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Abstract 

Background 

Post-transcriptional regulation in eukaryotes can be operated through microRNA (miRNAs) 

mediated gene silencing. MiRNAs are small (18-25 nucleotides) non-coding RNAs that play 

crucial role in regulation of gene expression in eukaryotes. In insects, miRNAs have been 

shown to be involved in multiple mechanisms such as embryonic development, tissue 

differentiation, metamorphosis or circadian rhythm. Insect miRNAs have been identified in 

different species belonging to five orders: Coleoptera, Diptera, Hymenoptera, Lepidoptera 

and Orthoptera. 

Results 

We developed high throughput Solexa sequencing and bioinformatic analyses of the genome 

of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran 

insect. By combining these methods we identified 149 miRNAs including 55 conserved and 

94 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different 

alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch 

of reproduction mode. Pea aphid microRNA sequences have been posted to miRBase: 

http://microrna.sanger.ac.uk/sequences/ 

Conclusions 

Our study has identified candidates as putative regulators involved in reproductive 

polyphenism in aphids and opens new avenues for further functional analyses. 
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Background 

MicroRNAs (miRNAs) are small (18-24 nucleotides) non-coding RNAs (ncRNAs) that 

regulate gene expression in eukaryotes. Numerous miRNA genes have been found in animal 

genomes. They are located either within intronic sequences of mRNA-coding genes, or in 

intergenic regions. Many miRNAs are highly conserved throughout evolution (reviewed in 

[1]). However, there are also taxa-specific miRNAs [2-5]. One such miRNA is iab-4 which is 

only described in insect species and is involved in wing formation [6]. The description of 

insect miRNAs in miRBase [7] remains largely restricted to Diptera (Drosophila 

melanogaster, D. pseudoobscura, Anopheles gambiae), Hymenoptera (Apis mellifera, 

Nasonia vitripennis), Coleoptera (Tribolium castaneum), Orthoptera (Locusta migratoria) and 

Lepidoptera (Bombyx morii), which all diverged about 280 million-years ago [8]. The insect 

species with the greatest number of miRNAs (147) represented in miRBase is D. 

melanogaster, which until recently was also the only insect for which deep sequencing results 

have been combined with a thorough bioinformatics analysis [9]. This number has recently 

been surpassed in a study on the silkworm, B. mori [10] and the locust Locusta migratoria 

[11]. Functional analyses of insect miRNAs has been mainly restricted to D. melanogaster 

[9,12] where they have been shown to affect multiple biological processes such as embryo 

development and tissue differentiation, cell proliferation or morphological changes. Until 

now, no miRNAs have been described from the Hemiptera, a group of insects that includes 

many of the world’s most damaging insect pests such as aphids, whiteflies, and scales. 

MiRNAs are generated from genome-encoded precursors that form hairpin structures with 

imperfect base-paired segments. MiRNAs processing occurs in several steps (reviewed in 

[13,14]). The primary transcripts (pri-miRNA) are essentially synthesised by RNA 

polymerase II and cleaved in the nucleus by the RNAse III Drosha. The resulting 70 

nucleotide-hairpin pre-miRNA is exported in the cytoplasm and the final miRNA maturation 

step is mediated by the RNAse III Dicer that produces 18-24 nucleotide long miRNA 

duplexes. One strand of this duplex is incorporated into the RNA-induced silencing complex 

(miRISC) and guides this miRISC to degrade, destabilize or translationally inhibit the mRNA 

targets (reviewed in [9]). Post-transcriptional regulation of gene expression by miRNAs is 

highly complex since a single miRNA can regulate hundred of genes, and a single gene may 

be regulated by multiple miRNAs. 
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The newly assembled genome of the pea aphid Acyrthosiphon pisum recently released by the 

International Aphid Genomics Consortium [15] has enabled the identification of miRNAs in a 

hemipteran insect for the first time. Aphids are herbivorous insects characterised by the 

unique ability to feed exclusively on phloem sap. The serious damage caused by aphids is 

partly due to their amazing ability to adapt to environmental variations [16]. This adaptive 

capacity is largely explained by their phenotypic plasticity that allows the production of 

distinct phenotypic morphs in response to environmental changes. This is illustrated by the 

switch of reproductive mode in response to seasonal changes: parthenogenetic females are 

produced in spring and summer whereas sexual females and males are produced in autumn 

