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Abstract

In this paper, a new object-based method to estimate noise in magnitude MR
images is proposed. The main advantage of this object-based method is its robust-
ness to background artefacts such as ghosting. The proposed method is based on
the adaptation of the Median Absolute Deviation (MAD) estimator in the wavelet
domain for Rician noise. The MAD is a robust and efficient estimator initially pro-
posed to estimate Gaussian noise. In this work, the adaptation of MAD operator for
Rician noise is performed by using only the wavelet coefficients corresponding to the
object and by correcting the estimation with an iterative scheme based on the SNR
of the image. During the evaluation, a comparison of the proposed method with sev-
eral state-of-the-art methods is performed. A quantitative validation on synthetic
phantom with and without artefacts is presented. A new validation framework is
proposed to perform quantitative validation on real data. The impact of the ac-
curacy of noise estimation on the performance of a denoising filter is also studied.
The results obtained on synthetic images show the accuracy and the robustness
of the proposed method. Within the validation on real data, the proposed method
obtained very competitive results compared to the methods under study.
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Preprint submitted to Medical Image Analysis 25 May 2010



1 Introduction

In MR image analysis, the estimation of the noise level in an image is a manda-
tory step that must be addressed to assess the quality of the analysis and the
consistency of the image processing technique. The noise variance is also an
important measure for many image processing techniques such as denoising
or registration. Furthermore, procedures that employ statistical analysis tech-
niques, such as functional MR imaging or voxel-based morphometry, often
based their conclusions on assumptions about the underlying noise character-
istics [35].

Usually, the real and imaginary parts of the MR complex raw data are con-
sidered corrupted by white additive Gaussian noise, where the noise variance
is assumed to be the same in both parts (real and imaginary) [19,20]. By tak-
ing the magnitude of the complex data, the noise is transformed into Rician
noise [2,19–21,37]. Noise in magnitude MR images can be well modeled by a Ri-
cian distribution when computed from a single complex raw data [8,11,20,21],
but may not model the noise correctly for other types of acquisitions. For ex-
ample, in multichannel signal acquisition reconstructed by the sum of squares
of the complex images, the noise distribution can be described by noncentral
χ-distribution [8,11,12]. Moreover, in case of parallel imaging (i.e. multichan-
nel signal acquisition with parallel reconstruction), the noise amplitude varies
according to the spatial localization in the image and can follow Rician or
χ-distribution according to the reconstruction technique [11–13].

In this paper, we consider only the cases where the Rician model can be used.
Conventionally, the Rician noise is i) described by Rayleigh distribution in the
background [2,19,20,37] (i.e. the signal of air in the background is considered
to be zero), and ii) approximated by Gaussian noise in the foreground when
Signal Noise Ratio (SNR) is high enough (> 3 [29]). These models for back-
ground and foreground noise distribution have been used in the majority of
noise estimation methods [2,36,37]. However, the Rayleigh model of the back-
ground can fail when ghosting artefacts are present (i.e. non-zero signal) [37],
and the Gaussian approximation of foreground is no longer valid for images
with low SNR [37].

In the past, measuring the Rician noise variance has been done by using one or
more MR images. A relatively simple approach to estimate the Rician noise
variance is to use the difference between two matched images of the same
object [28]. Although the technique is simple to implement, its efficiency relies
heavily on the correct alignment of the two images. Therefore, techniques that
use a single image may be preferred. The first methods using a single image
were based on manual selection of uniform signal or non-signal regions [20,37].
However such techniques are time consuming and have a high intra and inter
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user variability.

Naturally, some automatic techniques have been proposed [2,36–38]. Usually,
these methods use the histogram of the background and some properties of the
Rayleigh distribution. A common manner to measure the Rician noise variance
in magnitude MR images with large enough background areas is to estimate it
from the mode of the histogram [36–38]. Recently, a new noise Rician variance
estimation method based on maximum likelihood (ML) estimation from a
partial histogram was presented by Sijbers [37]. More recently, Aja et al. [2]
presented a set of new methods for noise estimation based on local statistics
that are able to estimate the noise variance from the background but also from
the imaged object in a very simple and efficient manner.

