of noise, the error in MAD estimation is inferior to 0.25%. This experiment shows that the MAD estimator is able to robustly estimate the STD of "magnitude noise" for a large range of noise levels. Moreover, this experiment shows that the coefficients in HHH subband are able to properly describe the noise STD.

Fig. 3. Ratio between the standard deviation of "magnitude noise" σ and the estimation given by MAD on a constant image.

On T1-w phantom

The second experiment has been designed to show: a) the impact of the highest gradient (HG) removal on the MAD estimator, b) the capability of the proposed approach (segmentation in wavelet domain with K-means and MAD estimation over the object wavelet coefficients) to robustly estimate the STD of "magnitude noise", c) the impact between using classical separable wavelet transform and the dual tree wavelet transform (DTWT), and d) the ability of coefficient in HHH subband to fully-describe the "magnitude noise" STD in a realistic situation.

As in the previous experiment, we compared the true value of σ and the estimation provided by the MAD estimator: σ. In this case, the SNR was computed by using the mask (provided by K-means segmentation in wavelet domain on the noisy image) on the original noise-free image in order to get the true mean signal value µ. The SNR θ was computed as θ = µ/σ n . Finally, Equation 15 has been used to obtain σ. The experiment has been repeated ten times, each with a new instantiation of noise, for each noise level.

Fig. 4. Ratio between the standard deviation of "magnitude noise" σ and the estimation given by MAD estimator on a T1-w phantom image.

Figure 4 shows the result of the comparison between MAD estimation, MAD estimation without HG areas and MAD estimation without HG on Dual Tree decomposition. As previously mentioned, at low levels of noise, the MAD estimator tends to overestimate the noise level. However, HG removal divides the error by a factor 3 at 2% noise level. Moreover, if the MAD estimation without HG on DTWT provided more stable (smaller variance) than the MAD estimation without HG on WT, the accuracy of the estimation is not better over all the noise levels. Due to the additional computational burden and memory requirement needed by DTWT compared to WT, especially in 3D, we have chosen to use classical WT in the proposed method.

Validation of σ n estimation

To study the accuracy of the evaluated methods to estimate the Rician noise STD σ n , the ratio between the estimated standard deviation σn and the applied standard deviation σ n is computed for all the levels of noise. Moreover, the Mean Absolute Error over all the levels of noise is also used. The absolute error for a given level of noise is computed as:

error = |1 - σ n σn | (16) 
All the experiments were repeated 10 times, each with a new instantiation of noise, for each noise level and the average results are presented.

"Ideal case"

Figure 5 (on top) shows the experimental results on the phantom without artefacts. For this "ideal case", all the methods provide a satisfying result, especially the methods based on local statistics of the background (LMB and LVB) and the proposed RMAD. These estimators demonstrated small mean absolute errors (< 1%). The LMB method provided the best result for this experiment.

Compared to the MAD estimator, the ability of the RMAD method to correctly estimate the higher levels of noise (i.e. where the Gaussian assumption failed) can be attributed to the SNR based correction factor. Moreover, the RMAD provided better estimations of the noise at low level by removing the high gradients before the MAD computation.

As expected, for high levels of noise, the Gaussian assumption used by MAD and LVO failed and these methods provided an underestimation. For low levels of noise, the LVO method produced an overestimation of σ n since the local variances contain edges information, thus artificially increasing the variance of noise. The LVO method also has the largest variability of estimation at all levels of noise.

Impact of Ghosting artefact

Figure 5 (on middle) shows the results on the phantom with ghosting artefacts. The wavelet-based methods produced similar results compared to the results obtained in "ideal case". The LVO method seems to be negatively affected due to the extra edge information added in the image. As expected, the most impacted methods are the background-based methods. In fact, the assumption of zero signal in the background is spoiled by ghosting. All these methods tend to overestimate the noise level, especially the ML method. The LMB method still obtained very good results. Finally, the RMAD method obtained the best result.

Impact of inhomogeneities

Figure 5 (on bottom) shows the results on the phantom with ghosting artefacts and inhomogeneities. Contrary to an expected error increase from the objectbased approaches, the inhomogeneities did not impact the performance of these methods. The robust methods used by these approaches (wavelet and local variance) seem to protect them against this kind of artefact.

Experiments on Clinical data

In this section, we proposed a new evaluation framework on real data. The validation of noise estimation methods in clinical context is a challenging prob-lem due to the absence of "ground truth". In our experiments, we proposed to use a bronze standard to quantify the performance of each method on two datasets composed of single-channel (1CH) T1-w MR data from two different sites. Saturation of the contrast is used to highlight the ghosting artefacts.

Background extraction

In order to estimate the noise level in the real images, we used a region-based approach that is similar to the manual selection procedure usually used in the clinical environment.

