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Abstract

Atazanavir is an HIV-1 protease inhibitor (PI) with high protein binding in human plasma. The objectives were first to determine the 

binding characteristics of atazanavir, second to evaluate whether plasma protein binding to albumin and to orosomucoidin vitro 

(alpha 1 glycoprotein acid) influence the pharmacokinetics of atazanavir in HIV-infected patients. For the study, atazanavirin vitro 

protein binding characteristics were determined in alpha 1 glycoprotein acid and albumin purified solutions. Atazanavir was found to

bind alpha 1 glycoprotein acid on a high affinity saturable site (association constant 4.61 10 L/mol) and albumin on a low-affinity5 

non-saturable site. For the study, blood samples from 51 patients included in the ANRS107  Puzzle 2 trial were drawn prior toin vivo –
drug intake at week 6. For 10 patients included in the pharmacokinetic substudy, five additional blood samples were collected during

one dosing interval at week 6. Atazanavir concentrations were assayed by LC-MS/MS. Albumin concentrations, alpha 1 glycoprotein

acid concentrations and phenotypes were also measured in these patients. Concentrations of atazanavir were modelled using a

population approach. A one-compartment model with first-order absorption and elimination best described atazanavir

pharmacokinetics. Atazanavir pharmacokinetic parameters and their interindividual variabilities ( ) were as follows: absorption%

rate constant (ka) 0.73 h (139.3 ), apparent clearance (Cl/F) 13.3 L/h (26.7 ) and apparent volume of distribution (V/F) 79.7 L1 − % %
(27.0 ). Atazanavir Cl/F decreased significantly when alanine aminotransferase and/or alpha 1 glycoprotein acid levels increased%
(p<0.01). ORM1 S alpha 1 glycoprotein acid phenotype also significantly increased atazanavir V/F (p<0.05). These results* in vivo 

indicate that atazanavir pharmacokinetics is moderately influenced by its protein binding, especially to alpha 1 glycoprotein acid

without expected clinical consequences.
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Introduction

Atazanavir is an azapeptide protease inhibitor, with a distinct resistance and tolerance profile approved for use in combination

treatment of HIV-1 in the US and Europe ( , , ). In the US, one of the recommended antiretroviral regimens is the combination of11 12 17 

atazanavir/ritonavir with tenofovir/emtricitabine. Recommended doses of atazanavir are 400 mg once daily taken with food without

ritonavir in therapy-naive patients or 300 mg in combination with low-dose ritonavir (100 mg) once daily in antiretroviral-experienced

patients, or when combined with tenofovir ( ). The major advantages of atazanavir are its simplicity of administration and a favourable7 

adverse effects profile, especially on lipid parameters.

Major pharmacokinetic characteristics of atazanavir are a variable absorption through the gut, 86  plasma protein binding on albumin%
and alpha 1 glycoprotein acid (orosomucoid) and elimination through biotransformation which involved CYP3A. Although consequences

of CYP3A metabolism on first pass effect and drug-drug interactions have been largely studied, there is a lack of information on

consequences of protein binding on atazanavir pharmacokinetics. It is now recognized that protein binding is an important modulator of

protease inhibitor disposition and unbound concentration inhibitor is considered as the active moiety which is available to cross cell

membranes. Therefore variations in the concentrations and structures of orosomucoid and albumin under physiological or pathological

infections such as HIV infection are likely to influence protease inhibitors pharmacokinetics ( ). Albumin concentrations could be3 
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significantly reduced in patients with liver disease such as co-infections with hepatitis B virus or C virus. Orosomucoid, also called alpha 1

glycoprotein acid, is a glycoprotein which is controlled by a cluster of three adjacent genes: AGP-A which codes for the major protein

ORM1; AGP-B and AGP-B  which code for the protein ORM2 ( ). The proteins ORM1 and ORM2 are different by a sequence of 22′ 14 

amino-acids. The protein ORM1 is polymorphic with three variants: ORM1 F1, ORM1 S and ORM1 F2, whereas the protein ORM2 is* * *
generally monomorphic with one variant: ORM2 A ( ). This polymorphism could be responsible for interindividual variation in the* 8 

plasma binding of protease inhibitors, which might influence their pharmacokinetic parameters.