In this paper, an adaptation of the Median Absolute Deviation (MAD) esti-
mator in the wavelet domain is proposed for Rician noise. This robust and
efficient estimator has been proposed by Donoho [14] for Gaussian noise and
since has been widely used in image processing. We propose to adapt this
operator for Rician noise by using only the wavelet coefficients corresponding
to the object and then iteratively correcting the MAD estimation with an an-
alytical scheme based on the SNR of the image [21]. The second aim of this
paper is to compare some of the previously mentioned state-of-the-art meth-
ods against our method using synthetic data (with and without artefacts) and
clinical datasets.

The structure of this paper is as follows: Section 2 gives a brief overview of the
theoretical aspects of the noise properties in MR images. Section 3 presents
the proposed Rician MAD estimator. Section 4 describes the state-of-the-art
methods used during the comparison. Section 5 presents the synthetic data
experiments, Section 6 the real data experiments and the section 7 the study
on denoising performance. Finally, Section 8 discusses the applicability of the
proposed method and future extensions of the proposed work.

2 Noise in MR images

As mentioned in the introduction, when MR images are computed using the
magnitude of a single complex raw data, the distribution of noise can be
modeled with a Rician distribution [11,12,19,20,37]:

p(m) =
m

σ2
n

exp(−m
2 + A2

2σ2
n

)I0(
Am

σ2
n

). (1)

where σn is the standard deviation (STD) of Gaussian noise in the complex
domain, A is the amplitude of the signal without noise, m is the value in the
magnitude image and I0 is the zeroth order modified Bessel function [31]. This
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model is used by the majority of the noise estimation methods [2,36,37]. Most
of these methods can be classified as: i) methods that use background areas to
estimate the noise variance and ii) methods that use the image object itself.

• For the background-based methods, where the signal is usually con-
sidered as zero in background (i.e. SNR = 0), the Rician distribution is a
Rayleigh distribution [16,37]:

p(m) =
m

σ2
n

exp(−m
2

2σ2
n

). (2)

Based on the properties of the Rayleigh distribution, the mean m̄b and the
variance σ2

b of the noise in the background can be related to σn:

mb =

√
π

2
σn (3)

σ2
b =

4− π
2

σ2
n (4)

The assumption that SNR = 0 in the background may not be valid in
the presence of ghosting artefacts [37], while the Rayleigh distribution as-
sumption can be corrupted by using reconstruction filters [11,12,24], by the
suppression of the signal by the scanner [12, 24] or by zero-padding in the
Fourier domain [24]. Finally, the noise level in the background may not be
representative of the noise level inside the tissue [11,24].
• For the object-based methods with high SNR (i.e. SNR > 3) [19,

29], the Rician distribution can be well approximated using a Gaussian
distribution:

p(m) ≈ 1

2πσ2
n

exp(−
(m2 −

√
A2 + σ2

n)2

2σ2
n

). (5)

This approximation enables us to use all the classical methods proposed for
Gaussian noise estimation. Nevertheless, for low SNR, this approximation
is no longer valid [19,29,37].

3 Proposed method

In order to relax the assumptions performed by background-based methods
(i.e. no signal in the background) and the object-based methods (Gaussian
noise approximation), we propose an adaptation of the MAD estimator in
wavelet domain [14,15] for Rician noise.
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3.1 MAD estimator

The wavelet transformation is usually used to obtain a space-frequency repre-
sentation of images. By using the usual notation for 3D wavelet decomposition:
LLL denotes the low sub-band containing the feature information whereas
LHH, LHL, LLH, HLL, HLH, HHL and HHH denote the high sub-bands con-
taining the detailed information. The highest sub-band HHH is essentially
composed of coefficients that correspond to the noise [14,15]. The capacity of
the wavelet transforms to distinguish between noise and structure has been
used in denoising methods to remove or reduce the coefficients corresponding
to the noise components over the detailed sub-bands [14,15]. The fact that the
highest sub-band HHH is mainly composed of the coefficients corresponding
to the noise has been used by Donoho [14, 15] to propose a robust estima-
tion of noise variance. Based on the MAD estimator, this method enables the
estimation of the noise variance in presence of Gaussian noise:

σ̂ =
median(|yi|)

0.6745
(6)

where yi are the wavelet coefficients of the HHH sub-band and σ̂ the estimation
of noise in magnitude image. The noise in magnitude image σ will be called
”magnitude noise” as in [21] in the following. As long as the yi coefficients
corresponding to the object are considered and the SNR is high enough, the
Gaussian approximation of Rician noise leads to σ̂n = σ̂.

