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Abstract 

Background: Studies of the effects of air pollutants on birthweight often assess exposure 

with permanent air quality monitoring stations (AQMS) networks; these have a poor spatial 

resolution. 

Objective: We aimed to compare the exposure model based on the nearest AQMS and a 

temporally adjusted geostatistical (TAG) model with a finer spatial resolution, for use in 

pregnancy studies. 

Methods: The AQMS and TAG exposure models were implemented in two areas surrounding 

medium-sized cities in which 776 pregnant women were followed as part of the EDEN 

mother-child cohort. The exposure models were compared in terms of estimated nitrogen 

dioxide (NO2) levels and of their association with birthweight.  

Results: The correlation between the two estimates of exposure during the first trimester of 

pregnancy was r=0.67, 0.70, and 0.83 for women living within 5, 2 or 1 km of an AQMS, 

respectively. Exposure patterns displayed greater spatial than temporal variations. Exposure 

during the first trimester of pregnancy was most strongly associated with birthweight for 

women living less than 2 km away from an AQMS: a 10 µg/m3 increase in NO2 exposure was 

associated with an adjusted difference in birthweight of -37g (95% confidence interval (CI), -

75; 1g) for the nearest AQMS model and of -51g (95% CI, -128; 26g) for the TAG model. 

The association was less strong (higher p-value) for women living within 5 or 1 km of an 

AQMS. 

Conclusions: The two exposure models tended to give consistent in terms of association with 

birthweight, despite the moderate concordance between exposure estimates. 
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Introduction 

Several epidemiological studies have reported associations between maternal exposure to 

nitrogen dioxide (NO2) during pregnancy and fetal growth assessed by birthweight, taking 

into account gestational duration (e.g., Bell et al. 2007; Liu et al. 2007; Ritz and Wilhelm 

2008; Slama et al. 2008; Wilhelm and Ritz 2003). Various approaches may be used to 

estimate exposure, from the use of biomarkers of exposure to personal dosimeters and 

environmental models. Most previous studies have been based on measurements from 

permanent air quality monitoring stations (AQMS), using data from the AQMS closest to the 

subject’s home address, or interpolating data for neighboring monitors, for which 

measurements are averaged over the entire pregnancy or over each trimester of pregnancy. 

This approach has the advantage of making use of readily available exposure data, being 

simple to implement and, because pollutants are assessed on an hourly or at least weekly 

basis, being highly flexible in terms of the temporal exposure window considered. However, 

the spatial density of AQMS networks is generally low, and studies have shown that the data 

provided by permanent AQMS are representative only of air pollution levels in the close 

vicinity of the station (Lebret et al. 2000). Studies based on AQMS measurements assume that 

air pollution levels are homogeneous within a buffer of several kilometers around each 

monitor, or, at least, that exposure misclassification introduces no major bias into the 

estimated exposure-response relationship. However, studies based on the simultaneous use of 

several exposure models have demonstrated that the amplitude of the measurement error may 

be large (Nerriere et al. 2005; Nethery et al. 2008; Sarnat et al. 2005). Moreover, at least for 

respiratory or cardiovascular outcomes, measurement error may have a large impact on the 

exposure-response relationship (Miller et al. 2007; Van Roosbroeck et al. 2008). This issue 

has very little been studied in the context of reproductive outcomes (Brauer et al. 2008).  
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We aimed to compare the exposure model based on the nearest AQMS and a temporally 

adjusted geostatistical (TAG) model based on measurement campaigns with a fine spatial 

resolution and also focusing on background pollution, in the context of a mother-child cohort. 

These models were compared in terms of estimated NO2 levels and the estimated association 

between NO2 levels and birthweight. 
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Materials and Methods 

Study population and data collection 

This study was conducted in a subgroup of the French EDEN (study of pre and early postnatal 

determinants of the child’s development and health) mother-child cohort. Pregnant women at 

less than 26 weeks of gestation were recruited from the maternity wards of Poitiers and Nancy 

University Hospitals (France), between September 2003 and January 2006. Gestational age 

was assessed from the date of the last menstrual period (Slama et al. 2009). Exclusion criteria 

were a personal history of diabetes, multiple pregnancy, intention to deliver outside the 

university hospital or to move out of the study region within the next three years and an 

inability to speak and read French. The birthweight of the infants were extracted from the 

maternity records. Information on maternal active and passive smoking, height, weight, and 

educational level were collected by interview between 24 and 28 weeks of gestation, and by 

questionnaire after birth. The study was approved by the relevant ethical committees (Comité 

Consultatif pour la Protection des Personnes dans la Recherche Biomédicale, Le Kremlin-

Bicêtre University Hospital, and Commission Nationale de l’Informatique et des Libertés), 

and all participating women gave informed written consent for their own participation and 

that of their children. More details of this study can be found elsewhere (Drouillet et al. 2008; 

Slama et al. 2009; Yazbeck et al. 2009). 

