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Abstract
Background: Macromolecular docking is a challenging field of bioinformatics. Developing new
algorithms is a slow process generally involving routine tasks that should be found in a robust
library and not programmed from scratch for every new software application.

Results: We present an object-oriented Python/C++ library to help the development of new
docking methods. This library contains low-level routines like PDB-format manipulation functions
as well as high-level tools for docking and analyzing results. We also illustrate the ease of use of
this library with the detailed implementation of a 3-body docking procedure.

Conclusion: The PTools library can handle molecules at coarse-grained or atomic resolution and
allows users to rapidly develop new software. The library is already in use for protein-protein and
protein-DNA docking with the ATTRACT program and for simulation analysis. This library is freely
available under the GNU GPL license, together with detailed documentation.

Background
Most biological processes in the cell involve macromole-
cules interacting with one or several partners [1]. Knowl-
edge of the overall structures of these assemblies as well as
the details of the interactions is essential for understand-
ing the underlying biological mechanisms or for develop-
ing new therapeutic strategies. In spite of spectacular
progress, the determination of the three-dimensional
structure of large complexes at atomic resolution by
means of X-ray crystallography or nuclear magnetic reso-
nance spectroscopy remains a difficult task. Even in the
case of binary complexes (two macromolecular partners),
the number of available structures only represents a minor

fraction of the complexes known to exist. Given the deficit
of structural information on these assemblies and the
increasing number of available structures for isolated pro-
teins, computational modeling tools provide a promising
approach to predicting structures of protein complexes.
Docking methods are increasingly reliable and efficient
for assembling macromolecular complexes when the part-
ners do not present any large internal deformation.
Numerous studies have been dedicated to protein-protein
interactions [1] and the worldwide challenge "Critical
Assessment of PRedicted Interactions" (CAPRI) [2-4]
demonstrates the interest of the scientific community in
this domain. The main challenges that need to be
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addressed for constructing macromolecular machineries
concern the size and the number of the partners, and also
their flexibility. A number of partners greater than two
already leads to combinatorial problems [5] that are diffi-
cult to manage when searching the space in terms of rela-
tive rotations and translations. Very large partners make
the search computationally costly.

Concerning flexibility, conformational adjustment
induced upon association can lead to complete remode-
ling of the partner interfaces, thus making surface recogni-
tion inefficient when starting from the structure of the
isolated partners. Several methodological approaches are
being explored to overcome this particularly difficult
problem [6-12], which must combine exploration of the
macromolecule internal flexibility (thousands of degrees
of freedom) and rapidity of the search. We have investi-
gated two of these approaches, namely a normal mode
approach that restricts the internal conformational search
to privileged deformation directions [10] and a multi-
copy approach that pre-generates ensembles of possible
conformers to represent flexible protein parts [11,12]. The
conformers are then attributed a weight that varies during
the docking process. In addition to these methodological
developments, we have developed coarse-grain models
and associated force fields, directed to both proteins [13]
and DNA [14], in order to allow the docking of large mac-
romolecular systems. The level of graining is moderate,
corresponding to four to five heavy atoms grouped
together in each bead. This allows conservation of the
main features of the surface geometry, which is essential
for detection of surface complementarity. Our exploratory
efforts also bear on the development of scoring functions
that adequately account for the strength of protein-pro-
tein or protein-DNA association.

In order to develop methodological investigations as well
as to optimize parameters, we needed a tool capable of
performing and analyzing routine docking simulations,
but that was also sufficiently flexible to allow easy testing
and adding new functionalities in an efficient and rigor-
ous fashion. For these reasons, we have developed the
docking library PTools, which relies on a modular, object-
oriented implementation based on Python/C++ coupling.
Its multi-language object-oriented paradigm is shared
with other libraries like MMTK [15] or the new EGAD
library [16] indicating a convergence toward modular
design.

PTools can handle coarse-grained as well as atomic mac-
romolecular objects that can be compared or superposed
for the purposes of analysis, or that can be docked using
multiple energy minimizations in the coarse grained rep-
resentation according to the ATTRACT protocol [13]. In
this article, we present this library along with the princi-

ples that have guided its development. We expose the
motivations for our choices in terms of programming and
we provide several examples of its utilization for the dock-
ing problem. Finally, we illustrate the potentialities of our
library for facilitating further developments, like testing
new force fields or investigating docking algorithms. We
detail how new methods can be implemented and tested
in a case of a multi-protein docking strategy that avoids
the problem of combinatorial explosion of possible start
structures. The PTools library can be downloaded at http:/
/www.ibpc.fr/~chantal/ptools/.