3.2 Rician adaptation

To obtain an unbiased estimation of σn for all the SNR values, we propose to
use the correction procedure introduced by Koay et al in [21]. This analytical
correction is based on an iterative estimation of the SNR in presence of Rician
noise. In our case, the estimation σ̂, obtained using the MAD estimator on
the object, is used to initialize the procedure:

σ̂n =
√
σ̂2/ξ(θ) (7)

where θ is the SNR value and ξ is the correction factor, which is expressed as:

ξ(θ) = 2 + θ2 − π

8
× exp

(
−θ

2

2

)(
(2 + θ2)I0

(
θ2

4

)
+ θ2I1

(
θ2

4

))2

(8)

where I1 is the first order modified Bessel function. The correction factor is
iteratively applied until convergence of the procedure or when a given number
of iterations t is achieved. The distance |θt−θt−1| can be used as stop criterion.
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The resulting iterative correction scheme can be written as:

θt =

√
ξ(θt−1)

(
1 +

mo

σ̂

)
− 2 (9)

where mo is the mean signal of the object and σ̂ the first estimation from
MAD estimator. The correction factor ξ(θt) from the last iteration is finally
used in Eq. 7.

3.3 Object extraction

The STD estimation of the ”magnitude noise”, σ̂, is solely based on the wavelet
coefficients corresponding to the object. To extract the object we take advan-
tage of the wavelet transform. Since the noise information is mainly contained
in the highest sub-bands, the LLL sub-band contains a less noisy version of
the image which can be used to facilitate the segmentation procedure. At the
first level of decomposition, the size of LLL and HHH are identical. Thus, at
this level of decomposition, we proposed to segment the object in the LLL
sub-band and to use the obtained mask to extract the yi coefficients corre-
sponding to the object in the HHH sub-band. The segmentation is performed
using a simple K-means (k=2) classification [25].

For an image with a low level of noise, the MAD estimation tends to be spoiled
since the HHH sub-band is mainly composed of information corresponding to
the high gradient (HG) areas (i.e. edges) of the image. To further increase the
accuracy of the estimation at low noise levels, voxels with the highest local
gradient are excluded from the estimation (i.e. removed from the segmented
mask). Accordingly, we eliminate all those voxels whose the local gradient
magnitude is higher than the median local gradient magnitude in the LLL sub-
band. A comparison of the MAD estimation of the ”magnitude noise” STD
over the segmented mask with and without HG is proposed in the experiment
section.

The use of more elaborate wavelet decomposition such as Dual-Tree (DTWT)
or Complex Dual-Tree (DTCWT) [34] can improve wavelet-based image pro-
cessing [27]. In our method we use classical wavelet transform (WT) [26] as im-
plemented in http://taco.poly.edu/WaveletSoftware/standard3D.html.
A comparison of the MAD estimator applied on WT and on DTWT is pro-
vided in the experiments section.
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4 Evaluated Methods

In this section, we provide a brief description of the five methods used during
the experiments. The original papers can be referred to for more details.

4.1 Background-based methods

The first is a method proposed by Sijbers et al. [37] which is based on the
maximum likelihood estimation principle over a partial histogram Hp. The
ML estimate is found by maximizing the likelihood function L with respect
to the standard deviation of noise σn using the first K bins of the histogram
with a Rayleigh distribution assumption for the background:

σ̂n = arg max
σn

L(σn, Hp) (10)

The optimal number of bins, K, of the partial histogram is automatically
estimated from the bias and the variance of the estimator σ̂n.

The two other background estimators were recently proposed by Aja et al.
[2]. These estimators use the robust properties of the image’s local statistics
(local means and local variances). The distributions of the local means µ̂ and
the local variances v̂ are used to estimate the variances of noise under the
Rayleigh distribution assumption of the background. Using the properties of
the Rayleigh distribution given in Eq. 3 and Eq. 4, Aja et al. propose to
estimate the noise standard deviation as follows:

σ̂n =

√
2

π
mode(µ̂) (11)

with local means and:.

σ̂n =

√(
4− π

2

)(
N

N − 1

)
mode(v̂) (12)

with local variances, where N is is the number of data points used to calculate
the local variances.