 

Exposure to NO2 

We restricted the cohort to pregnant women living in two areas, one of 165 km2 around Nancy 

and the other of 315 km2 around Poitiers, in which air quality measurement campaigns have 

been conducted. We then further restricted the study area to the immediate vicinity of an 

AQMS, focusing on circular buffers with a radius of 5, 2, and 1 km around each AQMS 

(Figure 1B and D). The detailed addresses of all women were geocoded in Arcgis 9.3 (ESRI, 
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Redlands, CA, USA). For both models, changes of home address between inclusion and 

delivery were taken into account by calculating time-weighted means of exposure over the 

relevant time windows (whole pregnancy, and each trimester (92 days per trimester if no 

delivery) of pregnancy). 

 

Nearest air quality monitoring station model (model 1) 

We obtained air pollution data from the AIRLOR (Nancy) and ATMO-PC (Poitiers) AQMS 

networks. All permanent AQMS measuring NO2 concentration during the study period and 

located within 2.5 km of the limits of the study areas were considered (three in the Poitiers 

area and six in the Nancy area, Figures 1A and C), excluding those labeled as traffic (i.e. 

located <5 m from a road with traffic levels of >10,000 vehicles/day (ADEME 2002)) or 

industrial stations. For each woman i, hourly measures of NO2 concentration by the AQMS j 

closest to her home address were averaged over each time-window  considered (noted ∆t for 

convenience), to obtain our exposure estimate  . 

 

Temporally adjusted geostatistical model (model 2) 

NO2 measurement campaigns with a Palmes diffusive sampler (Palmes et al. 1976) were 

conducted in the urban and peri-urban areas of both cities. The diffusive samplers were 

located so as to give measurements of background pollution in each area (61 locations in the 

Poitiers area, 98 locations in the Nancy area). The campaigns lasted 14 days (Poitiers) or 10 to 

15 days (Nancy) and were repeated throughout the year to capture seasonal variations. Nine 

campaigns were performed in 2005 in the Poitiers area and 10 were performed in 2002 in the 

Nancy area (AIRLOR 2004; ATMO-PC 2007). In each area, for each passive sampler, the 

AQMS giving the measurements most strongly correlated with the measurements of the 
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passive sampler during campaigns was used to estimate mean annual concentration at each 

measurement location. These estimated annual concentrations were smoothed over the whole 

area with kriging techniques (Chilès and Delfiner 1999) on a 50x50 meter grid, with Isatis 

Software (Géovariances, Fontainebleau; Figure 1B and D). This corresponded to our estimate 

of , the mean NO2 concentration at the home address, for the year 2005 in Poitiers and 

2002 in Nancy (spatial component of the model). 

The estimated annual NO2 concentrations were then combined with time-specific 

measurements from the permanent AQMS to capture temporal variations in concentrations. 

This approach has previously been used in the context of LUR models (Slama et al. 2007).  

The hourly NO2 measures of all AQMS from the area were averaged over each time-window 

∆t considered 

(Si
all, ∆t) and also over the year in which the measurement campaign was performed (Sall, yearly). 

The ratio  Si
all, ∆t / Sall, yearly was the temporal component of the model. The temporally adjusted 

estimate of NO2 exposure E2i
∆t for woman i was the product of the spatial and temporal 

components, or  

.        [1] 

 

Statistical analyses  

Spatial and temporal variations in exposure 

For each model, the relative contribution of spatial (or temporal) variations in exposure 

contrasts was assessed by Pearson’s correlation coefficient between the exposure estimate and 

its spatial (or temporal) component. We also carried out variance decomposition. The nearest 

AQMS model could be broken down as follows  
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,      [2] 

With  being the mean level of exposure of all women during the time-window ∆t, and Si
j 

the NO2 concentration at AQMS j averaged over the entire study period, so as to obtain a 

spatial component  dependent solely on the address of the woman. This 

corresponded to our estimate of the spatial component of the AQMS model; (E1i
j, ∆t – Si

j) 

corresponded to our estimate of the temporal component of the model. The TAG model was 

log-transformed and expressed as 

      [3] 

for the variance analysis. These analyses were restricted to women who did not change 

address during pregnancy.  

