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Bumetanide, an NKCC1 Antagonist, Does Not Prevent Formation of Epileptogenic Focus but Blocks Epileptic Focus Seizures in Immature Rat Hippocampus

Excitatory GABA action induced by high [Cl -] i is thought to contribute to seizure generation in neonatal neurons although the mechanism of this effect remains unclear. We report that bumetanide, a NKCC1 antagonist, reduces driving force of GABAmediated currents (DF GABA ) in neonatal hippocampal neurons and blocks the giant depolarizing potentials (GDPs), a spontaneous pattern of network activity. In the preparation composed of two intact interconnected hippocampi, bumetanide did not prevent generation of kainate-induced seizures, their propagation to the contralateral hippocampus, and formation of an epileptogenic mirror focus. However, in the isolated mirror focus, bumetanide effectively blocked spontaneous epileptiform activity transforming it to the GDP-like activity pattern. Bumetanide partially reduced DF GABA and therefore the excitatory action of GABA in epileptic neurons. Therefore bumetanide is a potent anticonvulsive agent although it cannot prevent formation of the epileptogenic mirror focus. We suggest that an additional mechanism other than NKCC1-mediated contributes to the persistent increase of DF GABA in epileptic neurons.

INTRODUCTION

GABA-the principal inhibitory neurotransmitter in adultsexcites immature neurons because of a higher [Cl -] i in different animal species and brain structures [START_REF] Ben-Ari | Excitatory actions of GABA during development: the nature of the nurture[END_REF].

This difference is thought to play an important role in higher incidence of seizures early in life in humans [START_REF] Hauser | Epidemiology of epilepsy in children[END_REF][START_REF] Moshe | Increased seizures susceptibility of the immature brain[END_REF], lower seizure threshold in experimental animals, and higher neuronal excitability [START_REF] Holmes | Seizures in the developing brain: perhaps not so begin after all[END_REF][START_REF] Khazipov | Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus[END_REF]).

This early elevated [Cl -] i is due to a sequential development of two chloride co-transporters: NKCC1, which imports chloride, and KCC2, which extrudes it (Kahle and Staley 2008a,b;[START_REF] Mikawa | Developmental changes in KCC1, KCC2 and NKCC1 mRNAs in the rat cerebellum[END_REF][START_REF] Shimizu-Okabe | Layer-specific expression of Cl-transporters and differential [Cl-]i in newborn rat cortex[END_REF][START_REF] Wang | Developmental changes in KCC1, KCC2, and NKCC1 mRNA expressions in the rat brain[END_REF]. Several observations suggest a link between the excitatory action of GABA and seizure generation at an early developmental stage [START_REF] Dzhala | Excitatory actions of endogenously released GABA contribute to initiation of ictal epileptiform activity in the developing hippocampus[END_REF][START_REF] Khazipov | Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus[END_REF]). Other observations suggest that bumetanide, a NKCC1 antagonist, Address for reprint requests and other correspondence: Y Ben-Ari, INMED U901 INSERM, 163, route de Luminy, 13273 Marseille Cedex 09, France (Email ben-ari@inmed.univ-mrs.fr ) attenuates epileptiform activity in the immature rodent hippocampus by reducing [Cl -] i . The effects of bumetanide were observed neither in NKCC1 knock-out mice nor when GABA receptors were blocked, confirming the importance of [Cl -] i accumulation [START_REF] Dzhala | NKCC1 transporter facilitates seizures in the developing brain[END_REF]. However, bumetanide was efficient against seizures acutely induced in vitro by some convulsants but not by others [START_REF] Kilb | Model-specific effects of bumetanide on epileptiform activity in the in-vitro intact hippocampus of the newborn mouse[END_REF], indicating that in the latter case a NKCC1-independent mechanism was involved in seizure generation. Epilepsy is, however, a chronic disorder associated with permanent changes of several signaling cascades. Acute seizures models only partly reflect multiple events that occur in the epileptic network and are less relevant to the clinical situation.

Excitatory actions of GABA have been reported in adult human epileptic temporal lobe neurons [START_REF] Cohen | On the origin of interictal activity in human temporal lobe epilepsy in vitro[END_REF][START_REF] Huberfeld | Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy 1[END_REF]) and in chronic epileptic foci in animal models [START_REF] Khalilov | In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures[END_REF][START_REF] Khalilov | Epileptogenic actions of GABA and fast oscillations in the developing hippocampus[END_REF]. Presumably, a gradual accumulation of intracellular chloride during recurrent seizures caused these GABA effects. It is therefore important to define a link between seizures, alterations in [Cl -] i , and epileptogenesis.