Implementation
Design Goals
The PTools library has been designed in order to perform
assembly tasks in an efficient way and to ease develop-
ments without sacrificing speed for correctness. We chose
an object-oriented approach with a few free functions
[17]. Figure 1 describes the library architecture. We detail
below the reasons why we chose a Python/C++ solution.

Speed
Docking simulations require numerically intensive func-
tions and speed was thus one of our concerns. We chose
the C++ programming language to develop the core
library since it allows the writing of both fast and flexible
code. Indeed, C++ is fast because it is a statically typed,
compiled language. C++ is also flexible because of many
advanced features such as virtual functions, templates, the
Standard Template Library, operator overloading, etc.
Naturally some of these features (for instance virtual func-
tions) come with some speed overhead, [18] but they
were not used in the time-critical routines of the library.

Correctness
In the design of this library, large efforts were made to pre-
vent errors or to catch them as soon as possible. With the
use of standard C++ containers and smart pointers to hold
dynamically allocated memory, we avoid most of the
memory issues often encountered in software. Preproces-
sor macros are heavily used to make consistency checks in
most of the functions (bond-checking for instance). For
performance issues, these checks are disabled in release
mode. In addition, core features are tested with unit tests.
These tests guarantee that an expected behavior still works
when adding new functionalities. Finally, runtime errors
are propagated through C++ exceptions, preventing the
programmer from simply ignoring an error return code.
Furthermore, the library successfully passes valgrind's
memory debugger [19] which detects various types of
bugs like memory leaks or use of undefined values.

Ease of use
We also aimed for simple tasks to be easy to implement
while complex ones should be as intuitive as possible.
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This principle has guided most of our design choices. For
example, a single line of code is required to load a protein
from a PDB file. Only one line is also needed to move a
protein along a given translation vector, or to make a rota-
tion. However, we also allow advanced users to access
low-level methods. For instance, all properties of a protein
single atom can be altered.

Ease of modification and extension
The object-oriented framework of the library simplifies
modifications and extensions of the code. For example, all
force fields are derived from a base abstract class requiring
users to provide only two functions, one for energy calcu-
lation and the other one for its derivatives. To simplify the
task of developing a new force field, derivative correctness
can be automatically checked (see "Automatic derivative
calculation"). A second-generation force field is under
development and has already given promising results,

especially for the difficult case of antigen-antibody com-
plexes.

Python Bindings
While this C++ library has been designed to be usable by
pure C++ programs, the simulation software consists of
Python scripts. This choice has been motivated by the fact
that the Python programming language is increasingly
used in the bioinformatics community [20]. Indeed, this
language is reasonably easy to learn [21], easy to read with
block indentations and also very comprehensive, with
numerous additional modules such as command-line
option parsing, matrix handling, multithreading, interac-
tivity with others programs, etc. Finally, Python, as an
interpreted language, does not require compilation after
each modification thus allowing rapid and flexible devel-
opment of new features.

Schematic representation of PTools architectureFigure 1
Schematic representation of PTools architecture. PTools C++ classes and functions (left) are in close correspondence 
with Python objects and functions (right) via Python bindings. The user can use PTools-based Python scripts delivered with the 
library and among them, ATTRACT or reduce.py, the translation script from atomic to coarse grain (right arrow). Analysis 
tools enclosed in a circle can be used as indepedent programs as well as Python modules. The user can also write his own 
scripts, or directly write C++ programs.
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Automatic generation of bindings
The Python C application programming interface (C-API)
is the most natural and flexible way for interfacing C/C++
code with Python. However, this solution is time-con-
suming and error-prone since objects are manually inter-
faced from one language to the other. Furthermore,
frequent developments and improvements in the code
considerably complexify the Python bindings of the
library. This justifies the requirement for both an efficient
interface between C++ and Python and an automatic
wrapping of the code.