 

Comparison of the exposure estimates generated by each model 

Exposure estimates for the two models were compared by Kruskal-Wallis rank tests and by 

calculating correlation coefficients (r). The distributions of the exposures estimated by the 

nearest AQMS model and by the TAG model were plotted either as a function of the AQMS 

closest to woman’s home address, then excluding the AQMS located in the city-center. We 

also assessed the concordance between the estimates generated by the two models, classified 

into tertiles, by determining percentage concordance and the kappa coefficient (K). Bland-

Altman plots were used to estimate the magnitude of the systematic error between the two 

exposure models (Bland and Altman 1986). 

 

Exposure-response relationship 

We studied the relationship between birthweight and NO2 exposure during each exposure 

window in linear regression models taking into account gestational age and adjustment 
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factors. Linear trend tests were performed with a categorical variable, the value of which 

corresponded to the category-specific median NO2 concentration. The adjustment factors were 

selected on the basis of a priori knowledge (Rothman et al. 2008). We adjusted for active and 

passive smoking during the second trimester of pregnancy, because these factors were more 

strongly associated with birthweight than exposures during the first trimester, the third 

trimester or any of the three trimesters. We also adjusted for sex of the newborn, maternal 

height (as a continuous variable), pre-pregnancy weight (broken stick model with a knot at 60 

kg), birth order, maternal age at end of education, center, and trimester of pregnancy. 

Statistical analyses were carried out with STATA statistical software (Stata SE 10.1, Stata 

Corp, College Station, TX). Analyses were repeated for the three buffers considered (less than 

5, 2 or 1 km from an AQMS). 
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Results 

Population 

Of the 1893 women from the cohort with a known offspring birthweight, 776  lived in the 

study area, less than 5 km from an AQMS, during at least one trimester of pregnancy (431 and 

158 women lived within 2 and 1 km of an AQMS, respectively). Mean birthweight was 3284 

g (25, 50, 75th percentiles, 3005, 3310, 3620 g). The characteristics of the study population 

are described in Table 1. 

  

Exposure to air pollutants 

Estimates of exposure to NO2 were higher in Nancy than in Poitiers, whatever the exposure 

model and exposure window considered (Figure 1, Tables 1 and 2). The nearest AQMS model 

estimate during pregnancy was more strongly correlated with the spatial component of the 

TAG model (r=0.61, 0.68, 0.84, for the 5, 2, 1 km buffers, respectively) than with its temporal 

component (r=0.35, 0.35, 0.45, respectively). For both models, exposure estimates throughout 

pregnancy were subject to strong spatial variation (accounting for >90% of the variance of 

exposure, Table 3). Temporal variations made a greater contribution to total variation when 

we considered trimester-specific windows, but remained smaller than spatial variations for the 

nearest AQMS model (72-84% for spatial variation and 20-25% for temporal variation), 

whereas the contributions of the spatial and temporal variation components were similar for 

the TAG model (43-61% for spatial variation and 44-57% for temporal variation, Table 3). 

The buffer around the AQMS studied had no major effect on the relative contributions of 

spatial and temporal components of variation. 

The levels and range of NO2 concentrations estimated by the nearest AQMS model were 

greater than those estimated by the TAG model (Table 2). Bland and Altman plots (See 

Supplemental Material, Figure 1) showed that the difference between the two models 
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increased with mean exposure estimates. This pattern was principally due to between-model 

differences for women living in the city-centers (mean NO2 concentrations estimated by the 

nearest AQMS model were higher and ranges were narrower than for the TAG model), rather 

than in the peri-urban areas. Indeed, the exposure distributions for the two models became 

more similar when city-center AQMS measurements were not taken into account (Figure 2). 

All this indicates that the overestimation of NO2 exposure levels by the AQMS model with 

respect to the TAG model mainly concerned the women who were also the most exposed with 

the TAG model.  

The correlation and concordance (K) between the two exposure models were fair (0.40 -0.74) 

when we considered all the women living within 5 km of an AQMS (Table 2 and 

Supplemental Material, Figure 2), but were stronger if we restricted the study population to 

women living within 2 (0.37 -0.79) or 1 km (0.59 -0.87) of an AQMS. The correlation and 

concordance between the two exposure models also differed between the areas 

(Nancy/Poitiers) and between the city center and suburban areas (See Supplemental Material, 

Figure 2).  