[reviewed in 17]. The pea aphid also shows a unique duplication of the miRNA processing 

machinery suggesting that miRNAs play a significant role in the life cycle of these insects 

[18]. Here, we present a list of 149 A. pisum miRNAs identified by combining in vivo and 

bioinformatic approaches. Moreover, the regulation of these miRNAs in phenotypic plasticity 

has been investigated and miRNAs known to be regulated by insect endocrine pathways were 

identified as differentially expressed in different morphs involved in sexual and asexual 

reproduction. 

Results and discussion 

Identification of A. pisum miRNAs 

The recently sequenced and assembled A. pisum genome [15] was used to identify miRNAs in 

the pea aphid using three complementary strategies. First, miRNAs listed in miRBase were 

used to identify pea aphid miRNAs by sequence homology. Second, small RNAs extracted 

from parthenogenetic females of the pea aphid were sequenced by deep sequencing 

technology and analysed using the miRDeep program [19]. Finally, the pea aphid genome 

was screened for putative miRNA precursors using a new algorithm, GR4500. 

In the first approach we blasted 1275 insect miRNAs (D. melanogaster and 11 other 

Drosophila species, A. gambiae, B. mori, T. castaneum, A. melifera, Locusta migratoria) 

deposited in miRBase release 14 against the A. pisum genome. The 200 nucleotide-long 

genomic sequences surrounding each hit were investigated for their ability to fold into typical 

miRNA precursor hairpins. In total 43 different putative aphid miRNAs showed both 

sequence homology and a potential hairpin structure (Additional file 1). These 43 A. pisum 
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miRNAs candidates corresponded to 44 precursors. The expression of 33 of them was verified 

by RT-PCR (data not shown). 

In the second approach we undertook deep sequencing of small RNAs from a mixed 

generation sample of parthenogenetic female pea aphids. Approximately 3 million sequences 

were generated, corresponding to approximately 850,000 unique sequences. MiRNAs are 

known to show obvious size preference and tend to be between 18 and 24 nucleotides in 

length. Analysis of the length distribution of the pea aphid mature miRNAs showed a peak at 

22nt as previously reported in D. melanogaster. Moreover, similar to other organisms, many 

of the predicted pea aphid miRNA mature sequences (59%) start with a uridine residue at 

their 5’end [20-22]. 

These sequences were mapped on the pea aphid genome and analysed by miRDeep, which 

uses a probabilistic model of miRNA synthesis by the Dicer protein to score compatibility and 

frequency of small RNA sequences with the secondary structure of the pre-miRNA genomic 

precursor [19]. 127 sequences (0.16% of the 850,000 initial sequences) were identified as 

potential miRNAs corresponding to 107 unique A. pisum miRNAs (Additional file 1). Of 

these, 25 corresponded to miRNAs already identified by the homology search in miRBase 

(Fig 1). For the 82 remaining sequences, we checked for orthologs in other insect species, by 

searching for sequences homologous to the predicted precursors among the other available 

insect genomes. We also searched for orthologs by comparing A. pisum predicted precursors 

to the sequences of mature miRNAs listed in miRBase. This analysis allowed the 

identification of 11 precursors, identified by miRDeep and GR4500 that matched to miRNA 

listed in miRBase. However, the predictions of miRDeep and GR4500 for these 11 miRNAs 

appeared to be the complementary strand mir* of conserved miRNAs (mir 10*-mirX3; 

mir14*-mirX6; mir137*-mirX1; mir219*-mirX17; mir281*-mirX7; mir965*-mirX21, 

mir993*-mirX42, mir316*-mirX46, mir276*-mir276a; mir9c2*-mirX16, mir13b*-mirX53). 