We studied these issues in the intact interconnected hippocampal formation (IIHF). Using this preparation in a three-compartment chamber [START_REF] Khalilov | Maturation of kainate-induced epileptiform activities in interconnected intact neonatal limbic structures in vitro[END_REF], we were able to initiate seizures in one hippocampus and then to investigate the effects of drugs on both the seizure propagation to other hippocampus and seizure-induced epileptogenic mirror focus formation [START_REF] Khalilov | In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures[END_REF][START_REF] Khalilov | Epileptogenic actions of GABA and fast oscillations in the developing hippocampus[END_REF] in that hippocampus.

Our first aim was to investigate whether bumetanide acts as an antiepileptogenic agent and therefore prevents formation of the epileptogenic mirror focus by seizures. If this is not the case, bumetanide can still block seizures in the mirror focus and thus to cause an anticonvulsive effect.

The second aim was to investigate the role of NKCC1 in an increased neuronal [Cl -] i in epileptogenic mirror foci.

Because it recently has been shown that the invasive recordings provide inadequate measures of the resting membrane potential (E m ) [START_REF] Tyzio | Membrane potential of CA3 hippocampal pyramidal cells during postnatal development[END_REF] and the perforated-patch technique may cause systematic errors in measurements of the reversal potential of GABA-induced currents (E GABA ) [START_REF] Brumback | Thermodynamic regulation of NKCC1-mediated Cl-cotransport underlies plasticity of GABA(A) signaling in neonatal neurons[END_REF], we used noninvasive single N-methyl-D-aspartate (NMDA) and GABA channel recordings to determine, respectively, E m and E GABA .

METHODS

Experiments were performed on neonatal Wistar rats (postnatal days P7-P8). All experiments have been carried out in accordance with the European Communities Council Directive of 24 November 1986 (86/609/EEC).

Hippocampal preparation

The interconnected intact hippocampal formations were prepared as described previously [START_REF] Khalilov | A novel in vitro preparation: the intact hippocampal formation[END_REF]. In brief, neonatal Wistar rats were decapitated after hypothermic anesthesia, and the brain rapidly removed to oxygenated (95% O 2 -5% CO 2 ) ice-cold artificial cerebrospinal fluid (ACSF). Complexes including two interconnected hippocampi were isolated and transferred into a beaker with oxygenated ACSF containing (in mM) 126 NaCl, 3.5 KCl, 2.0 CaCl 2 , 1.3 MgCl 2 , 25 NaHCO 3 , 1.2 NaH 2 PO 4 , and 11 glucose (pH 7.4) and incubated 1 h before use. The intact hippocampal formations were placed into the conventional fully submerged three-compartment chamber (Fig. 3, see diagram) and superfused with oxygenated ACSF (30-32°C, 10-15 ml/min). The hippocampi were fixed by entomological needles to the silicone elastomer (Sylgard)-covered bottom.

Slice preparation

Slices were prepared as described previously [START_REF] Ben-Ari | Giant synaptic potentials in immature rat CA3 hippocampal neurones[END_REF]. In brief, after decapitation, the brain was rapidly removed and placed in oxygenated, ice-cooled ACSF; hippocampal transverse slices (500 µm) were cut with a McIIwain tissue chopper and kept in oxygenated ACSF at room temperature for 1 h before use. Individual slices were then transferred to the recording chamber where they were fully submerged and superfused with oxygenated ACSF (30-32°C, 2-3 ml/min).

Electrophysiological recordings

All recordings were made from CA3 pyramidal layer. Whole cell patch-clamp recordings in voltage-or current-clamp configuration were collected using an Axopatch 200B amplifier (Axon Instruments). Patch pipette solution were: 1) for recordings of single GABA(A) channels containing (in mM) 120 NaCl, 20 TEA-Cl, 5 KCl, 5 4-aminopyridine, 0.1 CaCl 2 , 10 MgCl 2 , 10 glucose, 10 HEPES-NaOH buffered to pH 7.2-7.3 and 1 µM GABA; 2) for recordings of single NMDA channels: nominally Mg 2+ -free ACSF with 10 µM NMDA and 1 µM glycine; 3) for whole cell recordings (in mM): 140 CsCl, 1 CaCl 2 , 10 EGTA, 10 HEPES, 2 MgATP, and 0.4 GTP, pH 7.25, osmolarity 280, patch pipettes had a resistance of 8-10 M; 4) for gramicidin perforated-patch recording (in mM): 150 KCl and 10 HEPES, buffered to pH 7.2 with Tris-OH. Gramicidin was first dissolved in DMSO to prepare a stock solution of 40 mg/ml and then diluted to a final concentration of 80 µg/ml in the pipette solution. The gramicidin-containing solution was prepared 30 min before the experiment. Patch pipettes were filled with a gramicidincontaining solution, and then the tip was dipped into and filled with a gramicidin-free solution by applying a negative pressure for 30-40 s to facilitate cell-attached formation (4-10 G). Twenty to 30 min after cell-attached formation, series resistance decreased and stabilized. At the end of each recording, negative pressure applied to break the membrane and establish whole cell configuration. This was associated with a shift of the reversal potential of the GABA A mediated responses to near 0 mV. Cells were identified by adding biocytin (0.4%) to the pipette solution for morphological analysis.