The purpose of this work was to determine the binding characteristics of atazanavir. Then we evaluate whether albuminin vitro 

concentration and/or alpha 1 glycoprotein acid concentration and alpha 1 glycoprotein acid variants are pertinent covariates in the

population pharmacokinetics analyses of atazanavir used in combination with ritonavir tenofovir in HIV-infected patients included in a

clinical trial (ANRS 107  Puzzle 2) ( ).– 22 

Methods
Atazanavir in vitro binding experiments

Alpha 1 glycoprotein acid and serum albumin solutions were prepared in pH 7.4 phosphate-buffered saline. Concentrations of alpha 1

glycoprotein acid and serum albumin used were those found in normal patients and were 0.7 g/L and 40 g/L respectively. These solutions

were spiked with known amounts of atazanavir to yield the following final concentrations: 0, 500, 1000, 1500, 2000, 5000, 10000, 15000

and 30000 ng/mL. Bound and unbound atazanavir were separated by ultrafiltration of 500 L samples using Centrifree  devices (Amicon,μ ®
YM-300 filter system, Millipore Corp., Bedford, Massachussets, USA) at 3000 g during two hours at 30 C. Atazanavir was then measured°
in the ultrafiltrate according to a method developed for amprenavir ( ). The Amicon Centrifree YM-300 filter system (Millipore Corp.1 

Bedford, MA) with a membrane molecular weight cut off of 30,000 Daltons was used to ultrafiltrate plasma samples. The driving force for

ultrafiltration was provided by centrifugation (Jouan, GR 4.11) at 2000 g, at 30 C. Duration of centrifugation was 120 minutes to obtain an°
ultrafiltrate volume of at least 200 mL from a 500-mL. Atazanavir concentrations in ultrafiltrate were measured by HPLC with separation

on a C18 column after liquid-liquid extraction and UV detection at 220 nm. The mobile phase consisted of pH 5.6 phosphate

buffer/acetonitrile/methanol (480/110/110, vol/vol) and the flow rate was 1.1 mL/min. Retention times for atazanavir and

6,7-dimethyl-2,3-di-(2-pyridyl)-quinoxaline (internal standard from Sigma Aldrich Chemicals) were 15 and 30 minutes respectively in our

chromatographic system.

Unbound fraction was the ratio of unbound atazanavir and total atazanavir concentrations. The graph of the drug bound concentration

as a function of the drug unbound concentration depicts the protein binding system ( ).24 

Population pharmacokinetic analysis of atazanavir in patients

Study design and population

ANRS 107 Puzzle 2 was a randomised, open-label, multiple-dose trial evaluating the efficacy and safety of a combination of–
atazanavir/ritonavir and tenofovir in HIV-infected patients with multiple antiretroviral treatment failures. The study design is detailed

elsewhere ( ). From week 3 to week 26, all patients received atazanavir/ritonavir (300 mg/100 mg QD) plus tenofovir disoproxil22 

fumarate (300 mg QD equivalent to 245 mg of tenofovir disoproxil or 136 mg of tenofovir) and nucleoside reverse transcriptase inhibitors

(NRTIs) selected according to the baseline reverse transcriptase genotype of the HIV isolate infecting each patient. Drugs were

administered in the morning with a light continental breakfast.

Before inclusion, all patients gave their written informed consent. The protocol was approved by the Institutional Review Board of

Saint Antoine Hospital, Paris VI University. HIV-infected patients were eligible for inclusion if they met the following criteria:

documented treatment failure with at least two PIs and one non-nucleoside reverse transcriptase inhibitor, HIV RNA >10 000 copies/mL,

no change in antiretroviral treatment within the last month before inclusion in this study, normal liver function.

Plasma collection

Blood samples for biochemical and immuno-virological measurements were drawn at screening and at regular time intervals after

inclusion. Blood samples for atazanavir plasma concentrations assay were collected prior to drug intake in the morning at week 6, 1 month

after starting the full antiretroviral treatment, atazanavir  ritonavir  tenofovir  optimized background treatment, according to the design+ + +
of the ANRS107 study ( ). For 10 patients included in the pharmacokinetic substudy, additional blood samples were collected after22 

dosing at times 1, 2, 3, 5, 8 and 24 hours ( ). Plasma samples were kept at 20 C until analysis. The actual times of drug administration23 − °
and sampling were recorded.