Among these 11 conserved miRNAs, two (mir-9c2 and mir-13b) were missed by our first 

approach based on homology search because of the high stringency of our blast analysis. One 

of the miRDeep prediction parameters stated that the larger number of short-reads mapping to 

the stem corresponds to the mature miRNA and that the opposite strand corresponds to the 

mir* sequence. This is based on the assumption that mature miRNAs are more abundant that 

mir* in living cells. However, stronger expression of mir* compared to the mature miRNA 

has been reported in various organisms [11, 23-25] and more and more evidences support a 
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function for mir* as regulatory RNAs [25, 26]. This could also be also the case for some of 

the predicted miRDeep miRNAs in the pea aphid. 

MiRDeep is a selective program for identifying miRNAs from deep sequencing data that 

minimises the false positive rate. It selects reads that align exactly to the genome, at less than 

5 different locations, and selects putative precursors of miRNA that match a high number of 

reads on the hairpin structure where the mature miRNA is supposed to be. Using a pool of 

several 454 sequencing runs, Friedländer et al. [19] showed that miRDeep was able to retrieve 

89% of the known miRNA from Caenorhabditis elegans, and recovered 73% of the known 

miRNA incorporated in a set of 106 Solexa sequences from a HeLa cell small RNA sample 

sequenced by Solexa technology. In addition to miRDeep, in order to increase the number of 

predicted pea aphid miRNAs, we implemented a complementary approach, called GR4500. 

This algorithm first screened the pea aphid genome for miRNA putative precursors (hairpin 

structure, see methods) using a classifier trained with a set of 30 validated pea aphid miRNAs. 

GR4500 then compared the selected hairpins to the Solexa reads for biological validation and 

for identifying the mature sequence. The classifier selected 4402 candidates from 2.5 million 

genomic hairpins of more than 63 nucleotides. The comparison of these candidates with the 

850,000 sequences of small RNAs previously obtained by deep sequencing confirmed the 

expression of 116 of them. These 116 precursors corresponded to 98 different mature 

miRNAs (Additional file 1). GR4500 identified 38 new mature miRNAs not found in 

miRBase or identified by miRDeep from 45 genomic precursors. None of these 38 miRNAs 

have orthologues in other organisms. 

Altogether, the combination of homology search, miRDeep analysis of deep sequencing and 

GR4500 scan of the genome allowed the identification of 149 mature miRNAs candidates in 

the pea aphid (Fig 1). These 149 mature miRNAs candidates correspond to 176 precursors of 

miRNAs (pre-miRNAs) (Additional file 1). This is similar to the number of annotated 

miRNAs on miRBase for D. melanogaster (157 miRNAs). For all these pea aphid miRNA 

candidates, we have evidence of their expression since mature sequences have been detected 

either by RT-PCR and/or deep sequencing. It is admitted that microRNAs identified by deep 

sequencing, have to be supported by multiple reads and/or by the existence of its 

complementary strand mir* (Meyers et al. 2008). Applying this rule to the pea aphid 

predicted miRNA by miRDeep and GR4500 lead to the subdivision between 98 A. pisum 

miRNAs (≥ 5 reads and/or mir* detected) and 51 miRNA candidates (< 5 reads without mir*) 
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(Additional file 2). These miRNA candidates still require confirmation that will be provided 

by future extensive deep sequencing, such as in other morphs than parthenogenetic 

individuals used for this study. 

Genomic organisation of miRNA precursors 

As expected, the majority of miRNA precursors (86%) were located in intergenic regions (97 

precursors) or introns (55 precursors) With the exception of two miRNAs located in 

unassembled reads (raw sequences from the genome of the pea aphid not assembled in the 

first release of the genome, see IAGC et al. 2009) (Additional file 1), the remainders of the 

miRNA precursors were located in regions annotated as exons from protein coding genes 

(12.5%, 22). However, only two of these correspond to predicted genes whose annotation is 

supported with biological evidence (ESTs), encoding a heterogeneous nuclear 

ribonucleoprotein K and a vesicular mannose-binding lectin. Exonic miRNAs have been 

previously described in mammals [27,28]. However, with a few rare exceptions, exons that 

encode miRNAs do not code for proteins and are “mRNA-like non coding RNAs". The 

remaining 20 exonic miRNAs of the pea aphid are found in predicted genes whose annotation 

is not yet supported by biological evidence. Moreover, among the 20 miRNAs identified 

within exon, 15 were well supported either by abundant Solexa reads and/or the existence of 

mir*. This could indicate false prediction in the protein coding gene set, or that these 

predicted genes correspond to mRNA-like non coding RNAs. 