The Boost Python library can be seen as a C++ wrapper for
the Python C-API. By using sophisticated C++ mecha-
nisms, it handles most of the housekeeping code like
incrementing counters or translating C errors into Python
exceptions. With the help of Boost.python, exposing a
C++ class to Python is then as easy as providing the class
name and all of its method names. However, the interface
files still need one line for the class name, and one line for
each member we want to expose. Keeping the interfacing
code in sync with the library objects thus still requires sig-
nificative investments.

To help in the creation of the interface file, we use a code
generator called Py++ [22]. This Python module, with the
help of few other programs, reads a C++ header file and
automatically generates the correct code for exposing free
functions and classes described within this header. A sin-
gle line of Python code is required to wrap a C++ class
with all its public methods.

Toolbox
PDB I/O
Loading a PDB file into a Rigidbody object is extremely
simple and requires a single line of code. In the following
example in C++ the 1GC1.pdb file is loaded into the Rig-
idbody object prot. Then we select the chain A of the pro-
tein and write it into a new PDB file.

Rigidbody prot("1GC1.pdb");

AtomSelection selA = prot.SelectChai
nId("A");

Rigidbody chainA = selA.CreateRigid( );

WritePDB(chainA,"1GC1_A.pdb");

The equivalent Python code is:

prot = Rigidbody("1GC1.pdb")

selA = prot.SelectChainId("A")

chainA = selA.CreateRigid( )

WritePDB(chainA,"1GC1_A.pdb")

The similarities between both languages result in near-
identical APIs for the library, the main difference in the
example above being that the type of a new variable is not
declared in Python. Further examples will be only given in
C++.

The Rigidbody object contains a vector of atom objects
and all atomic properties remain accessible and modifia-
ble using low level methods. Here, as an example, we
extract the third atom of the protein (indexed as 2 since
the first atom is numbered 0) and modify its coordinates,
its residue identifier and its name.

Atom atom = prot.CopyAtom(2);

Coord3D new_xyz = Coord3D(2.23,6.12,8.56);

atom.SetCoords(new_xyz);

atom.SetResidId(1);

atom.SetResidType("LEU");

Selection of atoms
The class AtomSelection implements a convenient method
for selecting atoms from a protein or DNA molecule. User
can filter atoms on properties like atom types, residue
name, residue number, backbone or side chain. Selections
can be combined using ensemble operators AND, OR and
NOT which give full control over which atoms are
included in an efficient and intuitive way.

As an example, the following code creates a selection con-
taining non-Cα atoms of residues 5–36 and 40–52 of the
Rigidbody prot.

AtomSelection sel1 = prot.SelectRes
Range(5, 36);

AtomSelection sel2 = prot.SelectRes
Range(40, 52);

AtomSelection sel3 = prot.CA( )

AtomSelection result = (sel1 | sel2) &
!sel3;

Rigid-body transformation tracking
Translations and rotations of molecules are internally
stored into a 4 × 4 homogeneous coordinate matrix. Com-
bined with a lazy evaluation of atom coordinates, this
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allows users to naturally express series of transformations
without hurting performance. Indeed, when a user asks
for a sequence of rotations and translations, only its asso-
ciated matrix is computed. Cartesian coordinates are
updated only on explicit request. An additional advantage
of these matrices is the storage of docking results. Indeed,
a typical docking simulation generates thousands of
geometries (see ATTRACT protocol), and replacing final
ligand coordinates by a matrix saves a lot of disk space.
The following C++ code shows an example of a π/4 rota-
tion of Rigidbody prot around axis (AB), followed by a
translation:

#define PI 3.141592653

Coord3D ptA(3.0, 4.0, 5.0);

Coord3D ptB(12, -5, 2);

prot.ABRotate(ptA, ptB, PI/4.0);

Coord3D tr(6, 7, 8);

prot.Translate(tr);

The above code runs in constant time with respect to the
number of atoms because, due to the lazy evaluation, only
a 4 × 4 matrix has been modified.

Superposition
A Root Mean Square Deviation (RMSD) superposition
algorithm [23] has been introduced into the library. With
the help of selection methods, users can superpose two
molecules in various ways provided that the two selec-
tions have the same size. The result of a superposition is
an object which contains the RMSD after superposition
and a 4 × 4 homogeneous matrix to be applied to the
mobile element to obtain this calculated RMSD.

The following code shows a superposition of two Rigid-
body objects prot1 and prot2 which have the same
number of atoms.