Drug assays
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Atazanavir concentrations were measured in plasma patients samples by validated LC/MS/MS assays (Bristol-Myers Squibb, Saint

Nazaire, France). The lower limits of quantification (LOQ) were 1 ng/mL. Day-to-day variabilities for the quality control samples were 5.7

.%

Biochemical and virological measurements

Absolute numbers of CD4 lymphocytes, plasma HIV RNA levels, blood chemistry parameters (albumin, total bilirubin, total

cholesterol, triglycerides, alanine and aspartate aminotransferases) were determined according to standard assays ( ).22 

Determination of alpha 1 glycoprotein acid concentrations and phenotypes

Alpha 1 glycoprotein acid plasma concentrations were measured by nephelemetry (BN Prospec, Dade Behring). Alpha 1 glycoprotein

acid phenotypes (ORM1 S-ORM2 A, ORM1 F1S-ORM2 A and ORM1 F1-ORM2 A) were determined on plasma samples by isoelectric* * * * * *
focusing according to the method developed by Eap and Baumann, with some modifications ( ).10 

Population pharmacokinetic modelling

Data at week 6 were analysed using a population approach with the first-order method (WinNonMix version 2.0.1, Pharsight

Corporation, Mountain View, CA, USA) and parameterised with the apparent volume of distribution (V/F), the first order absorption rate

constant (ka) and the apparent clearance (Cl/F). The statistical model for the observed plasma concentrations of the drug in patient atCij i 

time was given by: C  f(t , )  where is the pharmacokinetic parameter vector of patient , the residual error and f thetij ij = ij θi + εij θi i εij 

pharmacokinetic model.

An exponential random-effect model was chosen to describe inter-individual variability:  where is the population meanθi =  exp ( ) θ ηi  θ

vector of the pharmacokinetic parameters and represents the random effect vector. Random effects were assumed to follow a normalηi 

distribution with zero mean and variance matrix  which was supposed to be diagonal. Residual variability was modelled using aΩ
proportional error model.

Goodness of fit plots (observed versus predicted population and individual concentrations, weighted residuals versus predicted

concentrations and versus time) were examined for each model. Tested covariates were age, weight, body mass index, creatinine clearance

at week 6, alanine aminotransferase (ALAT) and aspartate aminotransferase (ASAT) at baseline, plasma alpha 1 glycoprotein acid and

albumin concentrations at week 6, alpha 1 glycoprotein acid phenotypes, coinfections (hepatitis B infection and/or hepatitis C infection),

ritonavir trough and average concentrations and combined NRTIs,. Continuous variables were centred on their median. The sex of the

patients was not tested as a covariate because there were only two females in the population. The effects of covariates were tested on each

individual parameter (correlation test for continuous variables and ANOVA for categorical variables) using Statgraphics version 5.1

(Manugistics, Inc. Rockville, Maryland, USA). The covariates that were found to have a significant effect (p < 0.05) were then evaluated

in the population analysis. The effect of a covariate was assessed by the likelihood ratio test. In the forward inclusion process, a covariate

was retained in the model if there was a decrease greater than 3.84 in the objective function (p < 0.05, 1 degree of freedom) and if there

was a decrease in the interindividual variability of the associated pharmacokinetic parameter. From the best model including covariates, a

backward elimination procedure was then used to test whether all covariates selected should remain in the final model. When deletion of a

covariate (p < 0.05) significantly increased the log-likelihood (> 3.84), that covariate was kept in the model.

Results
Atazanavir in vitro binding

In a solution of 0.7 g/L of alpha 1 glycoprotein acid, atazanavir was found to bind to one high affinity saturable site at about 31.1 .%
The association constant was 4.61 10 L/mol and the number of sites 0.61. In a solution of 40 g/L of serum albumin, mean unbound5 

fraction of atazanavir was found to be 21.3  and was constant up to 15000 ng/mL of total atazanavir. This suggested that atazanavir binds%
to one low-affinity non-saturable site. The number of sites and the affinity constant were not differentiated and the product was estimated

as 6352 L/mol. When atazanavir total concentrations were above 15000 ng/mL, atazanavir unbound fraction increase to 30.9 , protein%
binding sites becoming saturated ( ).figure 1 