Extracellular potentials were recorded using two types of electrodes: field recordings were made with glass micropipettes (GC120TF-10, Clark Electromedical Instruments) filled with ACSF (1-5 M); and to record multiunit activity (MUA), we used tungsten wire electrodes (diameter: 50 µm, California Fine Wire, Grover Beach, CA). Recording electrodes were positioned in a pyramidal cell layer of CA3 subfield, and signals were amplified using a custom-made DAM-8A amplifier (WPI, GB; low filter: 0.1 Hz; high filter: 3 kHz; x1,000). Electrical stimulations were made with a bipolar electrode (10-20 V, 40 µs). Synaptic responses were acquired using an A/D converter (Digidata 1440A, Axon Instruments). Axoscope and Clampfit 10.1 (Axon Instruments) and Origin 7.0 (Microcal Software) programs were used for the acquisition and analysis of the synaptic activities. Group measures are expressed as means ± SD, error bars also indicate SD. Statistical significance of differences was assessed with the Student's t-test, the level of significance was set at P < 0.05. Drugs used were purchased from Sigma [tetrodotoxin (TTX), bumetanide, gramicidin],

Tocris [bicuculline, gabazine, 6-cyano-7nitroquinoxaline-2,3 dione (CNQX), D-2-amino-5phosphopentanoate (APV)] and Molecular Probes (biocytin).

RESULTS

Bumetanide reduces the excitatory GABA action and blocks GDPs in naïve neurons

We first tested the actions of bumetanide on activity of immature hippocampal neurons with simultaneous extracellular and gramicidin perforated patch-clamp recordings (Fig. 1). Neuronal activity at early developmental stages is characterized by spontaneous networkdriven discharges, so-called giant depolarizing potentials (GDPs) [START_REF] Ben-Ari | Giant synaptic potentials in immature rat CA3 hippocampal neurones[END_REF], consisting predominantly of GABAergic postsynaptic currents (PSCs) and bursts of MUA in field potential recordings (Fig. 1Aa). As in earlier observations [START_REF] Sipila | The Na-K-Cl cotransporter (NKCC1) promotes sharp waves in the neonatal rat hippocampus[END_REF], bumetanide (10 µM) blocked spontaneous and evoked GDPs (Fig. 1Ba). In control, single-electrical stimulation evoked a burst of action potentials and large GDPs (Fig. 1Aa). Addition of bumetanide strongly reduced both the number of action potentials (from 65.7 ± 16.9 to 8 ± 2.6 spike, n = 17) and the amplitude of evoked PSCs(Fig. 1, Ba and C). In the presence of APV (40 µM) and CNQX (10 µM), evoked PSCs were considerably reduced, but a few spikes (5.1 ± 1.7 spike, n = 17) were still present (Fig. 1, Ab andC). These spikes were blocked by further addition of bicuculline (Fig. 1, Ac andC), confirming the contribution of excitatory GABAergic synapses in their generation. While bicuculline-sensitive spikes could be generated in the presence of glutamate receptors antagonists, they were not generated in the presence of bumetanide (Fig. 1Bb). Therefore bumetanide was as efficient as bicuculline in blocking the GABA-mediated spiking activity.

Relying on I-V relations of single NMDA and GABA channels (Fig. 2A), we then determined the alterations in DF GABA produced by bumetanide. As shown in Fig. 2, B and C (left), bumetanide did not change E m (-78.5 ± 2.3 and -79.8 ± 3.2 mV, n = 9 and n = 13, respectively, P = 0.5). However, bumetanide decreased DF GABA (from 13.7 ± 11.6 to 2.02 ± 4.8 mV, n = 8 and n = 10, respectively, P < 0.01) and thus negatively shifted E GABA . Therefore bumetanide reduced [Cl -] i leading to a less depolarized DF GABA and blockade of GDPs.

Bumetanide does not block generation and propagation of kainateinduced seizures

We then tested the effects of bumetanide on the generation and propagation of seizures induced by unilateral application of kainate using the IIHF in three-compartment chamber Fig. 3A (left). In keeping with our earlier observations [START_REF] Khalilov | In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures[END_REF], a single application of kainate (300-400 nM) generated recurrent ictal events that propagated from the kainate-treated hippocampus to the contralateral one (Fig. 3A). As shown in Fig. 3A (right), these paroxysmal discharges included high-frequency oscillations (HFOs; 50-150 Hz) in both treated (not shown) and naïve hippocampi. As long as the two hippocampi were connected, continuous application of bumetanide (10 µM) to the contralateral naïve hippocampus-in parallel with recurrent applications of kainate to the treated sidedid not reduce the severity of ictal events in both hippocampi as indicated by the HFOs (Fig. 3B, right) and power spectrum (Fig. 3D; n = 7). In fact, continuous application of bumetanide to both hippocampi while kainate was applied to one hemisphere also failed to reduce seizure severity in both kainate treated and contralateral side (not shown, n = 3). Higher concentrations of bumetanide (50 µM) failed to reduce seizure severity (not shown, n = 3) as well.