 

Associations between air pollutants and fetal growth 

The patterns of association with birthweight identified were similar for the two exposure 

models, in terms of estimates of adjusted effects and confidence intervals (CI), although these 

associations were stronger for the nearest AQMS model (Figure 3, and see Supplemental 

Material, Table 1). The first and third trimesters of pregnancy corresponded to the exposure 

windows most clearly associated with effects on birthweight, for both exposure models. For 

women living less than 2 km from an AQMS, an increase of 10 µg/m3 in NO2 concentration 

during the first trimester of pregnancy was associated with an adjusted change in mean 

birthweight of -37 g (95% CI, -75; 1 g) for the nearest AQMS model and of -51 g (95% CI, -

Page 14 of 33



15 
 

128; 26 g) for the TAG model. Qualitatively similar results were obtained when exposure was 

coded in tertiles (See Supplemental Material, Table 1). For the AQMS model, the parameter 

quantifying the association between NO2 exposure and birthweight approached 0 as buffer 

size increased. Similar results were obtained if no adjustment was made for the center (results 

not shown).  
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Discussion 

Our study is one of the first to describe associations between NO2 exposure assessed with a 

TAG model and birthweight, and to compare this model with the more commonly used 

approach based on permanent AQMS. Models were compared in terms of both exposure 

estimates and association with birthweight. The nearest AQMS model was influenced by the 

location of monitors. Variations in exposure were mostly due to spatial rather than temporal 

variations in both models, with temporal variation making a larger overall contribution to total 

variation in the TAG model than in the nearest AQMS model. The concordance between NO2 

exposures estimates with the two models was fair when the 5 km buffer was considered. This 

concordance was stronger if the analysis was restricted to women living closer (<2 km, and 

more clearly, <1 km) to an AQMS. When exposure was coded as a continuous term, 

associations with birthweight for the TAG model were consistent with those obtained in 

analyses based on exposure estimated from the nearest AQMS model, for the various buffers 

around AQMS and exposure windows.  

 

The TAG model is thought to have a better spatial resolution than the nearest AQMS model, 

due to the use of data from fine measurement campaigns, with no loss of temporal resolution, 

because TAG exposure estimates were seasonalized on the basis of AQMS measurements. 

The stronger contribution of the spatial component in the nearest AQMS model than in the 

TAG model may at first glance appear counterintuitive, as the AQMS model could be 

considered to be essentially based on temporal variations. However, this finding may be 

accounted for by the considerable variation of the concentrations obtained with different 

AQMS, some of which (in the city center) were influenced by traffic, despite meeting the 

criteria for background stations. This illustrates the extent to which the nearest AQMS 

estimates depend on the location of the monitors, and the need for exposure models with a 
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finer spatial resolution in studies with medium- or long-term exposure windows (3 to 9 

months in our study). As passive samplers were located at background sites less affected by 

traffic, the TAG approach led to a more purely background model than the AQMS approach. 

The higher concentrations estimated by the nearest AQMS model than by the TAG model 

(Table 2) may be accounted for by this feature. The TAG model may also smooth extreme 

exposure values, leading to an underestimation of the role of spatial variation.  

One possible limitation of the TAG model stems from the approach used to seasonalize this 

model, in which we assumed that spatial differences in exposure remained constant over time. 

This assumption was found to be reasonable for an LUR model developed in Rome (Porta et 

al. 2009), but may not hold in other areas with different characteristics. 

Several studies have evaluated the performance of AQMS for estimating exposure to air 

pollutants (Marshall et al. 2008; Nerriere et al. 2005; Nethery et al. 2008; Sarnat et al. 2005). 

The last three of these studies reported poor concordance between AQMS estimates and 

personal monitoring data, which is not surprising because personal exposure is not expected 

to strictly correspond to background levels of air pollution at the home address. Marshall et al. 

(2008) reported correlations and Kappa coefficients for estimates from the nearest AQMS 

model (within 10 km) and estimates stemming from either an LUR (r=0.61, K=0.42) or a 

dispersion model (r=0.37, K=0.22). The concordance obtained with the LUR model was 

similar to that observed in our study with the TAG model for a 5 km buffer around the 

AQMS. However, Marshall’s study is not directly comparable with ours, because they used a 

larger buffer zone (10 km) and because the LUR and dispersion models incorporate all local 

sources of pollution, whereas our TAG model does not.  