Superpose_t sup = superpose(prot1, prot2);

double rmsd_best = sup.rmsd;

Matrix mat = sup.matrix;

Variable mat now contains the matrix that has to be
applied to prot1 in order to minimize the RMSD
between prot1 and prot2.

Helical parameters
The library also provides a function which translates a 4 ×
4 matrix into a screw motion [24] (a combination of a
rotation and a translation collinear to the rotation axis),
which allows the reconstruction of a helical filament
given two units. Helical parameters such as pitch and
number of monomers per turn can also be extracted from
a 4 × 4 matrix. The 4 × 4 matrix can be obtained from a
superposition, or from the result of a docking process.

Minimizer
In the PTools library, we interfaced the L-BFGS minimizer
written in FORTRAN by Jorge Nocedal [25,26]. L-BFGS is
a limited-memory quasi-Newton minimizer used to solve
nonlinear optimization problems. To compute the mini-
mum of a multi-variable function it requires the gradient
(but not the Hessian) of the objective function and accel-
erates the convergence by storing a low-rank approxima-
tion instead of the entire Hessian matrix.

Force fields
The BFGS minimizer requires the number of free variables
describing the degrees of freedom of the system and access
to both a function to minimize and its partial derivatives.
The ForceField abstract base class is responsible for pro-
viding this information to the minimizer through virtual
functions. Force fields can be implemented by deriving
the ForceField class.

The PTools library contains by default the force field used
by the docking program ATTRACT for protein-protein and
protein-DNA docking. This force field applies to reduced
protein and DNA representations. Reduced proteins are
described by up to three pseudo-atoms per residue
[13,27]. For DNA, each nucleotide is described by 5 to 6
beads, made of 3 to 5 heavy atoms [14]. This model
assumes no internal energy evaluation since it has been
developed for systematic rigid body docking. The effective
interaction between two partners is the sum of a soft Len-
nard-Jones potential and an electrostatic potential. Both
reduced model are compatible and show good perform-
ances in protein-DNA docking [14].

With the help of the PTools library, a new protein force
field is currently under development with modifications
in the protein backbone representation that allow a more
realistic description of its polar character. Preliminary
results look very promising especially for the ranking
issue. We are also evaluating a modified Lennard-Jones
scoring function with pairwise interaction terms (Fiorucci
et al, in preparation).

Automatic derivative calculation
Minimizers, such as quasi-newton or conjugated gradient
methods, require both a function to minimize and its
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derivatives. Usually energy functions used in molecular
modeling are not trivial and errors may occur either dur-
ing the determination of the derivative formula or during
its implementation into the source code. In addition
some minimizers may complain about inconsistent deriv-
atives, while others may also return bad results. A possible
approach to detect incorrect derivatives is to calculate
numerical derivatives of a function f using the finite differ-
ence method. Here is the one dimensional formula:

However, the above formula is subject to roundoff errors
which can affect even the first digits of the result. To pre-
vent this well-known problem of roundoff errors [28,29],
we integrated a C++ automatic differentiation tool pro-
vided by Pr. Martins and Peter Sturdza [29]. This tool uses
the C++ ability to manipulate user-defined classes instead
of built-in types with arithmetic operations. The new type,
called dbl, has two double precision components: the first
one is the value of the variable while the second is its
derivative. Any arithmetic operation involving at least one
dbl returns a dbl with both components accordingly set.

As an example, we may consider the following function,
inspired by Sturdza et al. [29]:

The corresponding C++ function is:

dbl f (dbl x, dbl y){

return (exp(x)+y)/sqrt(pow(sin(x),3)

+pow(cos(x),3));

}

Here is how to calculate both the function and its deriva-
tive at x0 = 1.5, y0 = 2.0:

dbl x0(1.5, 1);

dbl y0 = 2.0;

dbl result = f(x0, y0);

The first line sets the regular value of x0 to 1.5 and its deriv-
ative part to 1, meaning that f must be differenciated with
respect to x0. Here y0 has a regular value of 2.0 and a null
derivative part. The last line simply calls the function, and
the result variable stores two values: the expected result

and the derivative part of f with respect to x. A further call
to f with dbl x0 = 1.5; dbl y0(2.0, 1); will
return the derivative of f with respect to y.

Because this feature is only activated by a compilation flag
in debug mode, it does not reduce speed or increase exe-
cutable size in release mode.