Bumetanide does not prevent formation of a mirror focus but blocks seizure generation in the mirror focus

To form an epileptogenic mirror focus, we used recurrent applications of kainate (15 times) to one hippocampus (ipsilateral, ipsi-) that generated an epileptic focus in the connected hippocampus (contralateral, contra-) [START_REF] Khalilov | In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures[END_REF][START_REF] Khalilov | Epileptogenic actions of GABA and fast oscillations in the developing hippocampus[END_REF]. With this protocol, naive hippocampus (contra-) became epileptic and generated seizures after disconnection from the kainate treated side for 2 days [START_REF] Khalilov | In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures[END_REF][START_REF] Khalilov | Epileptogenic actions of GABA and fast oscillations in the developing hippocampus[END_REF]. In these experiments, in parallel with recurrent kainate applications, bumetanide was continuously applied to the contralateral hippocampus. Following repeated applications of kainate, both hippocampi generated spontaneous and synchronous ictal-like seizures in spite of the presence of bumetanide (Fig. 4A). Interestingly, analyses of the inter-hemispheric latencies revealed that each spontaneous ictal event always originated initially from the ipsilateral hippocampus (Fig. 4Ab, n = 5) that was not the case during tonic-clonic and clonic phases of the event (Figs. 4A, c andd, n = 40).

We then disconnected the two hippocampi by severing the commissural fibers (not shown) or by applying TTX to the commissural chamber (Fig. 4B) while the contralateral hippocampus was still exposed to bumetanide. We observed that seizures were generated in the kainate-treated hippocampus only. The bumetanidetreated side failed to generate the epileptiform activity (Fig. 4B, n = 4), generating instead the synchronized events reminiscent to GDPs (named further as epileptic GDPs, EGDPs). However, after washing out of bumetanide, spontaneous and evoked seizures reappeared (Fig. 4C). In additional experiments, continuous application of bumetanide to both hippocampi while kainate was repeatedly applied to only one, failed also to prevent the formation of epileptogenic foci in both hippocampi (n = 4, not shown). Therefore bumetanide prevented neither the long-term effects of kainate nor transformation by propagating seizures the naive hippocampus to one generating seizures.

Bumetanide restores GDP-like recurrent population bursts in the mirror focus

We then investigated the electrical properties of the disconnected mirror focus more detail. Field and patch-clamp recordings were made from the isolated mirror focus in intact hippocampi and in slices prepared from such hippocampus, which also were able to generate spontaneous epileptiform events [START_REF] Khalilov | In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures[END_REF]. The isolated intact hippocampus generated spontaneously ictal and interictal events that were fully blocked by bumetanide (Fig. 5 A, n = 7). Similar observations were made in slices prepared from the mirror foci (Fig. 5B, n = 9). In the presence of bumetanide, the disconnected mirror focus generated EGDPs (see following text and Fig. 6). Bumetanide also blocked the induction of stimuli-induced epileptiform oscillations in the mirror focus (not shown, n = 10). After washout, spontaneous and evoked epileptiform oscillations reappeared after various delays, suggesting that the permanent network alterations in the mirror focus were not abolished by bumetanide (Fig. 5B). Therefore bumetanide blocked seizure generation in the mirror focus but neither prevented formation of the mirror focus nor reversed the chronic epileptic features of the tissue. After addition of bumetanide, interictal activity was completely suppressed and replaced by recurrent population bursts of activity, EGDPs, that had a number of similar features with physiological patterns, GDPs, including (Fig. 6): both types of events were characterized by a few hundred millisecond increase in MUA with a relatively small delta-wave-like deflection of local field potentials in the pyramidal cell layer and without population spikes (Figs. 6Ba and 7A, *); both population events had much smaller amplitudes than those of interictal events (110 ± 18.9 mV for GDPs; 71.3 ± 1.2 mV for EGDPs, and 553.2 ± 12.4 mV for interictal events, n = 24, n = 27, and n = 48 events, respectively, P < 0.01; Fig. 6D); in gramicidin perforated-patch recordings, both types of events had similar reversal potential (60.9 ± 3.1; 59.6 ± 1.5 mV, and 36.9 ± 4.6 mV for interictal events, n = 10; Fig. 6, a and b); and estimated in cell-attached recordings, the number of spikes in CA3 pyramidal cells was similar during GDPs (Fig. 6Ac) and EGDPs (Cc) but much bigger during interictal (Bc) activity (1-2 spikes for control or EGDPs and 4-5 for interictals; Fig. 6E).