 

In this study, we focused on women living less than 5 km from an AQMS, whereas previous 

studies on the effects of air pollution on birthweight have included women living more than 8 
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km (5 miles) from a monitor (Basu et al. 2004; Brauer et al. 2008; Parker et al. 2005). Our 

results indicate that the size of buffer around monitors considered has a major effect on the 

concordance between models and the estimated association between NO2 concentration and 

birthweight. Higher levels of concordance between the models were obtained if we focused 

on women living within 2 km of a monitor, with concordance levels even higher if we limited 

the analysis to women living within 1 km of a monitor. Associations between NO2 levels and 

birthweight, although not statistically significant at the 5% level, tended to be stronger for the 

2 km buffer around the AQMS than for the 5 km buffer (Figure 3). The findings were 

sometimes less clear for women living within 1 km of an AQMS, and the confidence intervals 

were slightly larger than for the 2 km buffer, probably because of the small number of 

subjects. Previous studies (Hansen et al. 2008; Wilhelm and Ritz 2005) with buffers of 

different sizes gave results similar to ours: the authors found stronger negative associations 

between fetal growth and levels of exposure to carbon monoxide, PM10, SO2 and O3 during 

pregnancy, as estimated from data from the nearest AQMS, for women living within 2 km of 

a station than for those living up to 14 km away. The choice of the buffer size can probably be 

seen as a trade-off between bias and variance: the use of smaller buffers  decreases sample 

size (increasing variance) but also probably decreases exposure misclassification (assuming 

that exposure is generally less well assessed for subjects living further away from an AQMS). 

However, selection bias may also contribute to the increase in the absolute value of the 

regression parameter quantifying the association between exposure and birthweight when 

smaller buffers are considered. Indeed, for associations with third-trimester exposure (but less 

clearly for first-trimester exposure), the absolute value of the regression parameter also tended 

to increase as buffer size decreased for the TAG model. This is unlikely to be due to 

variations in exposure misclassification and might instead be attributed to differences in the 

selection effects associated with buffers of different sizes. 
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Most previous studies considering the effects of NO2, have reported larger decreases in 

birthweight for exposure in the first and third trimesters of pregnancy (Bell et al. 2007; 

Gouveia et al. 2004; Ha et al. 2001; Liu et al. 2007; Mannes et al. 2005; Salam et al. 2005) 

than for exposure in the second trimester or over the entire pregnancy (Ha et al. 2001; Lee et 

al. 2003; Mannes et al. 2005). A similar pattern was observed in our study. A discussion of 

the biological relevance of the exposure window or the underlying mechanisms is beyond the 

scope of this article. Several potential mechanisms by which air pollution may affect fetal 

growth have been proposed (Kannan et al. 2006; Ritz and Wilhelm 2008; Slama et al. 2008), 

but none of these mechanisms has been validated. 

It is generally difficult to predict the impact of an error in an exposure variable in terms of the 

potential for bias in the exposure-response relationship (Jurek et al. 2008). However, in the 

specific case of a Berkson-type error, the power of the study is reduced and confidence 

intervals are widened, but no bias in linear regression coefficients is expected (Armstrong 

2008; Zeger et al. 2000). Berkson-type error (Armstrong 2008) may occur when the exposure 

is measured at the population level and individual exposures levels vary because of 

differences in the time windows of exposure or time-activity patterns. The measurement error 

for the nearest AQMS approach would be expected to have a Berkson-type component, 

because the same proxy exposure is used for all women living in a circular area around a 

given monitor. The observation that exposure estimates for the nearest AQMS model were at 

least as strongly associated with birthweight as those for the TAG model is consistent with the 

nearest AQMS model being subject principally to Berkson-type error. Therefore, assuming 

that the observed association with birthweight was real, exposure misclassification seemed to 

have little impact on the dose-response relationship. If we accept that the TAG model cannot 

be seen as a gold standard, exposure mismeasurement seemed to affect both models in similar 

ways. In a study in Vancouver, Brauer et al. (2008) found significant negative associations 
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between NO2 exposure and fetal growth when they used an AQMS-based approach, but no 

association when they used a LUR model. They considered women living up to 10 km away 

from an AQMS, and the AQMS-based model corresponded to an inverse-distance weighting 

index, taking into account the three closest stations within 50 km. 
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Conclusion  

Our study indicates that models of exposure to background NO2 concentrations based on data 

from the nearest AQMS may entail large errors in estimated exposure, but that in some 

instances these errors have little impact on the exposure-birthweight relationship. The 

amplitude of exposure misclassification in AQMS-based models and of the resulting bias may 

be limited by restricting the size of the study area around each AQMS considered. Full 

quantification of the exposure error for each model would require a consideration of the 

temporal and spatial activities of each subject. Our study cannot be interpreted as providing 

clear evidence that the nearest AQMS approach yields unbiased estimates of the association 

between NO2 concentrations and fetal growth. This question requires further consideration in 

other cohorts and in other countries, in which the sitting of permanent monitors may follow 

different rules.  
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TABLES 

 
Table 1: Characteristics of the participants and their association with NO2 levels averaged 
during pregnancy (n=776 women living less than 5 km away from an air quality monitoring 
station (AQMS)). 