Documentation
Extensive documentation is provided, with a tutorial
describing every step from the compilation of the library
source code to full protein-protein and protein-DNA
docking simulations with ATTRACT. The C++ API is also
automatically parsed by Doxygen [30] which generates a
browsable documentation with an exhaustive description
of every class and member function within the library.
These reference pages may also be very useful for the users
of the Python-side of the library since function names are
conserved in the C++/Python binding.

Methods and included docking tools
The Python tools presented in this section articulate the
PTools C++ library functions for docking applications.

ATTRACT
The ATTRACT docking program is implemented as a
Python script using the PTools library. This script is also
provided with the PTools package. The docking protocol
of ATTRACT has already been described in previous pub-
lications [13,27]. Briefly, ATTRACT performs systematic
docking without using any experimental data concerning
the native complex. This algorithm relies on minimiza-
tion of the interaction energy, the ligand (mobile partner)
being placed at regular positions/orientations around the
receptor surface (fixed partner) at a distance slightly larger
than its biggest dimension. For each starting position,
about 250 initial ligand orientations are generated. For
each starting geometry, energy minimization (quasi-New-
ton minimizer) is performed using transitional and rota-
tional degrees of freedom of the ligand. For instance, we
carried out a rigid body docking simulation of bovine
alpha-chymotrypsinogen A complexed with the pancre-
atic secretory trypsin inhibitor (PDB: 1CGI) using nearly
53000 different starting configurations of the bound
form. The top-ranking solution is very close to the X-ray
structure (Ligand-RMSD = 1.2 Å) and the simulation was
achieved in 19 hours using a single core of an Intel Xeon
Quad Core running at 1.86 GHz.

Different Python scripts are provided with the ATTRACT
program to set up the input files needed by the ATTRACT
docking script. First, the coarse-grained representation of
the macromolecule is automatically generated by the
reduce.py script. Second, translate.py defines lig-
and starting positions at a given distance from the recep-
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tor surface. It employs a slightly modified Shrake and
Rupley method [31] and the density of the starting points
around the receptor can be defined by the user. Finally,
the ATTRACT input file contains all the specifications
required to process the docking simulation (number of
minimization steps, cutoff, etc.). Several minimizations
(with decreasing cutoff) are necessary because the pairlist
to calculate the interactions is only generated at the begin-
ning of each minimization.

Analysis scripts
To process and analyze the docking simulation outputs, a
set of Python scripts based on PTools are also provided.
These scripts are well adapted to the ATTRACT output for-
mat but may be used independently as well.

Our clustering algorithm, implemented in cluster.py,
can rapidly group nearly identical structures without
requiring a preselected number of desired clusters.

If the structure of the bound complex is known, some
additional functions may be used to evaluate the quality
of the predicted interfaces. In addition to the RMSD, inter-
face RMSD (I-RMSD) and the fraction of contacts in native
structure (Fnat) are of great help in assessing docking
results [4].

Parallel computing
Practically, a docking simulation consists of several inde-
pendent energy minimizations. A single simulation can
thus be split into smaller ones and run across a computer
cluster. We used the Condor workload management sys-
tem [32] to distribute our docking simulations on a 50
nodes cluster, with one job per starting point. The
observed scaling is excellent. A docking simulation taking
2121 minutes on a single core can be achieved in 278
minutes when running on 8 identical nodes and 139 min-
utes for 16 identical cores. This corresponds to a speed-up
factor of 7.6 for 8 cores and 15.3 for 16 cores. It is interest-
ing to note that the 16 core simulation was exactly 2 times
faster than the 8 core simulation.

Results
As mentioned previously, one of the benefits of the library
design is to allow rapid extensions of the docking tool.
Here, we show how the library can be used to investigate
methods for managing an arbitrary number of molecules,
or in other words, to perform multiligand docking. Since
the ATTRACT force field is able to deal with both protein-
protein and protein-DNA complexes, this will open the
way toward the assembly of various systems.

When the number of partners is greater than two, the sys-
tematic docking approach of ATTRACT cannot be used
because of a combinatorial explosion [5] in the definition

of starting points for minimization. Using PTools func-
tionalities, we devised a strategy to overcome this limita-
tion. The main idea is to limit the number of starting
points for the 3-body docking simulations by combining
high ranked solutions from the 2-body docking simula-
tions.