Thus in spite of the fact that bumetanide eliminated epileptiform activity in the mirror focus some population activity, EGDPs, still remained, presumably due to a NKCC1-independent increase of [Cl - ] i in epileptic neurons.

NKCC1 underlies only partially excitatory GABA action in epileptogenic neurons

Formation of the mirror focus is associated with a permanent in E GABA [START_REF] Khalilov | In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures[END_REF]. This and other observations [START_REF] Cohen | On the origin of interictal activity in human temporal lobe epilepsy in vitro[END_REF][START_REF] Fujiwara-Tsukamoto | Distinct types of ionic modulation of GABA actions in pyramidal cells and interneurons during electrical induction of hippocampal seizure-like network activity 2[END_REF][START_REF] Jin | Impaired Cl extrusion in layer V pyramidal neurons of chronically injured epileptogenic neocortex[END_REF][START_REF] Rivera | Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2[END_REF]; for review, see [START_REF] Ben-Ari | GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations[END_REF]) suggest that recurrent seizures produce a permanent accumulation of chloride and therefore enhance the excitatory action of GABA.

As shown in Fig. 7, A-D, the excitatory actions of GABA in the mirror focus were reduced but not blocked by combined applications of bumetanide, APV, and CNQX. Bumetanide transformed stimuliinduced epileptiform oscillations to EGDPs (Fig. 7, A andB). Evoked bursts of action potentials were still observed after application of APV and CNQX (Fig. 7C) and were completely blocked following application of bicuculline (D), suggesting that in the presence of bumetanide, GABA still exerts an excitatory action mediated by NKCC1-independent mechanism(s).

To clarify this effect, we measured E m and DF GABA in epileptic neurons. E m was not significantly different in naïve neurons and neurons (Fig. 7E) in the mirror focus (-78.1 ± 1.8 and -74,8 ± 2.3 mV, n = 14 and n = 10, respectively, P = 0.08.

Bumetanide or glutamate receptor antagonists (CNQX+APV) blocked seizures but did not alter E m . In neurons of epileptic mirror foci, however, DF GABA was significantly increased (from 13.2 ± 12.2 FIG. 3. Bumetanide does not block generation and propagation of kainate-induced seizures. Left: experimental design and the 3-compartment chamber. Two hippocampi and commissural connections have independent inlets and a common outlet. Kainate was applied to 1 hippocampus [ipsilateral (ipsi-)] and electrical activity recorded in ipsi-and contralateral hippocampus (contra-). A: kainic acid (300-400 nM) was applied briefly (3 min) to 1 compartment (ipsi-), whereas the contralateral compartment was perfused with normal ACSF. Seizures induced in the ipsilateral hippocampus propagate to the contralateral side. High-frequency oscillations (HFOs, 50-150 Hz) were observed in the contralateral hippocampus. These high-frequency activities were visualized by timefrequency (TF) representations using Wavelet analysis. Here field power is coded in colors so that red corresponds to higher frequency (right). B: kainate was applied to one hippocampus (ipsi-) and bumetanide (10 µM) to the naïve contralateral hippocampus (contra-). Bumetanide did not block ictal-like events and HFOs in the contralateral hippocampus (TF representations and power spectrogram). C: perforated-patch recordings from a neuron in the contralateral treatment (red trace). Cb: integral currents calculated from Ca. D: power spectrum of field potentials during ictal events in control and in the presence of bumetanide.

to 37.3 ± 8.1 mV, n = 8 and n = 33, respectively, P < 0.001) that resulted in a positive shift in E GABA (Fig. 7F). Bumetanide significantly reduced this shift (from 37.3 ± 8.1 to 14.2 ± 7.6 mV, n = 33 and n = 17, respectively, P < 0.001), although values of DF GABA remained bigger than those in naïve neurons (14.2 ± 7.6 vs. 2.02 ± 4.8 mV in naïve neurons in the presence of bumetanide; Figs. 7F and2C). Increasing the bumetanide concentration (50 µM, n = 8) or blockade of ongoing seizures by CNQX+APV failed to block this persistent increase of DF GABA .

Therefore in the presence of bumetanide, DF GABA remained by 10 mV bigger in the epileptic neurons comparing with those in control, and this difference was independent of ongoing epileptiform activity.