Characteristic n (%) Mean (median) NO2 level, µg/m3 

  Nearest 
AQMS model 

pa TAG model pa 

Sex of offspring 
 Male 
 Female 

 
395 (51) 
381 (49) 

 
28.6 (32.3) 
28.6 (32.5) 

0.97  
23.6 (23.8) 
23.9 (23.9) 

0.28 

Gestational duration (weeks) 
 30-36 
 37-38 
 39-40 
 ≥ 41 

 
 48 (6) 
151 (20) 
407 (52) 
170 (22) 

 
30.2 (33.4) 
29.1 (32.6) 
28.1 (32.2) 
29.2 (32.8) 

0.37   
24.7 (23.1) 
24.3 (24.1) 
23.4 (23.6) 
23.8 (24.3) 

0.17 

Birth order 
 First birth 
 Second birth 
 Third birth or more 

Missing value 

 
367 (47) 
263 (34) 
145 (19) 

 1  

 
28.8 (33.4) 
28.7 (31.7) 
28.0 (32.2) 

0.71   
23.9 (23.9) 
23.9 (24.0) 
23.0 (23.1) 

0.14 

Trimester of conception of the child 
 January-March 
 April-June 
 July-September 
 October-December 

 
167 (21) 
184 (24) 
226 (29) 
199 (26) 

 
25.7 (25.3) 
29.1 (33.6) 
31.2 (35.2) 
27.7 (31.3) 

<10-4   
21.5 (21.9) 
23.5 (24.0) 
25.9 (25.7) 
23.3 (23.5) 

<10-4 

Maternal age at conception  
 <25 years 
 25-29 years 
 30-34 years 
 ≥ 35 years 

 
187 (24) 
289 (37) 
203 (26) 
 97 (13) 

 
26.7 (26.3) 
30.0 (33.8) 
28.7 (32.1) 
27.9 (32.3) 

<10-2   
22.8 (22.7) 
24.3 (24.3) 
24.2 (24.0) 
22.9 (23.4) 

<10-2 

Maternal height 
 <160 cm 
 160-169 cm 
 ≥ 170 cm 
 Missing value 

 
188 (24) 
460 (60) 
121 (16) 
 7  

 
28.3 (32.0) 
28.6 (32.7) 
29.4 (33.1) 

 

0.64   
23.4 (24.0) 
23.8 (23.8) 
24.2 (24.2) 

 

0.44  

Maternal pre-pregnancy weight 
 <50 kg 
 50-59 kg 
 60-69 kg 
 70-79 kg 
 ≥ 80 kg 

Missing value 

 
 83 (11) 
333 (43) 
211 (27) 
 87 (11) 
 60 (8) 
    2  

 
27.7 (28.8) 
28.6 (32.3) 
29.4 (33.5) 
29.0 (33.0) 
26.6 (25.9) 

0.33   
24.3 (24.1) 
23.8 (23.8) 
23.8 (24.0) 
23.6 (23.8) 
22.7 (22.0) 

0.46  

Body mass index before pregnancy 
<18.5 kg/m² 
18.5 to 24.9 kg/m² 
25 to 29.9 kg/m² 

 
 82 (11) 
512 (67) 
111 (14) 

 
29.6 (34.3) 
28.5 (32.1) 
29.4 (33.7) 

0.39   
25.0 (24.7) 
23.8 (23.9) 
23.3 (23.4) 

0.07  
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≥30 kg/m² 
Missing value 

 62 (8) 
 9  

27.1 (30.6) 23.0 (22.4) 
 

Center 
 Poitiers  
 Nancy 

 
316 (41) 
460 (59) 

 
24.9 (18.8) 
31.2 (34.4) 

<10-4  
20.3 (19.2) 
26.1 (25.7) 

<10-4 

Maternal age at end of education 
 ≤16 years 
 17-18 years 
 19-20 years 
 21-22 years 