We investigated the physical distribution of the 176 precursors of miRNAs along the different 

assembled genomic scaffolds of the pea aphid genome. 71.6% (126) of miRNA precursors 

were identified as singletons (1 miRNA locus per scaffold) while 28.4% (50) of miRNAs 

precursors were distributed in 17 clusters composed of up to 6 miRNAs per cluster 

(Additional file 1). Among the 17 pea aphid miRNAs clusters, 3 clusters are composed of the 

same identical mature miRNAs present as multicopy (Ap-mir-X40, Ap-mir-971, Ap-mir-X5) 

with slight differences within precursor sequences, suggesting a very recent duplication of 

these miRNAs. We identified 4 clusters composed of closely related miRNAs (e.g. Ap-

mir92a and Ap-mir-92b) with slight differences in their precursor or mature sequences, and 

10 clusters composed of different mature miRNAs, suggesting more ancient duplication 

events. The length of these clusters varies from 160 nucleotides (in that case, the miRNA 

precursors overlap) to 30 kb. 
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Two aphid miRNA clusters are unusually long: cluster EQ127026-cl1 (Ap-mir-277/Ap-mir-

317/Ap-mir-34) at 15 kb and cluster EQ127560-cl1 (Ap-mir-263b/Ap-mir-228) at 30. This 

EQ127026-cl1 cluster is also conserved in D. melanogaster and A. mellifera. Moreover, long 

length miRNA clusters up to 62kb have been identified in the mouse genome [29]. Cluster 

EQ119865-cl1 (Ap-mir-2a-1a/Ap-mir-2a-1b/Ap-mir-2b/Ap-mir-13a/Ap-mir-13b/Ap-mir-71), 

and cluster EQ127026-cl1 also show similar organisation between the honey bee and the pea 

aphid genomes. However, some clusters conserved in D. melanogaster and honey bee have 

diverged in aphids. The duplication of Api-mir-307 observed in the pea aphid genome has not 

been reported in other insect genomes. The cluster including let-7, mir-100 and mir-125 

conserved in D. melanogaster and in A. mellifera is incomplete in A. pisum, since Api-mir-

125 was not found. Sequence analysis of the scaffold EQ112277-cl1 containing Ap-mir-100 

and Ap-let-7 showed a sequence partially homologous to mir-125 (18 bases identical on 22). 

However, the genomic sequence surrounding this putative mir-125 sequence did not show any 

hairpin structure. These variations in clusters organisation could indicate an adaptation for 

each insect order of their miRNA gene contents possibly related to life history traits. 

Functional annotation of pea aphid miRNAs 

The 149 mature aphid miRNAs were compared to other identified miRNAs by using the 

homology based SEARCH program available at miRBase. Only 55 (37%) of the 149 aphid 

mature miRNAs showed significant homology with known miRNAs. The other 94 miRNAs 

showed no significant homology to previously described miRNAs and were designated Ap-

mirX. As not all putative miRNAs from insect species are in miRBase, we searched for highly 

similar nucleotide sequences within whole insect genomes: D. melanogaster, A. mellifera, T. 

castaneum, A. gambiae and N. vitripennis. From the 94 putative new miRNAs identified in 

the pea aphid genome, 29 similar sequences were found in other insect genomes. The 

remaining 65 miRNAs are detected only in the pea aphid (Additional file 1); in parallel, most 