Population pharmacokinetic analysis of atazanavir in patients

Patients

Fifty-one patients completed the study at week 6 and ten patients were included in the pharmacokinetic substudy. The characteristics

of these 51 patients are summarised in . The NRTIs combined with ritonavir-boosted atazanavir plus tenofovir were lamivudine (ntable 1 =
40), abacavir (n 30), didanosine (n 18), zidovudine (n 15), zalcitabine (n 5) and stavudine (n 2). Twenty-three patients were hepatitis= = = = =
virus B and/or C co-infected.
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Alpha 1 glycoprotein acid concentrations and phenotypes

Alpha 1 glycoprotein acid concentrations were 1.0 g/L (0.6 1.5) at week 6 and were elevated in 15 patients (28.8 ) accounting for– %
their age and sex.

Five patients had the phenotype ORM1 S-ORM2 A, 19 ORM1 F1-ORM2 A and 28 were heterozygous and presented ORM1* * * * *
F1S-ORM2 A. The allele ORM1 F2 was not observed in this rather small sample. The allele ORM2 A was monomorphic and observed in* * *
all sera of patients. The ORM1 allele frequencies were as follows: 0.635 for ORM1 F1 and 0.365 for OMR1 S. Good agreement was* *
found between observed and expected values, assuming a Hardy-Weinberg equilibrium (p > 0.5). Total plasma concentrations of alpha 1

glycoprotein acid were not found to be significantly dependant on alpha 1 glycoprotein acid phenotypes.

Atazanavir model

Basic model

A one-compartment model with first-order absorption and elimination was used to describe atazanavir pharmacokinetics. The

population parameter estimates, their relative standard error of estimation (RSE ) and their inter-individual variability for this basic%
model are shown in .table 2 

Covariates model building

From this basic model, we tested the effects of the covariates on the individual estimates of the random effects. Using the estimated

individual parameters, significant effects of hepatitis B and/or C infection on ka (p  0.030), of plasma alpha 1 glycoprotein acid=
concentration, didanosine, ALAT level, ASAT level, ritonavir trough and average concentrations on Cl/F (p  0.001; 0.028; 0.037; 0.017;=
0.009; 0.006 respectively) and of plasma alpha 1 glycoprotein acid concentration, ORM1 S alpha 1 glycoprotein acid phenotype on V/F (p *

 0.009; 0.008 respectively) were found.=

According to the likelihood ratio test, the final population model had plasma alpha 1 glycoprotein acid concentration (AAG), ALAT

level effects on Cl/F (p < 0.01; p <0.01 respectively) and ORM1 S alpha 1 glycoprotein acid phenotype (ORM1 S) effects on V/F (p <* *
0.05). The equations are:

where 29 (IU/L) and 1.0 (g/L) are the median ALAT and AAG levels.

The population parameters of this final model and their relative standard errors of estimation are given in . The goodness of fittable 2 

plots (not shown) were all very satisfactory for the basic and final models.

The apparent volume of distribution was estimated to be 79.7 L and increased about 2-fold in patients with the ORM1 S phenotype.*
Absorption rate constant was estimated to be 0.73/h. The apparent clearance was estimated to be 8.1 L/h when ALAT was 29 IU/L and

alpha 1 glycoprotein acid level was 1.0 g/L. Median (range) half-life was 6.9 h (4.0 18.2). We found an increase of 34  in mean– %
atazanavir area under the curve (AUC, 47410 ng.h/mL versus 35432 ng.h/mL, p 0.0004) and of 12  in mean half-life (7.8 h versus 6.9 h,= %
p 0.03) in patients who had an elevated ALAT level (  40 IU/L), compared with patients with a normal ALAT level. A 36  increase in= ≥ %
mean atazanavir AUC (49644 ng.h/mL versus 36529 ng.h/mL) and a 28  increase in mean half-life (9 h versus 7 h) were observed in%
patients with elevated alpha 1 glycoprotein acid (according to their age and sex), compared with those with a normal alpha 1 glycoprotein

acid level.