Moreover, in order to perform a fair comparison, we used a background-based method to build our bronze standard. Given the large number of data volumes in the study, and the fact that we wanted to minimize intra-and inter-rater variability in noise estimation, we opted to use an automatic quality control (aQC) software tool [START_REF] Gedamu | Automated quality control of brain MR images[END_REF] to identify the background region of interest (ROI).

Experiments in [START_REF] Gedamu | Automated quality control of brain MR images[END_REF] show that this method is robust, accurate, and highly correlated with manual methods.

The aQC is a series of pipelined tests that are designed to assess the quality of MR brain images. Most of the tests are based on the statistical analysis of selected regions of interest (see Fig. 7), three of which are associated with noise regions (region 1: four corners that surround the head, region 2: anterior to the head, region 3: posterior to the head, and region 4: regions lateral to the head). To determine the noise level, we used the region anterior to the head (region 2). In [START_REF] Gedamu | Automated quality control of brain MR images[END_REF], it has been shown that this region contains less artefacts, thus provides a robust estimation of the background noise. The other two regions were susceptible to flow artifacts based on the position of the head and phase encode direction. This occurs primarily in the region posterior to the head.

All the ROIs that are used by the aQC reside in the standard MNI coordinate space. Accordingly, for each subject, the selected ROI is registered from MNI-space to the image's native coordinate space. Once the ROI is aligned to the image of interest d, its background mb (d) is extracted. By the way, we extracted the original background values avoiding interpolation of image intensities, and prevents the modification of noise characteristic [START_REF] Rohde | Estimating intensity variance due to noise in registered images: applications to diffusion tensor mri[END_REF].

Noise Region 1: Noise Region 2 and 3: Noise Region 4:

Four corners surrounding Anterior and posterior Lateral 

Bronze standard

The estimation of a Bronze standard on real images is not an easy task since the ground truth is unknown. In our study, we have chosen to use the assumption that the noise level for a given sequence on the same scanner should be constant. Based on this idea, the noise regions extracted from the backgrounds of MR images are used to estimated an average level of noise over all the data from a same site. To estimate this average level of noise, the properties of the second-order moment of a Rician distribution are used. For a random variable m following a Rician distribution this moment can be written as:

E(m 2 ) = A 2 + 2σ 2 n ( 17 
)
By using the assumption of SNR = 0 in the background:

σ n = E(m 2 b ) 2 (18) 
Finally, for a given site, the Bronze standard can be computed from the mean of the squared values extracted from backgrounds of all the data d:.

σn = M 2 b 2 , M 2 b = ( m2 b (1), ..., m2 b (D)) (19) 
where m2 b (d) is the vector containing the squared value of noise extracted from the background of data d and M 2 b is the concatenation of the squared signal from all the data. This procedure is performed independently for each site. The region anterior to the head (region 2) tends to minimize the presence of background artefacts in the extracted background. The visual inspection of the m2 b (d) has confirmed that the used regions were minimally impacted by ghosting. Moreover, by computing the mean value over a large number of datasets, the impact of residual non visible artefacts is drastically reduced. By the way, the extracted backgrounds may not totally free of ghosting, but the impact on the bronze standard is minimized.

Based on the same approach, the estimation of the noise level for a given data d is obtained with the region-based (RB) method by using the mean of the squared values extracted from the background of d:

σn (d) = m2 b (d) 2 (20) 
In this case, the noise estimation is less robust than the estimation used for the bronze standard since only one background region sample is involved.

Results

Fig. 8 (on top) shows the results obtained for site 1. For all the data, RMAD method provided a consistant estimation of the noise relative to the Bronze standard (small error) in a robust manner (small variance of error). The stability of the proposed method leads to a smaller error than the region-based method that was used to build the bronze standard. As assessed by experiments on synthetic phantom, the MAD estimator computed on the object tends to underestimate the noise level whereas the LVO method leads to an overestimation of the noise level. The LVB method appear to follow the MAD estimation and the RMAD estimation according to the data. The LMB method estimated in the background is a robust and stable estimator but leads to a slight underestimation. Finally, the ML method provided a good mean absolute error but was accomplished with a high variability. Fig. 8 (on bottom) shows the results obtained for site 2. The remarks made for site 1 apply to this site as well. It should be noted that the LMB method yielded better results for this site and maintained a small mean absolute. This method provided similar result to the region-based method used for the Bronze standard estimation but with a smaller variance. For both sites, the RMAD method obtained the best results.