(over 100) miRNAs identified in D. melanogaster were not found in the pea aphid. This high 

proportion of non-conserved miRNAs among species is not surprising given the recent results 

obtained from different deep sequencing analyses of small RNAs performed on several 

species: the correlation between sequence conservation and high expression level often 

observed for many miRNAs before the development of deep sequencing erroneously led to 

the general conclusion that miRNAs are highly conserved. However, the identification of low 

expressed miRNAs allowed by deep sequencing suggested to Glazov and collaborators [24] 
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that the only the most expressed miRNAs corresponded to conserved miRNAs. In the case of 

the pea aphid, we observed that on average, the new miRNAs that have no homolog in other 

organisms are less represented in the Solexa short reads than the conserved miRNAs (Fig 2; 

Wilcoxon test t p-value 2.161e-11). This suggests that these new miRNAs are less expressed 

and confirms the hypothesis of Glazov et al. [24].  

Expression of miRNAs in alternative pea aphid morphs 

Aphids have a complicated life cycle characterized by a phase of viviparous clonal 

reproduction (parthenogenesis) that alternates with a phase of sexual reproduction. This 

switch is triggered by a sensing of the decrease of the day length in autumn (reviewed in 

[17]). The different alternative morphs produced are: parthenogenetic females named 

virginoparae producing viviparous parthenogenetic females, oviparae sexual females, sexual 

males, and parthenogenetic females named sexuparae producing sexual males and females. 

The mechanisms by which aphids detect and respond to differences in day length are not 

known. MiRNAs have been implicated in modulating circadian rhythm responses in insects 

[30]. On this basis, it is reasonable to hypothesize that miRNAs may also contribute to the 

regulation of aphid polyphenism. 

The expression of the 149 pea aphid miRNAs identified in this work was followed in the 

different female morphs using a microarray. The array included one probe for each mature 

aphid miRNAs and its corresponding mir* and diverse controls (see methods). Each probe 

was repeated 10 times in the array. Small RNAs for hybridization were extracted from 

virginoparae, sexuparae and oviparae females, in three independent experiments. The large 

majority of the mature miRNAs hybridized to the chips; only four mature miRNAs (two 

conserved and two new miRNAs) and nine mir* gave no signal with any of the 

hybridizations. Most miRNAs and mir* (95%) showed no statistically significant differences 

in their expression between the morphs. However, 17 miRNAs (12 mature miRNAs and 5 

mir*) showed significant differences in their steady-state levels between the morphs (Fig 3). 

These 17 miRNAs included 15 microRNAs and 2 microRNA candidates (Ap-mir-X103 and 

Ap-mir-X110): 12 conserved miRNAs and 5 new aphid miRNAs. Seven microRNAs were 

differentially expressed between sexual oviparae and sexuparae, and 9 were differentially 

expressed between sexual oviparae and virginoparae. 
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Interestingly, among them, Ap-let-7, Ap-mir2a-1 and Ap-mir100 showed differential 

expression between oviparae and the two other parthenogenetic morphs (virginoparae and 

sexuparae). Ap-let-7 and Ap-mir-100 were up-regulated in oviparae, and Ap-mir2a-1 was 

down-regulated in oviparae. Ap-let-7 and Ap-mir100 belong to the same cluster and follow 

similar expression patterns. Mir-2 is involved in apoptosis regulation during development [31] 

and let-7 and mir-100 have been reported to be involved in metamorphosis [32] and are up-

regulated in response to ecdysone [32], a hormone involved in insect development. Three 

miRNAs (Ap-mir-34, Ap-mir-X47 and Ap-mir-X103) and two mir* (Ap-mir307* and Ap-

mirX-52*) showed different expression between the two parthenogenetic morphs: sexuparae 

and virginoparae, that differ by the type of embryos they contain (sexual vs asexual), and by 

the conditions of rearing (short-day vs long-day). Four of these miRNAs were specific to the 

virginoparae/sexuparae comparison, while Ap-mir-X103 was also up-regulated in oviparae. 

These 5 miRNAs are particularly interesting candidates for the switch of reproduction mode 

from parthenogenesis to sexual reproduction. Three of these miRNAs are newly-identified 

aphid miRNAs and their function remains to be determined. Interestingly, mir-34 has been 

shown to be regulated in D. melanogaster by ecdysone as well as by juvenile hormones [32]. 