DISCUSSION

The principal finding of the present study is that bumetanide reduces DF GABA and blocks seizures in the mirror focus, suggesting that the excitatory action of GABA, mediated at large by NKCC1, is critically important for the generation of epileptiform activity. However, bumetanide does not prevent the seizure-dependent transformation of a naïve network to the epileptic one, suggesting that seizures beget seizures even when NKCC1 is not functioning. In addition, a residual increase in DF GABA in the presence of bumeta-FIG. 4. Bumetanide does not prevent the formation of an epileptogenic mirror focus. A: simultaneous field recordings in the ipsilateral hippocampus exposed 15 times to kainate and contralateral hippocampus continuously exposed to bumetanide. Both hippocampi were connected and spontaneous seizures were synchronous. Aa: an epileptiform ictal-like activity depicted at larger scale. A, b and c: epileptiform events at the start and at the end (tonicclonic phase) of the ictal-like activity. Note that seizures originated always (n = 5) from ipsilateral hippocampus as shown in Ab at expended scale. During the tonic-clonic phase (Ac), this is not the case, as quantified in Ad. Ad: quantification of the inter-hemispheric latencies ( t). B and C: simultaneous field recordings following disconnection of 2 hemispheres by applying TTX onto commissural connections. B: bumetanide is still present in the contralateral side. Seizures are not generated; however, GDP-like population activity still exists. C: after washing bumetanide out, both sides generate seizures that are not synchronous.

nide indicates that a persistent elevation of [Cl -] i in the epileptic neurons is only partially mediated by NKCC1.

Bumetanide is an anticonvulsive but not an antiepileptogenic agent

The effects of bumetanide on seizures are quite controversial depending on the type of model and convulsive agent used. Bumetanide reduced seizures generated by high K + [START_REF] Dzhala | NKCC1 transporter facilitates seizures in the developing brain[END_REF][START_REF] Kilb | Model-specific effects of bumetanide on epileptiform activity in the in-vitro intact hippocampus of the newborn mouse[END_REF], reduced [START_REF] Dzhala | Bumetanide enhances phenobarbital efficacy in a neonatal seizure model[END_REF] or increased [START_REF] Kilb | Model-specific effects of bumetanide on epileptiform activity in the in-vitro intact hippocampus of the newborn mouse[END_REF]) seizures generated by low Mg 2+ , and augmented the frequency of seizures generated by kainate [START_REF] Kilb | Model-specific effects of bumetanide on epileptiform activity in the in-vitro intact hippocampus of the newborn mouse[END_REF]. Delpire and colleagues [START_REF] Zhu | NKCC1 and KCC2 prevent hyperexcitability in the mouse hippocampus[END_REF]) suggested that NKCC1 antagonists aggravate 4-aminopyridine-induced seizures and enhance neuronal excitability, albeit at a later developmental stage (P10-P13), and also suggested that NKCC1 actually reduces hyperexcitability.

We found that bumetanide neither reduced nor aggravated the severity of seizures in both kainate-treated hippocampus and contralateral hippocampus to which these seizures propagated and failed also to prevent formation of the epileptogenic mirror focus. Bumetanide did not block the high-frequency components of seizures (>40 Hz), which are critically important for the formation of mirror focus [START_REF] Khalilov | Epileptogenic actions of GABA and fast oscillations in the developing hippocampus[END_REF]. It also did not alter GABAmediated PSCs during ictal events generated by the propagation of seizures from the kainate-treated hippocampus. In contrast, GABA receptor antagonists block the HFOs and mirror focus formation [START_REF] Khalilov | Epileptogenic actions of GABA and fast oscillations in the developing hippocampus[END_REF] confirming that functional GABA signaling is essential for these events.

In spite of a DF GABA reduction by bumetanide in naïve neurons of to the levels close to E m , the dynamic accumulation of chloride during severe seizures is not fully controlled by NKCC1.

Therefore it is likely that during recurrent seizures the severity of ictal events and the GABA-mediated massive influx of chloride overcome the inhibitory effect of bumetanide on NKCC1 and [Cl -] i accumulation. Dynamic effects of seizures on DF GABA , that is likely neuronal type dependent, and the mechanisms of chronic alteration of DF GABA by seizures remain to be further investigated.

In contrast, bumetanide fully blocked generation of seizures in the disconnected mirror focus although the GDP-like pattern, EGDPs, still remained. Its properties, however, differed significantly from those of interictal events.