More precisely, we investigate the 3-body problem with
the following approach, described here for a test-case sys-
tem formed by the globular head of the complement sys-
tem protein C1q (PDB: 1PK6) [33]. We assume that one
of the partners is known to interact with the two others,
which is generally the case for 3-body systems that need to
be assembled. In the following, the 3 partners are labeled
units A, B and C, and unit A is taken as the reference for
two systematic pairwise docking simulations with the
other two units (B and C).

After a proper initialization step (including coarse grain
reduction), one can perform the two 2-body docking sim-
ulations with ATTRACT.

$ Attract.py unitA.red unitB.red > AB.out

$ Attract.py unitA.red unitC.red > AC.out

In the above example, the .red filename suffix is used to
easily distinguish reduced coordinates files from regular
PDB files. More details about ATTRACT command line
options are available in the tutorial provided with the
PTools library.

From the clustered results of each 2-body docking simula-
tion, we extract the 300 best candidates.

$ cluster.py AB.out unitB.red | head -300
> bestB.out

$ cluster.py AC.out unitC.red | head -300
> bestC.out

Each of the 300 × 300 possible combinations of dimer
structures is used as docking start structure to generate
complexes with the three partners. The command for
extracting the AB docking prediction ranked 26th (trans-
lation number 128, rotation number 32, RMSD = 8.1 Å
with respect to the structure of B in the crystal complex)
and the AC docking prediction ranked 5th (translation
number 73, rotation number 35, RMSD = 4.8 Å with
respect to the native structure of C) are as follows:

$ Extract.py attractAB.out unitB.red 128
32 > B_128_32.red
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$ Extract.py attractAC.out unitC.red 73 35
> C_73_35.red

At this point, structures with too many clashes are dis-
carded and we optimize the remaining structures by a
series of energy minimization steps where the reference
unit (A) is kept fixed but the other two partners (units B
and C) are allowed to move freely in translation and rota-
tion.

#### Python script: minimize3body.py #####

from ptools import *

A = AttractRigidbody("A.red")

B = AttractRigidbody("B_128_32.red")

C = AttractRigidbody("C_73_35.red")

A.setRotation(False) # don't allow rota
tions and

A.setTranslation(False) # translations for
unit A

#loads a forcefield with a cutoff of 12A

forcefield = AttractForceField1("ami
non.par", 12.0)

#populates the simulation box

forcefield.AddLigand(A)

forcefield.AddLigand(B)

forcefield.AddLigand(C)

#creates a minimizer instance:

lbfgs = Lbfgs(forcefield)

lbfgs.minimize(50) # minimizes for at most
50 steps

An arbitrary number of molecules can be added to the
simulation with the AddLigand method.

We tried to keep the use of the different classes as natural
as possible from the programmer's perspective. After min-
imization, the lbfgs object contains the energy of the
minimized system as well as the effective values of the free
variable set. The minimizer also stores the different states
of the system for each minimization step. This permits the

generation of movies with visualization software like
PyMol or VMD to inspect a simulation (as described in the
tutorial). In spirit this strategy for multiligand docking is
similar to the approach introduced by Inbar et al. [5].
However, in their approach high ranking dimers are com-
bined rigidly into trimeric complexes without the possi-
bility to readjust the already formed pairwise (dimeric)
complexes. In our test, the 3-body readjustment docking
step with two mobile partners (units B and C) resulted in
a very significant improvement of the deviation of the
structure with respect to the native complex. For example,
the RMSD of B compared to its reference position
decreases from 8.1 Å to 2.8 Å in the best ranking case (see
Fig. 2).

Once the strategy has been sufficiently tested and opti-
mized, the instructions for the multiligand docking can be
easily gathered into a new script. This time, the script files
cluster.py and Extract.py will be used as regular
python modules rather than standalone programs.

Discussion
Other Tools
PTools is not the only available tool for molecular mode-
ling, not even for molecular docking. Before discussing
the multiple advantages of PTools, we will describe other
available tools.

MMTK is an open source molecular modeling library writ-
ten by Konrad Hinsen [15]. This library is written in
Python, with some computationally intensive routines
written in C. MMTK comes with functions and classes for
molecular modeling and molecular dynamics, using the
Amber force field. A protein-protein docking program,
pyDock [34] has been built on top of this library.