Juvenile hormones are known to be involved in aphids in the transduction of the 

photoperiodic signal from the brain to the ovaries during the switch of reproductive mode 

[33]. Thus, our study has identified a strong candidate (Ap-mir-34) as a putative regulator 

involved in reproductive polyphenism in aphids and opens new avenues for further functional 

analyses. 

Conclusions 

This work has established a catalog of miRNA genes in the pea aphid that represents an 

essential base of knowledge-base for investigating the miRNA post-transcriptional regulation 

of key biological traits for an organism whose adaptation is shaped by phenotypic plasticity. 

Deciphering the gene regulation network between miRNAs and their mRNA targets in the pea 

aphid remains an objective that this study opens. 

 

Methods 

Biological material 
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The LSR1 clone [15] of the pea aphid Acyrthosiphon pisum was reared and maintained as 

clonal individuals (parthenogenesis) on the plant Vicia fabae at 18°C under a 16h photoperiod 

for long-day condition (parthenogenesis). Sexual individuals and sexuparae were produced by 

rearing the pea aphid at 18°C under a 12h photoperiod (short-day condition) as described in 

[34]. 

Homology identification of A. pisum miRNAs 

For homology prediction of A. pisum miRNAs, insect miRNAs (D. melanogaster and the 11 

other Drosophila species, A. mellifera, A. gambiae, B. mori, T. castaneum and Locusta 

migratoria) were retrieved from miRBase release 14 [7] and blasted against the pea aphid 

genome. Putative miRNAs were selected as sequences identical or slightly identical (with 1 or 

2 nt different) with the original homologous mature miRNA sequence retrieved from 

miRBase. A sliding window of 150 bases of genomic sequences surrounding each putative 

miRNAs were retrieved and its ability to fold into a potential miRNA hairpin precursor was 

investigated using the RNA fold program [35] and/or the MiRAlign program [36]). Secondary 

structure should have free energy change less than or equal to -18 kcal/mole. 

To investigate the conservation of mature aphid miRNAs with other miRNAs listed in 

miRBase was analysed using the Similarity SEARCH program (SSEARCH) available on the 

miRBase website with default parameters. A minimum SSEARCH score of 135 was selected 

to be significant. 

All miRNAs were posted to miRBase (Additional file 3). All A. pisum miRNA sequences 

have been mapped on the genome at AphidBase (http://www.aphidbase.com). 

Small RNA sequencing 

Total RNA was extracted from a mixed culture of parthenogenetic females of the LSR1 clone 

[15] of pea aphid using PureZOL RNA Isolation Reagent (Bio-Rad, Hayward CA). The RNA 

concentration and purity were determined photometrically by measuring absorbance at 260 

nm and A260/A280 ratio using the NanoDrop ND-1000 spectrophotometer (Nanodrop 

Technologies). 40µg of ethanol precipitated RNA was sent in duplicate to Illumina Inc. 

(Hayward CA) for size fractionation (<50bp) and deep sequencing. Results of small RNA 

sequencing have been deposited in Gene Expression Omnibus (Additional file 4). 
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Mapping of the short reads Illumina sequences on the pea aphid genome 

Approximately 3 million total sequences were processed to remove linker sequences and 

quantify the resulting unique sequences. The 851,979 unique sequences (mean: 25.2 bp, 

median: 26 bp, max: 33 bp, min: 1 bp) were compared to the A. pisum genome using NCBI 

megablast (wod size: 12, no filter). For further analysis, we used an extremely selective 

process by conserving only exact match on the complete short read. Sequences that mapped to 

more than 5 different places on the genome were removed. It resulted in 305,055 alignments, 

covering only 205,500 (24%) of the unique reads, but 44% (1,333,398) of all reads. 

MiRDeep analysis 

MiRDeep analysis was done according to the miRDeep protocol, and a data set of putative 

precursor sequences was obtained from the genome, based on the predicted mature miRNA 

alignments. The secondary structures of the putative precursors were predicted by RNAfold 

[35]. Short reads were aligned to their putative genomic precursor to create signatures of the 

precursors. Finally, we run miRDeep with the RNAfold stability test using those structures 

and signatures inputs. 