Experiment on denoising performance

As said in the introduction, one application of the STD noise estimation is denoising. In the literature, many approaches have been proposed for MRI denoising [START_REF] Aelterman | Removal of correlated rician noise in magnetic resonance imaging[END_REF][START_REF] Aja-Fernandez | Restoration of dwi data using a rician lmmse estimator[END_REF][START_REF] Alexander | Wavelet domain de-noising of time-courses in mr image sequences[END_REF][START_REF] Coupé | 3D wavelet subbands mixing for image denoising[END_REF][START_REF] Coupé | An Optimized Blockwise NonLocal Means Denoising Filter for 3-D Magnetic Resonance Images[END_REF][START_REF] Gerig | Nonlinear anisotropic filtering of MRI data[END_REF][START_REF] Krissian | Noise-driven anisotropic diffusion filtering of mri[END_REF][START_REF] Nowak | Wavelet-based rician noise removal for magnetic resonance imaging[END_REF][START_REF] Pizurica | A versatile wavelet domain noise filtration technique for medical imaging[END_REF][START_REF] Samsonov | Noise-adaptive nonlinear diffusion filtering of MR images with spatially varying noise levels[END_REF][START_REF] Wood | Wavelet packet denoising of magnetic resonance images: importance of Rician noise at low SNR[END_REF]. In this last experiment, we propose to study the impact of noise estimation accuracy on denoising performance of the 3D NonLocal-Means filter described in [START_REF] Coupé | An Optimized Blockwise NonLocal Means Denoising Filter for 3-D Magnetic Resonance Images[END_REF] with the Rician adaptation proposed in [START_REF] Wiest-Daesslé | Rician noise removal by non-local means filtering for low signal-to-noise ratio mri: Applications to DT-MRI[END_REF]. In our framework, the noise estimation accuracy impacts a) the filtering parameter (smoothing parameter) (see [START_REF] Coupé | An Optimized Blockwise NonLocal Means Denoising Filter for 3-D Magnetic Resonance Images[END_REF] for details) as well as b) the intensity bias correction (see [START_REF] Wiest-Daesslé | Rician noise removal by non-local means filtering for low signal-to-noise ratio mri: Applications to DT-MRI[END_REF] for details). Like the other experiments presented in this paper, the denoising algorithm has been applied ten times for each noise level from 2% up to 15% on the T1-w phantom corrupted with ghosting and inhomogeneity. The quality criterion used was the difference between the Peak Signal to Noise Ratio (PSNR) obtained with the estimation σn provided by each method (i.e. PSNR(σ n )) and the PSNR obtained with the truth σ n (i.e. PSNR(σ n )). The PSNR was computed as:

P SN R = 20 log 10 255 RM SE (21) 
where RMSE denotes the root mean square error estimated between the ground truth and the denoised image. The PSNR values were estimated only in the region of interest (cerebral tissues) obtained by removing the background (i.e. the label 0 of the discrete model in Brainweb). This has been done in order to avoid artificial increasing of PSNR due to overclamping in background.

Figures 9 and10 show the results of the experiment. In a large majority of noise levels, the proposed method demonstrates a better denoising than the other evaluated methods. The LMB method proposed by Aja et al. also obtained good results. In terms of mean absolute error, the proposed RMAD obtained the best denoising performance over all the noise levels. Visually, the denoised images obtained with the evaluated methods look very similar, indicating that the bias intensity correction is more impacted by noise estimation inaccuracy than the denoising process. In case of quantitative MR study, where the true value of intensity is required, our method has great potential. 

Discussion

In this paper, a new method based on the robust MAD estimator for Rician noise has been proposed and several state-of-the-art methods for Rician noise estimation in MR image have been compared.

Experiments on synthetic data have shown that for the "ideal case" (i.e. when an image does not contain any artefacts), the method proposed by Aja et al. based on the mode of the distribution of local means is the best option showing no systematic errors in the estimation. When ghosting artefacts are added, the proposed RMAD estimator outperforms all the compared methods.

As expected for high level of noise, the methods based on Gaussian approximation (object-based MAD and LVO methods) underestimate the noise level. Moreover, the object-based method that uses the local variances tend to overestimate the level of noise for low level of noise since the assumption of constant area in the object is not satisfied. The ML method proposed by Sijbers et al. tends to overestimate the noise variance as the noise power increases or when ghosting artefacts are added. This is probably due to the overlap of background and the imaged object distributions in the image histogram.

Experiments on real data have shown that for the two sites studied, the proposed RMAD method obtained the best result in terms of accuracy and robustness. The background-based methods had the highest variability except the LMB method which provided a robust noise estimation. These results show that the variance of background in real data is spoiled by artefacts. The MAD estimation lead to a systematic underestimation of the noise level due to Gaussian approximation. As observed for synthetic experiments, the LVO method that use the local variances on object overestimates the noise level.

Experiment on denoising have shown that the proposed method is able to obtain better denoising results than other noise estimation methods thanks to its high accuracy in the presence of artefacts.