The EGAD library [16] is a C++ object-oriented library
dedicated to protein modeling. It provides many tools
from basic molecular manipulations to side chain refine-
ments with the OPLS-AA forcefield. By design and philos-
ophy, PTools is comparable to EGAD. Yet they still differ
on certain points. EGAD is focused on protein design
rather than molecular docking and it uses all-atom repre-
sentations. We found out that each project may benefit
from the other, which could be the subject of future work.

HADDOCK [35] is a suite of programs dedicated to dock-
ing. It is built on top of CNS, a molecular modeling library
designed for crystallography and NMR applications. This
library defines its own scripting language.

Biskit [36] is a molecular modeling library written in
Python for various purposes. High-level applications like
docking, homology modeling and molecular dynamics
Page 8 of 11
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are performed using external programs and other software
can be easily added.

Some molecular modeling programs which are not
designed for docking purposes can also be cited. MODEL-
LER [37] is a closed-source suite of tools for homology
modeling with a Python interface. While this program is
not intended for protein-protein docking it can be useful
to generate starting structures for docking.

MGLTools is a Python library for visualization prepara-
tion and analysis of molecular structures. It is coupled to
Autodock for preparing inputs and analyzing outputs.

PTools Advantages
The goal of PTools is to provide a scaffold for develop-
ment and implementation of new molecular modeling
methods. In this purpose, the most interesting points of
this library are:

• Generality: The PTools library can handle both all-
atom and coarse grained representations. Tools are
provided for translating from all-atom to reduced
models and for retrieving all-atom coordinates from
docking simulations.

• Flexibility: PTools has been designed as a library and
therefore eases the development of new applications,
in contrast to monolithic programs.

• Language choice: The programmer can either use the
PTools library as a pure C++ library or as a Python
module. We also provide a very efficient way to gener-
ate new Python bindings. Most C++ classes can be
interfaced using a single, simple line of code, without
any knowledge of the Python C-API.

• Easy to extend: Our automatic check of first deriva-
tives is much more precise than the finite difference
method and can therefore help for the design of new
forcefields.

• Freely available: This library is open-source and can
be freely studied, modified and distributed provided
that modifications remain open-source. We also do
not rely on any proprietary external dependency.

• Well documented: A tutorial describing installation
and use of docking tools is distributed along with the
library. Automatic parsing of the source code provides
a valuable and always up-to-date documentation for
developers.

• Cross-platform: This library has been successfully
compiled and tested on various linux distributions
and Mac OSX platform. It should compile on Win-
dows as well with very few modifications, probably
limited to the compilation environment. Feedback
from Windows users is welcome and we will update
our documentation and compilations tools in order to
take their experience into account.

Conclusion
We present in this article a new library for molecular mod-
eling and docking that provides the modeling community
a user-friendly way to manipulate both coarse-grained
and atomic representations of macromolecules. Its object-
oriented design allows rapid development of new fea-
tures. The library can be used as a pure C++ library or as a
Python module. Binding PTools with Python brings to the
developer a higher level set of functions and modules that
help improving overall code quality, as well as favoring
easy testing and implementation of new docking strate-
gies. We have illustrated this potentiality with the investi-
gation of a new methodological strategy aiming at
docking an arbitrary number of proteins. Tests and appli-
cations of the multi-protein docking approach to bound
and unbound systems will be subject of future work.
Future improvements of the PTools library will include
the possibility to account for conformational flexibility of
the association partners during docking, using methods
that are presently being explored using the ATTRACT pro-
gram [10,12].

C1q systemFigure 2
C1q system. (PDB: 1PK6) The crystallographic system is 
represented in green. Units B (in blue) and C (in magenta) 
were obtained after the 3-body docking strategy (see text).
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Availability and requirements
• Project Name: PTools (library) and ATTRACT (dock-
ing program)

• Project Home Page: http://www.ibpc.fr/~chantal/
ptools/

• Operating system(s): Linux, MacOSX

• Programming Language: C++/Python

• Other requirements: standard programs and libraries
such as scons, gccxml, pygccxml, py++, the Boost
libraries (a step-by-step installation guide is provided
within the tutorial)

• License: GNU GPL version 3

• Restrictions on use: only those of the GPL v3 (see the
COPYING file in the source directory)
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