GR4500 analysis 

The pea aphid genome was scanned to find miRNA-like hairpins. For that, we first used 

RNAfold [35] on 120 nucleotides windows with an overlap of 100 nucleotides, and selected 

in each window all hairpins longer than 63 bases with at least 70% arm base pairing. This led 

to approximately 2.5 million genomic hairpins. We then developed a set of features to 

discriminate between miRNA and non miRNA hairpins: folding energy, total and maximum 

internal loop size and symmetry, arms and terminal loop sizes; GC%, complexity score (in 

terms of repetitions of small motifs) and the score delivered by the Microprocessor SVM [37] 

which characterizes the presence of a Drosha recognition site. Using 38 pea aphid miRNAs 

already found by homology search as a learning set, we constructed a classifier using all these 

features. We first used a decision tree implemented in the R tree package to build a prototype 

classifier and then hand-tuned it to improve its selectivity. Additional file 5 lists the features 

and their corresponding cut-off thresholds. 4402 hairpins were selected and used for short 

reads alignment to create signatures of the precursors. Finally, as a last step, MiRDeep 
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parametered with the sensitive option (-x) was used to extract mature sequences using those 

signatures and structures. 

MiRNAs profiling in three different morphs of the pea aphid 

Based on the sequence of aphid mature miRNAs, we designed probes. The custom µparafloTM 

microfluidic chip (LC Sciences Houston, USA) contained one probe for each mature aphid 

miRNA and its corresponding mir*. Each probe was repeated 10 times on the chip to ensure 

assay reproducibility. Multiple control probes were included on each chip for quality controls, 

sample labelling and assay conditions. Among the control probes, PUC2PM-20B and 

PUC2MM-20B are the perfect match and single-based match detection probes, respectively, 

of a 20-mer RNA positive control sequence that is spiked into the RNA samples before 

labelling. The detection probes were made by in situ synthesis using PGR (photogenerated 

reagent) chemistry. The expression of miRNAs was analysed in three different adult morphs: 

parthenogenetic females reared under long day condition that produce parthenogenetic 

embryos, parthenogenetic females reared under short day condition that produce sexual 

embryos, and sexual females reared under short day condition that produce eggs. Total RNAs 

were extracted from 10 adult females 48h after the final moult. Three independent samples 

were analysed for each reproductive morph. Total RNAs were extracted using miRNeasy 

purification kit (QIAGEN) according to manufacturer’s instructions. Quality of RNAs was 

checked with the Bioanalyser (Agilent). The assay started from 5 µg total RNA sample, 

which was size fractionated using a YM-100 Microcon centrifugal filter (Millipore) and the 

small RNAs (< 300 bases) isolated were 3’-extended with a poly(A) tail using poly(A) 

polymerase. An oligonucleotide tag was then ligated to the poly(A) tail for later fluorescent 

dye staining; two different tags were used for the two RNA samples in dual-sample 

experiments. Hybridization was performed overnight on a µParaflo microfluidic chip using a 

micro-circulation pump (Atactic Technologies). On the microfluidic chip, each detection 

probe consisted of a chemically modified nucleotide coding segment complementary to target 

microRNA or other control RNAs and a spacer segment of polyethylene glycol to extend the 

coding segment away from the substrate. The hybridization melting temperatures were 

balanced by chemical modifications of the detection probes. Hybridization used 100 µL 

6xSSPE buffer (0.90 M NaCl, 60 mM Na2HPO4, 6 mM EDTA, pH 6.8) containing 25% 

formamide at 34 °C. After RNA hybridization, tag-conjugating Cy3 were circulated through 

the microfluidic chip for dye staining. Fluorescence images were collected using a laser 
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scanner (GenePix 4000B, Molecular Device) and digitized using Array-Pro image analysis 

software (Media Cybernetics). 