Determining the mechanisms underlying the chronic alterations of [Cl -] i in epileptic tissues is important because most antiepileptic drugs (AEDs) have been developed using adult experimental models that do not possess the unique properties of immature neurons and networks [START_REF] Connell | Clinical and EEG response to anticonvulsants in neonatal seizures[END_REF][START_REF] Painter | Phenobarbital compared with phenytoin for the treatment of neonatal seizures[END_REF][START_REF] Staley | Does Plasticity of the GABA(A) reversal potential contribute to epileptogenesis?[END_REF]. It has been suggested that drugs that reduce [Cl -] i such as bumetanide may constitute a novel family of AEDs adapted to developmental epilepsies [START_REF] Dzhala | Bumetanide enhances phenobarbital efficacy in a neonatal seizure model[END_REF]Kahle and Staley 2008b). Our observations, however, suggest that although bumetanide blocks the expression of seizures, it may not be efficient in preventing the longlasting sequels of recurrent seizures. This is particularly important because seizures in neonates can cause long-lasting deteriorate effects [START_REF] Ben-Ari | Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy[END_REF][START_REF] Hauser | Risk of recurrent seizures after two unprovoked seizures[END_REF][START_REF] Levene | The clinical conundrum of neonatal seizures 15[END_REF][START_REF] Massingale | Survey of treatment practices for neonatal seizures[END_REF][START_REF] Mizrahi | Neonatal seizures: early-onset seizure syndromes and their consequences for development[END_REF][START_REF] Moshe | Kindling in developing rats: persistence of seizures into adulthood[END_REF][START_REF] Tremblay | Maturation of kainic acid seizure-brain damage syndrome in the rat. I. Clinical, electrographic and metabolic observations[END_REF].

NKCC1 is partly responsible for the persistent increase of DF GABA in epileptic neurons

Previous studies consistently showed that bumetanide reduces [Cl -] i and the excitatory actions of GABA in immature neurons [START_REF] Dzhala | NKCC1 transporter facilitates seizures in the developing brain[END_REF][START_REF] Sipila | The Na-K-Cl cotransporter (NKCC1) promotes sharp waves in the neonatal rat hippocampus[END_REF][START_REF] Yamada | Cluptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1[END_REF]. However, these studies used invasive recording techniques-whole FIG. 5. Bumetanide blocks seizures in the mirror focus. Field recordings in the separated contralateral intact hippocampus (A) and slices obtained from the contralateral hippocampus (B) after mirror focus formation. Note that seizures have been blocked by bumetanide and replaced by spontaneous (GDP-like) population events (see Fig. 6).

cell and perforated-patch recordings-that strongly alter resting membrane potential [START_REF] Tyzio | Membrane potential of CA3 hippocampal pyramidal cells during postnatal development[END_REF]). Here we used for the first time single channel recordings to determine the actions of bumetanide on both E m and E GABA and thus the driving force of GABA DF GABA . Our results indicate that bumetanide clearly reduces significantly E GABA leading to an important fall in the driving force of GABA and confirming the actions of the diuretic compound on intracellular chloride and E GABA . The small change of E m in epileptic neurons when compared with controls as determined with single NMDA channel recordings may be due to tonic GABA A current [START_REF] Sipila | Depolarizing GABA acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in the immature hippocampus[END_REF]) that causes increased membrane depolarization due to depolarizing DF GABA . But we did not investigate further this issue. We also did not investigate possible distal actions of bumetanide on the dendrites of pyramidal neurons or on other neuronal populations.

Enhancement of [Cl -] i in the mirror focus neurons was significantly reduced by bumetanide However, under action of bumetanide, DF GABA in the epileptic neurons was still bigger than in control (>10 and 2 mV, respectively). Although the upregulation of NKCC1 expression in epileptic mirror focus neurons cannot be excluded [START_REF] Okabe | Amygdala kindling induces upregulation of mRNA for NKCC1, a Na(+), K(+)-2Cl(-) cotransporter, in the rat piriform cortex[END_REF], the increase in bumetanide concentration has not reduced [Cl - ] i further, suggesting that other mechanisms are involved. One possible candidate is the KCC2 that is thought to play a fundamental role in Cl -extrusion [START_REF] Hubner | Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition[END_REF][START_REF] Lee | KCC2 expression in immature rat cortical neurons is sufficient to switch the polarity of GABA responses[END_REF][START_REF] Rivera | The K + /Cl-co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation[END_REF]. It is well documented that KCC2 expression in rodents is low at birth in the forebrain and increases steadily during the first 2-3 wk of postnatal life [START_REF] Clayton | Ontogeny of cation-Clcotransporter expression in rat neocortex[END_REF][START_REF] Dzhala | NKCC1 transporter facilitates seizures in the developing brain[END_REF][START_REF] Lu | Developmental regulation of the neuronalspecific isoform of K-Cl cotransporter KCC2 in postnatal rat brains[END_REF][START_REF] Mikawa | Developmental changes in KCC1, KCC2 and NKCC1 mRNAs in the rat cerebellum[END_REF][START_REF] Rivera | The K + /Cl-co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation[END_REF][START_REF] Wang | Developmental changes in KCC1, KCC2, and NKCC1 mRNA expressions in the rat brain[END_REF]. Seizures and other insults can induce a downregulation of KCC2 expression [START_REF] De | Subiculum network excitability is increased in a rodent model of temporal lobe epilepsy[END_REF][START_REF] Fiumelli | Modulation of GABAergic transmission by activity via postsynaptic Ca 2+ -dependent regulation of KCC2 function[END_REF][START_REF] Palma | Anomalous levels of Cl-transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory[END_REF][START_REF] Payne | Cation-chloride co-transporters in neuronal communication, development and trauma[END_REF][START_REF] Rivera | Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2[END_REF]).