4.2 Object-based methods

The two object-based methods are the MAD estimator and the estimator
based on local variances v̂ proposed by Aja et al. in [2]. This estimator has
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been proposed when no background is available in the image and is based on
a Gaussian approximation of the noise within the object:

σ̂n =
√
mode(v̂) (13)

5 Experiments on Synthetic data

In this section, the description of the material used such as the Rician noise
simulation or the ghosting artefacts construction is first described. The esti-
mation of the STD of ”magnitude noise” is then studied. To achieve this, the
capability of the proposed method based on MAD estimator to estimate σ
over the HHH subband is studied on a constant image and on a T1-w phan-
tom. A validation framework is finally proposed to study the accuracy and the
robustness of the STD estimation of Rician noise σn provided by the different
methods.

5.1 Material

5.1.1 Phantom data

To evaluate the different methods, synthetic T1-weighted MR data from the
Brainweb database [6,7,23] was corrupted with different levels of Rician noise
(2 to 15%). In this paper, 2% of noise is equivalent to N (0, ν 2

100
), where ν is

set to 255, the maximum intensity of the original 8bit encoded image. All the
synthetic data are converted into 32bit encoded images before adding noise,
in order to avoid quantification artefact during experiment on phantom [13].
The Rician noise was built from white Gaussian noise in the complex domain:

• Ir = A+ η1, η1 v N (0, σn)
• Ii = η2, η2 v N (0, σn)

where A is the noise free “ground truth” from Brainweb, Ir is the real compo-
nent, Ii is the imaginary component, and σn is the standard deviation of the
added white Gaussian noise. The noisy image is computed as:

m =
√
I2
r + I2

i (14)

As shown in [2], the size of the background has an impact on the accuracy
of the background-based methods. Smaller backgrounds lead to more difficult
estimations. In order to perform a fair comparison, zero padding of the Brain-
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web volume of 181 × 217 × 181 voxels was perfromed to obtain a volume of
256× 217× 256 voxels.

Original 2%

7 % 15%

Fig. 1. Simulation of Rician noise for different levels.

5.1.2 Intensity inhomogeneities

MR images are normally affected by intensity inhomogeneities produced dur-
ing the image acquisition process. Such inhomogeneities can affect the noise
measurement process. To investigate the effect of such inhomogeneities on the
performance of the different noise estimation methods, the bias field in in the
Brainweb simulator was applied to the data. For our experiments, a 20% in-
homogeneity level was chosen. As the bias field only affects the imaged object,
the background methods should not be impacted by this artefact.

5.1.3 Ghosting artefacts

Ghosting artefacts were implemented by using a repeated filtered version of
the original image. First, the image is low-pass filtered with two gaussian
kernels of different size (3× 3× 3 and 5× 5× 5). Then, the absolute difference
of the two filtered images is added to the original image with a half field of
view offset (see Fig. 2).

5.1.4 Compared methods

During our experiments on σn estimation, we compared the following methods:
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Fig. 2. Top. Right: Simulated ghosting artefacts on brainweb with 20% inhomogene-
ity. Left: The same image with saturation of the contrast to highlight the ghosting
artefacts. Bottom. Right: The same image with 7% of Rician noise. Left: The added
Rician noise.

• a background-based method proposed by Sijbers [37]; denoted as ”ML” and
described in section 4.1. The Sijbers method was applied using a histogram
with 1000 bins.
• two background-based methods based on local statistics [2]; denoted as LMB

for the Local Means in Background and LVB for Local Variances in Back-
ground. These methods are described in section 4.1. The size of the local
neighborhoods and the number of bins were 5× 5× 5 voxels and 1000 bins
respectively.
• an object-based method based on local variances [2]; denoted as LVO for

Local Variances in Object, and described in section 4.2. For this method, a
local neighborhood of 3 × 3 × 3 voxels was used. In contrast to the back-
ground, the object has smaller homogeneous areas. As a result, we have
reduced the spatial extends of our local neighborhood.
• the classical MAD estimator estimated on the object [14]. The object was

segmented in the wavelet domain without removing high gradient areas.
• the proposed robust MAD for Rician noise estimated on the object and

denoted as RMAD (see section 3).