For each chip and each probe, the average signal value and its standard deviation were 

quantified. Data were analyzed by first subtracting the background, then integrating all the 

signals corresponding for the same probe for one given chip. A transcript to be listed as 

detectable must meets at least two conditions: signal intensity higher than 3x(background 

standard deviation) and spot CV < 0.5. CV. When repeating probes are present on an array, a 

transcript is listed as detectable only if the signals from at least 50% of the repeating probes 

are above detection level. Then normalization the signals from all arrays were performed 

using a LOWESS filter (Locally-weighted Regression). Results obtained in the different 

reproductive morphs were compared by comparing the ratio of the two sets of detected signals 

(log2) and p-values of the t-test were calculated. Differentially detected signals were those 

with p-value<0.05. The results of microfluidic experiments have been deposited in Gene 

Expression Omnibus (Additional file 4). 
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Figure legends 

Fig. 1: Venn diagram showing the distribution of predicted miRNAs in the pea aphid 

from three different methods: homology to miRBase, miRDeep or GR5400. 

 

Fig. 2: Frequency of sequence reads among the pea aphid miRNAs. 

Those miRNAs that are also found in other species show higher read frequencies than the 

pea aphid specific miRNAs. For the two batches of miRNAs (in black, miRNAs found in 

other species and in white miRNAs found only in A. pisum), the number of reads have 

been distributed between 5 classes: miRNAs represented by 1-100 reads, 101-500 reads, 

501-1000 reads, 1001-10000 reads or >10000 reads. The figure shows for each batch the 

percentage of miRNAs in each class. 

Fig. 3: Expression profiling of pea aphid miRNAs. 

After microarray hybridization and statistical analyses, a set of pea aphid miRNAs 

differentially regulated in parthenogenetic females producing parthenogenetic females 

(Virginoparae, V), parthenogenetic females producing sexual individuals (Sexuparae, S) 

and sexual females (Oviparae, O) was identified. Three replicates are indicated (labelled 1 

to 3) and profiles clustering are presented for miRNAs significantly regulated between 

morphs. Colour coding: red, up-regulated, green, down-regulated, black, not regulated). 

The log score for fold change is indicated. 

 

Additional files  

Additional file 1 

File name: Table1 

File format: XLS 

Title: A. pisum microRNAs 

Description: list of predicted miRNAs from the pea aphid genome. The table presents the 

name, sequence of the mature A. pisum predicted miRNA, sequence of the hairpin 

precursor(s), reference of the genomic scaffold that includes the microRNA within the A. 

pisum genome, strand sense, method used for identification of the miRNA, clusterisation, 
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genomic organisation (and identity of the protein coding gene, if the miRNA is predicted 

to be located within an exon) and conservation of the microRNA. 

The 11 mir* predicted as mature microRNA by miRDeep and/or GR4500 are indicated in 

this table but are shaded in grey. 

 

Additional file 2 

 

File name: Table2 

File format: XLS 

Title: Abundance of A. pisum miRNA candidates and their mir* within the Solexa reads. 

Description: abundance of A. pisum miRNA and miRNA candidates and their 

corresponding mir* within the the Solexa reads. A. pisum predicted microRNAs were 

designated as miRNAs if they have abundant reads (≥5) and/or their corresponding mir* 

were identified within the reads, otherwise they are designated as miRNA candidates.  

 

Additional file 3 

 

File name: Table3 

File format: XLS 

Title : miRBase accession number 

Description: miRBase accession number of A. pisum miRNAs. 

 

Additional file 4 

 

File name: Table4 

File format: XLS 



 
 

2

Title: Sequencing of small RNas from A. pisum parthenogenetic colony 

Description: The results of the sequencing of small RNAs from a parthenogenetic colony 

of A. pisum  and of the results of the analysis by microfluidic of the expression of A. pisum 

microRNAs in various morphs have been deposited in Gene Expression Omnibus (Go). 

The GO accession numbers are provided 

 

Additional file 5 

 

File name: Table5 

File format: Word 

Title: GR4500 set up 

Description: set of features to discriminate using GR4500 between miRNA and non 

miRNA hairpins 
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