However, to the best of our knowledge, little information is available on the functionality of KCC2 at an early developmental stage. We cannot also exclude a participation of voltage-gated Cl - channels to the chloride homeostasis [START_REF] Farrant | The cellular, molecular and ionic basis of GABA(A) receptor signalling[END_REF][START_REF] Huguenard | Whole-cell voltage-clamp study of the fading of GABA-activated currents in acutely dissociated hippocampal neurons[END_REF][START_REF] Ling | Activity-dependent depression of monosynaptic fast IPSCs in hippocampus: contributions from reductions in chloride driving force and conductance[END_REF][START_REF] Mccarren | Use-dependent depression of IPSPs in rat hippocampal pyramidal cells in vitro[END_REF][START_REF] Payne | Cation-chloride co-transporters in neuronal communication, development and trauma[END_REF][START_REF] Staley | Alteration of GABA A receptor function following gene transfer of the CLC-2 chloride channel[END_REF][START_REF] Thompson | Activity-dependent disinhibition. I. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro[END_REF].

In conclusion, our study with the use of noninvasive single channel recordings in chronic epileptic tissue, confirms the importance of evaluation of DF GABA and E m to examine the effects of seizures and putative anticonvulsive agents on neuronal network functioning. Our observations are in favor of using bumetanide for blocking seizures in neonates but also call for studies of other regulators of intracellular chloride and their effects on seizures.

Although a strict comparison with the clinical situation is difficult because of the large variety of epilepsy types and longlasting duration required for seizures to evoke their neurological sequels, we consider the mirror focus as an "epileptic" tissue because it generates spontaneously recurrent ictal and interictal seizures for hours and up to 2 days [the longest period this preparation could be kept [START_REF] Khalilov | In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures[END_REF]]. It has been suggested that a combination of phenobarbital and bumetanide is more efficient for treating refractory infantile epilepsies because bumetanide reduces DF GABA and phenobarbital augments the efficacy of inhibitory GABA signaling [START_REF] Dzhala | Bumetanide enhances phenobarbital efficacy in a neonatal seizure model[END_REF]Kahle and Staley 2008b). The validity of this attractive hypothesis will depend, however, on the contribution of NKCC1 to positive DF GABA in epileptic conditions.

FIG. 1 .

 1 FIG. 1. Bumetanide blocks GABA-mediated excitation and GDPs in neonatal rat hippocampus. Dimultaneous extracellular and gramicidin-perforated patch-clamp recordings in the CA3 pyramidal layer of hippocampus in artificial cerebrospinal fluid (ACSF, A) and ACSF + bumetanide (Bum; B). Ab and Bb: similar recordings in the presence of 6-cyano-7nitroquinoxalene-2,3-dione (CNQX) and D-2amino-5-phosphopentanoate (APV). Note that glutamatergic receptor antagonists blocked 100% of the evoked (arrows) multiunit activity (MUA) in the bumetanide treated slices and only 90% in control. Ac and Bc: the remaining activity was completely blocked by the GABAergic receptor antagonist bicuculline (Bicu) confirming the excitatory action of GABA in naïve neurons. C: summary plot of the mean number of units evoked by a single stimulus (15-20 stimuli per slice) in 4 independent experiments.

FIG. 2 .

 2 FIG. 2. Bumetanide strongly reduces the depolarizing driving force of GABA-mediated currents (DF GABA ). A: cell-attached recordings of single GABA(A; left) and N-methyl-Daspartate (NMDA) receptor channels (right) in CA3 pyramidal cells in control ACSF. B: I-V relationships of single GABA A and NMDA receptor channels in ACSF ( ) and bumetanide-treated ( ) slices. C: summary plot of the resting membrane potential (E m ) and driving force of GABA-mediated currents (DF GABA = E GABA -E m ) in control ( ) and in bumetanide ( ). Each circle corresponds to 1 CA3 pyramidal cell. Error bars indicate SD.

  FIG.. 6. Bumetanide transforms seizure activity into the GDP-like recurrent population bursts. Simultaneous extracellular and gramicidine perforated-patch recordings of spontaneous synchronized network activity in control slices (A), mirror focus slices (B), and mirror focus slices in the presence of bumetanide (C). Ab, Bb, and Cb: I-V relations of perforated-patch currents. Ac, Bc, and Cc: simultaneous extracellular and cell-attached recordings of spontaneous network activity in control, mirror focus slices, and mirror focus slices in the presence of bumetanide. D: summary plot of mean amplitudes of field potentials during synchronized network events. E: the mean number of cell-attached recorded spikes during this synchronized activity.
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