The inter-individual variabilities of absorption rate constant, apparent volume of distribution and apparent clearance were 139.3 ,%
27.0  and 26.7 , respectively. They were slightly decreased from the basic model by the incorporation of the covariates. Residual% %
variability was 19.9 . shows the model-predicted concentrations and the observed concentrations versus time when ALAT and% Figure 2 

plasma alpha 1 glycoprotein acid concentrations were 29 IU/L and 1.0 g/L, respectively, in patients with or without the alpha 1

glycoprotein acid ORM1 S phenotype.*

Discussion

Atazanavir is a potent and safe HIV PI with a pharmacokinetic profile that allows once daily oral administration and which can be

optimised by adding low-dose ritonavir. All patients included in this study received ritonavir boosted atazanavir and a relationship was

found between atazanavir clearance and ritonavir concentrations. However variation in ritonavir concentrations was not found to impact

atazanavir pharmacokinetics to a significant extent and therefore was not retain in the final model. It is known that protein binding affect
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PI disposition ( ) and could reduce the antiviral effect of these drugs ( ). It was reported that atazanavir binds to both alpha 13 13 

glycoprotein acid and albumin to a similar extent, but binding parameters were unknown ( ). Our data demonstrate that12 in vitro 

atazanavir has a higher affinity to alpha 1 glycoprotein acid than to albumin. However, alpha 1 glycoprotein acid is present at about 1/40

the concentration of albumin in plasma. Consequently, the binding of atazanavir to alpha 1 glycoprotein acid was saturable above 6000

ng/mL whereas the saturation of albumin appears above 15000 ng/mL of atazanavir. A similar result was already found for saquinavir (15 

). As for many basic drugs, alpha 1 glycoprotein acid has a high affinity but albumin has a higher capacity for binding ( ). In patients16 

treated by atazanavir/ritonavir at the recommended daily dose of 300/100 mg, trough plasma atazanavir concentrations are around 1000

ng/mL. Consequently, alpha 1 glycoprotein acid is the major protein involved in atazanavir binding. These findings are essential because

alpha 1 glycoprotein acid concentration can vary considerably as a result of disturbances of homeostasis. It increases during acute or

chronic inflammation and infectious disease. HIV-infected patients are therefore likely to exhibit increased concentrations of alpha 1

glycoprotein acid ( , , ). Moreover the alpha 1 glycoprotein acid polymorphism could be responsible for interindividual variation in3 16 21 

the plasma binding of protease inhibitors, which might influence their disposition.

The impact of proteins that bind atazanavir on atazanavir pharmacokinetics was evaluated in 51 HIV infected patients having failed

several lines of previous antiretroviral treatment and included in the ANRS 107-Puzzle 2 trial. Unfortunately, atazanavir unbound fraction

could not be measured in these patients as remaining samples volumes was too low

This is the first population model analysis to explore the possible influence of alpha 1 glycoprotein acid concentrations, alpha 1

glycoprotein acid phenotypes, albumin concentrations, ALAT and ASAT levels and/or hepatitis B and C coinfections on atazanavir

pharmacokinetic parameters.

In this very advanced population, alpha 1 glycoprotein acid concentrations remained elevated in 29  of the patients even though they%
had received a new treatment for 6 weeks. This could be explained by the weak virological response to the new treatment and the lack of

effect of the antiretroviral treatment on the inflammation due to HIV infection ( ). The relative frequencies of alpha 1 glycoprotein acid22 

phenotypes found here are close to those previously described in healthy subjects or in HIV-infected patients ( , ). We did not find5 8 

ORM1 F2 on this population but this variant is present only at a low allelic frequency ( , ). As already described in healthy subjects,* 9 19 

alpha 1 glycoprotein acid plasma concentrations were not found to differ between the 3 henotypes ( ).18 

To determine atazanavir pharmacokinetic parameters and the influence of protein binding, we used a population approach because

only ten patients had a complete pharmacokinetic profile. The pharmacokinetics of atazanavir was described by a one-compartment model

with first-order absorption and first-order elimination with random effects on ka, V/F and Cl/F. This structural model was similar to that of

Dailly et al. and Colombo et al., although Colombo et al. described a first-order absorption with a lag time ( , ). Our estimation of4 6 

atazanavir pharmacokinetic parameters, apparent volume of distribution, absorption rate constant, apparent clearance and half-life are in

the same range as those of previous studies ( , , , ). The atazanavir apparent clearance of 9.8 L/h demonstrates that atazanavir has4 6 17 23 

low extraction ratio with clearance depending on the unbound fraction and intrinsic clearance. The atazanavir apparent volume of

distribution of 78 L (1.2 L/kg) indicates that plasma protein binding is not a restricting factor to body distribution. Assuming that

pharmacologic effect is related to exposure to unbound drug concentrations (AUCu), which after oral administration, depends on the

fraction absorbed through the gut wall, the dose and the intrinsic clearance as demonstrated by Benet and Hoener ( ), any change in total2 

drug concentrations should not have clinical consequences. Large inter-individual variability was found for ka (139.3 ) as variable%
absorption of PIs has already been described.