5.2 Validation of σ estimation

5.2.1 On a constant image

First, the capability of the MAD estimator to estimate the STD of ”magnitude
noise” in an easy case (i.e. without structure information within the highest
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wavelet subband) has been studied. To achieve this, an image with constant
intensity c close to the mean intensity of tissues included in the mask (i.e.
c = 100) has been created. Different levels of Rician noise were then applied
from 2% to 15%. The true value of σ and the estimation provided by the MAD
estimation σ̂ was compared. Equation 15 was used to compute the STD of the
applied ”magnitude noise” σ. The experiment was repeated ten times, each
with a new instantiation of noise, for each noise level.

σ =
√
σ2
n.ξ(θ) (15)

The SNR θ is simply computed as θ = c/σn.

Figure 3 shows the result of the experiment. For all the levels of noise, the
error in MAD estimation is inferior to 0.25%. This experiment shows that the
MAD estimator is able to robustly estimate the STD of ”magnitude noise”
for a large range of noise levels. Moreover, this experiment shows that the
coefficients in HHH subband are able to properly describe the noise STD.

Fig. 3. Ratio between the standard deviation of ”magnitude noise” σ and the esti-
mation given by MAD on a constant image.

5.2.2 On T1-w phantom

The second experiment has been designed to show: a) the impact of the high-
est gradient (HG) removal on the MAD estimator, b) the capability of the
proposed approach (segmentation in wavelet domain with K-means and MAD
estimation over the object wavelet coefficients) to robustly estimate the STD
of ”magnitude noise”, c) the impact between using classical separable wavelet
transform and the dual tree wavelet transform (DTWT), and d) the ability of
coefficient in HHH subband to fully-describe the ”magnitude noise” STD in a
realistic situation.

As in the previous experiment, we compared the true value of σ and the
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estimation provided by the MAD estimator: σ̂. In this case, the SNR was
computed by using the mask (provided by K-means segmentation in wavelet
domain on the noisy image) on the original noise-free image in order to get
the true mean signal value µ. The SNR θ was computed as θ = µ/σn. Finally,
Equation 15 has been used to obtain σ. The experiment has been repeated
ten times, each with a new instantiation of noise, for each noise level.

Fig. 4. Ratio between the standard deviation of ”magnitude noise” σ and the esti-
mation given by MAD estimator on a T1-w phantom image.

Figure 4 shows the result of the comparison between MAD estimation, MAD
estimation without HG areas and MAD estimation without HG on Dual Tree
decomposition. As previously mentioned, at low levels of noise, the MAD
estimator tends to overestimate the noise level. However, HG removal divides
the error by a factor 3 at 2% noise level. Moreover, if the MAD estimation
without HG on DTWT provided more stable (smaller variance) than the MAD
estimation without HG on WT, the accuracy of the estimation is not better
over all the noise levels. Due to the additional computational burden and
memory requirement needed by DTWT compared to WT, especially in 3D,
we have chosen to use classical WT in the proposed method.

5.3 Validation of σn estimation

To study the accuracy of the evaluated methods to estimate the Rician noise
STD σn, the ratio between the estimated standard deviation σ̂n and the ap-
plied standard deviation σn is computed for all the levels of noise. Moreover,
the Mean Absolute Error over all the levels of noise is also used. The absolute
error for a given level of noise is computed as:

error = |1− σn
σ̂n
| (16)
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All the experiments were repeated 10 times, each with a new instantiation of
noise, for each noise level and the average results are presented.

5.3.1 ”Ideal case”

Figure 5 (on top) shows the experimental results on the phantom without
artefacts. For this ”ideal case”, all the methods provide a satisfying result,
especially the methods based on local statistics of the background (LMB and
LVB) and the proposed RMAD. These estimators demonstrated small mean
absolute errors (< 1%). The LMB method provided the best result for this
experiment.

Compared to the MAD estimator, the ability of the RMAD method to cor-
rectly estimate the higher levels of noise (i.e. where the Gaussian assumption
failed) can be attributed to the SNR based correction factor. Moreover, the
RMAD provided better estimations of the noise at low level by removing the
high gradients before the MAD computation.

As expected, for high levels of noise, the Gaussian assumption used by MAD
and LVO failed and these methods provided an underestimation. For low levels
of noise, the LVO method produced an overestimation of σn since the local
variances contain edges information, thus artificially increasing the variance
of noise. The LVO method also has the largest variability of estimation at all
levels of noise.