In addition to obtaining very competitive results in "ideal" situations and better results in presence of ghosting compared to state-of-the-art background methods, our method enables the estimation of noise over the techniques compared in many other situations found in clinical routine. fact, contrary to classical background approaches, the proposed approach can be applied to situations where no background is present such as fetal imaging or images where the background is artificially set to zero by the scanner [START_REF] Dietrich | Influence of multichannel combination, parallel imaging and other reconstruction techniques on mri noise characteristics[END_REF] (see Fig. 11). Moreover, since the proposed method does not performed Gaussian approximation, our approach is able to deal with high level of noise such as noise in HARDI DTI data (see Fig. 11).

Ghosting Background set to zero by MR scanner

No background available High level of noise (e.g. Fetal imaging) (e.g. HARDI DTI data) In future work, the proposed approach should be adapted to multi-channels signal acquisitions (noncentral χ-distribution) [START_REF] Aja-Fernández | Noise estimation in single-and multiple-coil magnetic resonance data based on statistical models[END_REF][START_REF] Koay | Analytically exact correction scheme for signal extraction from noisy magnitude MR signals[END_REF] and for images with non stationary noise such as those attributed to parallel imaging (i.e. GRAPPA or SENSE). The multi-channels signal acquisitions are becoming more often used during clinical acquisitions and the investigation of methods dedicated to these images should be further investigated. Moreover, the new sequences of acquisition can produce images with correlated noise due to interpolation in K-space. The adaptation of the proposed method to correlated noise should be also investigated as done for denoising [START_REF] Aelterman | Removal of correlated rician noise in magnetic resonance imaging[END_REF][START_REF] Alexander | Wavelet domain de-noising of time-courses in mr image sequences[END_REF].
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 2 . These estimators use the robust properties of the image's local statistics (local means and local variances). The distributions of the local means μ and the local variances v are used to estimate the variances of noise under the Rayleigh distribution assumption of the background. Using the properties of the Rayleigh distribution given in Eq. 3 and Eq. 4, Aja et al. propose to estimate the noise standard deviation as follows: σn = 2 π mode(μ)

Fig. 2 .

 2 Fig. 2. Top. Right: Simulated ghosting artefacts on brainweb with 20% inhomogeneity. Left: The same image with saturation of the contrast to highlight the ghosting artefacts. Bottom. Right: The same image with 7% of Rician noise. Left: The added Rician noise.

  • two background-based methods based on local statistics [2]; denoted as LMB for the Local Means in Background and LVB for Local Variances in Background. These methods are described in section 4.1. The size of the local neighborhoods and the number of bins were 5 × 5 × 5 voxels and 1000 bins respectively.• an object-based method based on local variances[START_REF] Aja-Fernandez | Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach[END_REF]; denoted as LVO for

Fig. 5 .

 5 Fig. 5. Left: results of the compared methods for all levels of noise on the synthetic image. Right: mean absolute error over all noise levels.

  The data analyzed was acquired in the context of a multicenter clinical trial. All subjects gave written consent and the studies were approved by their respective institutions. The first dataset from site 1 was composed of 23 T1-w MR volumes of 256 × 256 × 56 voxels. These data were acquired with a 1.5T Genesis Signa GE Medical system and an 1CH head coil. The parameters of the sequence were: TR = 30ms, TE = 9ms, FOV 250 mm and bandwidth 122 kHz. The second dataset from site 2 was composed of 42 T1-w MR volumes of 256 × 256 × 60 voxels. These data were acquired with a 1.5T Genesis Signa GE Medical system and an 1CH head coil. The parameters of the sequence were: TR = 34ms, TE = 9ms, FOV = 250 mm and the bandwidth = 122 kHz. All the images are 16bit encoded. Examples of data with and without artefacts are presented in Fig.6.

Fig. 6 .

 6 Fig. 6. Left: data without ghosting artefacts. Right: data with ghosting artefacts. Saturation of the contrast is used to highlight the ghosting artefacts.

Fig. 7 .

 7 Fig. 7. Noise regions of interest obtained with automated quality control software tool [17].

Fig. 8 .

 8 Fig. 8. Left: results of the compared methods for all the data. Right: mean absolute error over all the data.

  Means denoising with σ nAbsolute removed noise

Fig. 9 .Fig. 10 .

 910 Fig. 9. From top to bottom: original image with ghosting and inhomogeneity, the same image with 7% of Rician noise, the result of the denoising with the true value σ n , the absolute removed noise.

Fig. 11 .

 11 Fig. 11. Situations where our method can be used while classical methods cannot or failed. MRI without background courtesy of Dr. G. Garcia-Marti, fetal image courtesy of Dr. Limperopoulos, DTI data courtesy of Pr. Pike.
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