23-24 years 
 ≥ 25 years 

 
 52 (7) 
104 (13) 
124 (16) 
165 (21) 
174 (22) 
157 (20) 

 
29.6 (33.1) 
27.0 (29.6) 
27.1 (29.1) 
27.9 (30.0) 
29.3 (33.1) 
30.6 (34.5) 

0.02   
24.0 (23.6) 
22.2 (21.9) 
23.2 (23.0) 
23.3 (23.5) 
24.5 (24.6) 
24.7 (24.6) 

<10-3  

Maternal active smoking  
(2nd trimester) 
 No 
 Yes 
 Missing value 

 
  
641 (83) 
133 (17) 
 2 

 
 

28.8 (32.7) 
28.1 (32.0) 

 

 
0.45  

 
 

23.8 (24.0) 
23.3 (22.8) 

 

 
0.30 

Maternal passive smoking  
(2nd trimester) 
 No 
 Yes 
 Missing value 

 
  
507 (66) 
264 (34) 
 5 

 
 

28.5 (32.1) 
29.0 (33.3) 

 

 
0.48 

 
 

23.7 (23.9) 
23.9 (23.6) 

 

 
0.53 

AQMS: Air Quality Monitoring Station, TAG: Temporally adjusted geostatistical model  
a p-value comparing model specific exposure estimates between categories (Student test 
for dichotomous variables) or among categories (Fischer’s analysis of variance for 
variables with >2 categories). Tests were performed without including missing data as a 
separate category. 
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Table 2: Maternal exposure to NO2 (µg/m3) and concordance between NO2 levels (mean ± standard deviation (5th, 50th, 95th percentiles)) estimated by the 
nearest air quality monitoring station (AQMS) model and the temporally adjusted geostatistical (TAG) model, for various exposure windows and buffer 
sizes considered around AQMS.  

 Nearest AQMS model (5km 
buffer) 

   Between-model agreement 

    

TAG model (5km buffer) 

 Distance a <5km  Distance a <2km  Distance a <1km 

Area 
exposure  
window 

n NO2 levels  n             NO2 levels                  pb  n r c K  n r c K  n r c K 
Both areas                     

 1st 
trimester 

770 28.8 ± 10.8 (11.3, 30.1, 43.6) 773 23.7 ±  6.2 (13.6, 23.0, 34.6)  10-4 767 0.67 61 0.41 429 0.70 62 0.43 158 0.83 75 0.63 

 2nd 
trimester 

771 29.0 ± 10.9 (11.5, 30.0, 43.9) 770 24.1 ±  6.5 (13.6, 23.6, 34.4)  10-4 766 0.69 60 0.40 426 0.72 58 0.37 156 0.82 73 0.60 

 3rd 
trimester 

770 28.1 ± 11.1 (10.4, 29.4, 44.2) 772 23.3 ±  6.8 (12.5, 22.8, 34.7)  10-4 767 0.74 63 0.44 428 0.79 68 0.52 155 0.87 79 0.68 

Whole  
pregnancy  

776 28.6 ± 10.0 (13.3, 32.4, 41.8) 770 23.7 ±  5.0 (16.1, 23.8, 32.3)  10-4 770 0.65 63 0.44 428 0.70 64 0.46 157 0.85 73 0.59 

Poitiers area                     
 1st trimester 310 25.6 ± 11.9 (  9.3, 21.6, 43.0) 316   20.9 ± 6.3 (12.0, 20.4, 35.8)  <10-3 310 0.61 59 0.38 181 0.65 57 0.36 75 0.89 83 0.74 
 2nd trimester 311 25.2 ± 11.6 (10.1, 22.2, 42.7) 315 20.4 ± 6.1 (11.8, 19.9, 32.0)  10-4 311 0.61 56 0.34 179 0.65 57 0.36 74 0.83 63 0.45 
 3rd trimester 310 23.9 ± 11.3 (  8.5, 21.7, 42.0) 315 19.5 ± 6.3 (11.5, 19.0, 30.8)  10-4 310 0.66 62 0.43 179 0.72 67 0.51 73 0.86 78 0.67 
 Whole  

pregnancy  
316 24.9 ± 10.6 (12.4, 18.8, 40.5) 316  20.3 ± 4.7 (14.7, 19.2, 30.0)  0.12 316 0.55 56 0.34 181 0.62 58 0.37 75 0.87 68 0.52 