5.3.2 Impact of Ghosting artefact

Figure 5 (on middle) shows the results on the phantom with ghosting artefacts.
The wavelet-based methods produced similar results compared to the results
obtained in ”ideal case”. The LVO method seems to be negatively affected
due to the extra edge information added in the image. As expected, the most
impacted methods are the background-based methods. In fact, the assumption
of zero signal in the background is spoiled by ghosting. All these methods tend
to overestimate the noise level, especially the ML method. The LMB method
still obtained very good results. Finally, the RMAD method obtained the best
result.

5.3.3 Impact of inhomogeneities

Figure 5 (on bottom) shows the results on the phantom with ghosting artefacts
and inhomogeneities. Contrary to an expected error increase from the object-
based approaches, the inhomogeneities did not impact the performance of
these methods. The robust methods used by these approaches (wavelet and
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Fig. 5. Left: results of the compared methods for all levels of noise on the synthetic
image. Right: mean absolute error over all noise levels.

local variance) seem to protect them against this kind of artefact.

6 Experiments on Clinical data

In this section, we proposed a new evaluation framework on real data. The
validation of noise estimation methods in clinical context is a challenging prob-
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lem due to the absence of ”ground truth”. In our experiments, we proposed
to use a bronze standard to quantify the performance of each method on two
datasets composed of single-channel (1CH) T1-w MR data from two different
sites.

6.1 Material

6.1.1 Data

The data analyzed was acquired in the context of a multicenter clinical trial.
All subjects gave written consent and the studies were approved by their
respective institutions. The first dataset from site 1 was composed of 23 T1-w
MR volumes of 256× 256× 56 voxels. These data were acquired with a 1.5T
Genesis Signa GE Medical system and an 1CH head coil. The parameters of
the sequence were: TR = 30ms, TE = 9ms, FOV 250 mm and bandwidth 122
kHz. The second dataset from site 2 was composed of 42 T1-w MR volumes of
256×256×60 voxels. These data were acquired with a 1.5T Genesis Signa GE
Medical system and an 1CH head coil. The parameters of the sequence were:
TR = 34ms, TE = 9ms, FOV = 250 mm and the bandwidth = 122 kHz. All
the images are 16bit encoded. Examples of data with and without artefacts
are presented in Fig. 6.

Fig. 6. Left: data without ghosting artefacts. Right: data with ghosting artefacts.
Saturation of the contrast is used to highlight the ghosting artefacts.
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6.1.2 Background extraction

In order to estimate the noise level in the real images, we used a region-based
approach that is similar to the manual selection procedure usually used in the
clinical environment.

Moreover, in order to perform a fair comparison, we used a background-based
method to build our bronze standard. Given the large number of data volumes
in the study, and the fact that we wanted to minimize intra- and inter-rater
variability in noise estimation, we opted to use an automatic quality control
(aQC) software tool [17] to identify the background region of interest (ROI).
Experiments in [17] show that this method is robust, accurate, and highly
correlated with manual methods.

The aQC is a series of pipelined tests that are designed to assess the quality
of MR brain images. Most of the tests are based on the statistical analysis
of selected regions of interest (see Fig. 7), three of which are associated with
noise regions (region 1: four corners that surround the head, region 2: anterior
to the head, region 3: posterior to the head, and region 4: regions lateral to the
head). To determine the noise level, we used the region anterior to the head
(region 2). In [17], it has been shown that this region contains less artefacts,
thus provides a robust estimation of the background noise. The other two
regions were susceptible to flow artifacts based on the position of the head
and phase encode direction. This occurs primarily in the region posterior to
the head.

All the ROIs that are used by the aQC reside in the standard MNI coordi-
nate space. Accordingly, for each subject, the selected ROI is registered from
MNI-space to the image’s native coordinate space. Once the ROI is aligned
to the image of interest d, its background m̂b(d) is extracted. By the way,
we extracted the original background values avoiding interpolation of image
intensities, and prevents the modification of noise characteristic [32].

Noise Region 1: Noise Region 2 and 3: Noise Region 4:

Four corners surrounding Anterior and posterior Lateral

Fig. 7. Noise regions of interest obtained with automated quality control software
tool [17].
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6.1.3 Bronze standard

The estimation of a Bronze standard on real images is not an easy task since
the ground truth is unknown. In our study, we have chosen to use the assump-
tion that the noise level for a given sequence on the same scanner should be
constant. Based on this idea, the noise regions extracted from the backgrounds
of MR images are used to estimated an average level of noise over all the data
from a same site. To estimate this average level of noise, the properties of the
second-order moment of a Rician distribution are used. For a random variable
m following a Rician distribution this moment can be written as:

E(m2) = A2 + 2σ2
n (17)

By using the assumption of SNR = 0 in the background:

σn =

√
E(m2

b)

2
(18)

Finally, for a given site, the Bronze standard can be computed from the mean
of the squared values extracted from backgrounds of all the data d:.

σ̂n =

√√√√M̂2
b

2
, M̂2

b = (m̂2
b(1), ..., m̂2

b(D)) (19)

where m̂2
b(d) is the vector containing the squared value of noise extracted from

the background of data d and M̂2
b is the concatenation of the squared signal

from all the data. This procedure is performed independently for each site.
The region anterior to the head (region 2) tends to minimize the presence
of background artefacts in the extracted background. The visual inspection
of the m̂2

b(d) has confirmed that the used regions were minimally impacted
by ghosting. Moreover, by computing the mean value over a large number of
datasets, the impact of residual non visible artefacts is drastically reduced. By
the way, the extracted backgrounds may not totally free of ghosting, but the
impact on the bronze standard is minimized.

Based on the same approach, the estimation of the noise level for a given data
d is obtained with the region-based (RB) method by using the mean of the
squared values extracted from the background of d:

σ̂n(d) =

√
m̂2
b(d)

2
(20)

In this case, the noise estimation is less robust than the estimation used for
the bronze standard since only one background region sample is involved.
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6.2 Results

Fig. 8 (on top) shows the results obtained for site 1. For all the data, RMAD
method provided a consistant estimation of the noise relative to the Bronze
standard (small error) in a robust manner (small variance of error). The sta-
bility of the proposed method leads to a smaller error than the region-based
method that was used to build the bronze standard. As assessed by exper-
iments on synthetic phantom, the MAD estimator computed on the object
tends to underestimate the noise level whereas the LVO method leads to an
overestimation of the noise level. The LVB method appear to follow the MAD
estimation and the RMAD estimation according to the data. The LMB method
estimated in the background is a robust and stable estimator but leads to a
slight underestimation. Finally, the ML method provided a good mean abso-
lute error but was accomplished with a high variability.

Fig. 8. Left: results of the compared methods for all the data. Right: mean absolute
error over all the data.

Fig. 8 (on bottom) shows the results obtained for site 2. The remarks made
for site 1 apply to this site as well. It should be noted that the LMB method
yielded better results for this site and maintained a small mean absolute. This
method provided similar result to the region-based method used for the Bronze
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standard estimation but with a smaller variance. For both sites, the RMAD
method obtained the best results.

7 Experiment on denoising performance

As said in the introduction, one application of the STD noise estimation is
denoising. In the literature, many approaches have been proposed for MRI
denoising [1,3,5,9,10,18,22,29,30,33,40]. In this last experiment, we propose
to study the impact of noise estimation accuracy on denoising performance
of the 3D NonLocal-Means filter described in [10] with the Rician adaptation
proposed in [39]. In our framework, the noise estimation accuracy impacts a)
the filtering parameter (smoothing parameter) (see [10] for details) as well as
b) the intensity bias correction (see [39] for details). Like the other experiments
presented in this paper, the denoising algorithm has been applied ten times
for each noise level from 2% up to 15% on the T1-w phantom corrupted with
ghosting and inhomogeneity. The quality criterion used was the difference
between the Peak Signal to Noise Ratio (PSNR) obtained with the estimation
σ̂n provided by each method (i.e. PSNR(σ̂n)) and the PSNR obtained with
the truth σn (i.e. PSNR(σn)). The PSNR was computed as:

PSNR = 20 log10

255

RMSE
(21)

where RMSE denotes the root mean square error estimated between the
ground truth and the denoised image. The PSNR values were estimated only
in the region of interest (cerebral tissues) obtained by removing the back-
ground (i.e. the label 0 of the discrete model in Brainweb). This has been
done in order to avoid artificial increasing of PSNR due to overclamping in
background.