Nancy area                    
 1st trimester 460 31.0 ±   9.5 (13.6, 31.3, 44.1) 457 25.7 ± 5.2 (17.9, 25.5, 34.6)  10-4 457 0.67 55 0.32 248 0.69 58 0.36 83 0.72 59 0.39 
 2nd trimester 460 31.6 ±   9.6 (14.1, 32.0, 44.4) 455 26.7 ± 5.5 (18.5, 26.6, 35.6)  10-4 455 0.70 58 0.37 247 0.73 65 0.48 82 0.74 66 0.49 
 3rd trimester 460 30.9 ± 10.0 (13.5, 31.4, 45.0) 457 26.0 ± 5.8 (17.5, 25.7, 36.2)  10-4 457 0.74 61 0.41 249 0.78 67 0.51 82 0.82 76 0.63 
 Whole  

pregnancy  
460 31.2 ±   8.7 (16.9, 34.4, 42.4) 454 26.1 ± 3.7 (20.8, 25.7, 32.8)  10-4 454 0.66 64 0.46 247 0.69 64 0.47 82 0.66 71 0.56 

r: Pearson correlation coefficient, c: concordance percentage (based on NO2 levels categorized in tertiles), K: Kappa coefficient (based on NO2 levels categorized in 
tertiles). 

a: Maximal distance between home address and the nearest AQMS (buffer size). 
b: p-value of Kruskal-Wallis rank test comparing the exposure levels from the two models.  
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Table 3: Variance component (%) of NO2 exposure levels estimated by the nearest air quality monitoring station (AQMS) model and by the temporally 
adjusted geostatistical (TAG) model for various exposure windows and buffer sizes considered around AQMS.  

Distance <5km (n=681)  Distance <2km (n=383)  Distance <1km (n=146) 
Nearest AQMS 

model 
 TAG model  Nearest AQMS 

 model 
 TAG model  Nearest AQMS  

model 
 TAG model 

 
Exposure  
window 

Spatial Temporal  Spatial Temporal  Spatial Temporal  Spatial Temporal  Spatial Temporal  Spatial Temporal 
1st trimester 82 21  61 52  79 22  55 57  84 25  56 49 
2nd trimester 82 20  55 46  79 21  53 52  83 21  58 44 
3rd trimester 78 21  47 46  76 21  43 52  80 24  52 48 
Pregnancy 95 7  92 14  91 8  92 17  97 9  92 13 
The sum of variance components is more than 100% because the data are not balanced as in experimental plans (i.e. the covariance is not null).

Page 30 of 33



 

31 
 

Figure legends 
 
Figure 1: Mean annual NO2 levels estimated by the nearest air quality monitoring station 

(AQMS) model in Poitiers (A) and Nancy areas (C), and by the temporally adjusted 

geostatistical (TAG) model in Poitiers (B) and Nancy areas (D) 
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Figure 2: Box plot (25th, 50th and 75th percentiles) of NO2 exposure levels during the whole 

pregnancy as estimated by the nearest air quality monitoring station (AQMS) model and by the 

temporally adjusted geostatistical (TAG) model, according to the AQMS closest to the 

residential address. Population restricted to 735 women living less than 5 km away from an 

AQMS without change of assigned station during pregnancy. 

 

a: Exposures were estimated taking into account all AQMS. 
b: Exposures were estimated taking into account all AQMS except K and M (city-center 
stations); for subjects initially assigned to one of these stations, the closest station has been 
replaced by the second AQMS nearest to the home address located outside the city center and 
less than 5 km away from the home address, if any.  
c: Exposures were estimated taking into account all AQMS except K and M; all women for 
whom K or M is the closest station have been excluded from the analysis. 
T: Tomblaine, K: Nancy-Kennedy, B: Nancy-Brabois, F: Fléville, S: St Nicolas de Port, N: 
Neuves-Maison, L: Les couronneries, M: Place du marché, C: Chasseneuil. Stations located in 
the peri-urban area. Letters identifying stations located in the city center are underlined.  
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Figure 3: Adjusteda change in mean birthweight (g) for an increase by 10 µg/m3 in NO2 during 

pregnancy, as a function of the size of the buffer considered around each air quality monitoring 

station (AQMS). The error bars indicate the 95% CIs. 

 
a adjusted for maternal age at conception, gestational age at delivery (linear and quadratic terms), 
sex of newborn, maternal height (continuous variable), pre-pregnancy weight (broken stick 
model with a knot at 60 kg), birth order, center, trimester of conception, maternal age at end of 
education, active smoking during the second trimester of pregnancy (binary variable), passive 
smoking during the second trimester of pregnancy. 
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