Figures 9 and 10 show the results of the experiment. In a large majority of noise
levels, the proposed method demonstrates a better denoising than the other
evaluated methods. The LMB method proposed by Aja et al. also obtained
good results. In terms of mean absolute error, the proposed RMAD obtained
the best denoising performance over all the noise levels. Visually, the denoised
images obtained with the evaluated methods look very similar, indicating that
the bias intensity correction is more impacted by noise estimation inaccuracy
than the denoising process. In case of quantitative MR study, where the true
value of intensity is required, our method has great potential.
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Original

7% of Rician noise

Non-local Means denoising with σn

Absolute removed noise

Fig. 9. From top to bottom: original image with ghosting and inhomogeneity, the
same image with 7% of Rician noise, the result of the denoising with the true value
σn, the absolute removed noise.
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Fig. 10. Result of the denoising experiment. Left: difference in dB between the
PSNR obtained with the estimation provided by automatic methods σ̂n and the
PSNR obtain with the truth σn. Right: mean absolute difference in dB between
PSNR(σn) and PSNR(σ̂n).

8 Discussion

In this paper, a new method based on the robust MAD estimator for Rician
noise has been proposed and several state-of-the-art methods for Rician noise
estimation in MR image have been compared.

Experiments on synthetic data have shown that for the ”ideal case” (i.e. when
an image does not contain any artefacts), the method proposed by Aja et
al. based on the mode of the distribution of local means is the best option
showing no systematic errors in the estimation. When ghosting artefacts are
added, the proposed RMAD estimator outperforms all the compared methods.
As expected for high level of noise, the methods based on Gaussian approxi-
mation (object-based MAD and LVO methods) underestimate the noise level.
Moreover, the object-based method that uses the local variances tend to over-
estimate the level of noise for low level of noise since the assumption of con-
stant area in the object is not satisfied. The ML method proposed by Sijbers
et al. tends to overestimate the noise variance as the noise power increases
or when ghosting artefacts are added. This is probably due to the overlap of
background and the imaged object distributions in the image histogram.

Experiments on real data have shown that for the two sites studied, the pro-
posed RMAD method obtained the best result in terms of accuracy and ro-
bustness. The background-based methods had the highest variability except
the LMB method which provided a robust noise estimation. These results
show that the variance of background in real data is spoiled by artefacts. The
MAD estimation lead to a systematic underestimation of the noise level due
to Gaussian approximation. As observed for synthetic experiments, the LVO
method that use the local variances on object overestimates the noise level.
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Experiment on denoising have shown that the proposed method is able to
obtain better denoising results than other noise estimation methods thanks to
its high accuracy in the presence of artefacts.

In addition to obtaining very competitive results in ”ideal” situations and
better results in presence of ghosting compared to state-of-the-art background
methods, our method enables the estimation of noise over the techniques com-
pared in many other situations found in clinical routine. In fact, contrary to
classical background approaches, the proposed approach can be applied to sit-
uations where no background is present such as fetal imaging or images where
the background is artificially set to zero by the scanner [11] (see Fig. 11).
Moreover, since the proposed method does not performed Gaussian approxi-
mation, our approach is able to deal with high level of noise such as noise in
HARDI DTI data (see Fig. 11).

Ghosting Background set to zero by MR scanner

No background available High level of noise

(e.g. Fetal imaging) (e.g. HARDI DTI data)

Fig. 11. Situations where our method can be used while classical methods cannot
or failed. MRI without background courtesy of Dr. G. Garcia-Marti, fetal image
courtesy of Dr. Limperopoulos, DTI data courtesy of Pr. Pike.

In future work, the proposed approach should be adapted to multi-channels
signal acquisitions (noncentral χ-distribution) [4,21] and for images with non
stationary noise such as those attributed to parallel imaging (i.e. GRAPPA
or SENSE). The multi-channels signal acquisitions are becoming more often
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used during clinical acquisitions and the investigation of methods dedicated
to these images should be further investigated. Moreover, the new sequences
of acquisition can produce images with correlated noise due to interpolation
in K-space. The adaptation of the proposed method to correlated noise should
be also investigated as done for denoising [1, 5].
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