We found that the apparent clearance of atazanavir decreases with increasing plasma alpha 1 glycoprotein acid concentration. A

similar effect was previously reported for lopinavir and indinavir clearance ( ). This result suggests that elevated alpha 1 glycoprotein5 

acid concentrations could decrease the protein unbound fraction of atazanavir, leading to increased total atazanavir concentrations, but

without change in unbound atazanavir concentrations linked to drug efficacy ( ).2 

Interestingly, we found that atazanavir apparent volume of distribution decreases with increased with alpha 1 glycoprotein acid

concentrations and increases with the ORM1 S phenotype. This suggests that atazanavir may preferentially bind to the ORM1 F1 variant,* *
compared with the ORM1 S variant. Unfortunately, this hypothesis could not be tested as human plasma samples tested for alpha 1* in vitro 

glycoprotein acid variants were not available. In contrast, it was suggested that lopinavir and indinavir may preferentially bind to the

ORM1 S variant ( ). There are conflicting data on preferential binding of neutral and basic drugs such as quinidine to ORM1 S and* 5 *
ORM1 F1 ( , ). drug-binding studies are warranted to determine the possible different capacities of the ORM1 variants.* 18 20 In vitro 

Overall, increases in alpha 1 glycoprotein acid lead to a modest 28  increase in atazanavir half life which should not have any clinical%
consequence, but could contribute to the interindividual variability of atazanavir pharmacokinetics although to a lesser extend than

absorption or CYP3A activity.

We found that the apparent clearance of atazanavir decreases with increasing ALAT. This was expected as atazanavir, like other PIs, is

extensively metabolised by hepatic CYP3A isoenzymes, which are decreased in patients with liver failure and directly affect the intrinsic
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clearance. However, such a relationship is remarkable as liver dysfunction was mild to moderate in our patients. A 42  increase in AUC%
and longer terminal half-life (12 versus 6 hours) have been reported in volunteers with hepatic impairment (Child-Pugh grade B or C),

compared with healthy volunteers ( ). In the present study, we found a similar increase in atazanavir AUC and half-life in patients who12 

had an elevated ALAT level. Our data, although limited, could suggest that high atazanavir concentrations are expected with severe liver

dysfunction. As previously described, age, body weight and body mass index did not influence atazanavir pharmacokinetics ( ). Most of4 

our patients were males, so no influence of sex on atazanavir pharmacokinetics could be detected. In keeping with our data,in vitro 

atazanavir pharmacokinetics was not influenced by albumin concentrations; however in these patients, there was a small variability in

albumin concentrations.

In conclusion, this study demonstrates that atazanavir pharmacokinetics is modestly influenced by its protein binding, especially to

alpha 1 glycoprotein acid. The effect of alpha 1 glycoprotein acid concentrations or polymorphisms or liver enzyme elevations on the

unbound moiety able to cross biologic membranes and exert a pharmacologic effect is unknown as is therefore, the potential clinical

significance, and that this is a limitation of this work.
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Figure 1
Bound atazanavir concentrations versus unbound atazanavir concentrations in solutions of orosomucoid (solid circles) and albumin (open

circles). The curve is an ordinary least-square fit of the Emax model to the data using WinNonLin.

Figure 2
Observed atazanavir concentrations (solid circles in patients with the ORM1 S phenotype and open circles in patients without the ORM1 S* *
phenotype) and predicted population concentrations for median ALAT (29 IU/L) and median orosomucoid (1.0 g/L) in patients with

(continuous line) or without (dashed line) the ORM1 S phenotype versus time, at week 6.*
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Table 1
Characteristics of the 51 patients included in the population pharmacokinetic analysis

Median min-max

Age (years) 41 29 62–
Week 6 weight (kg) 65.6 45.0 105.6–
Week 6 body mass index (kg/m )2 21.3 17.0 33.6–

Baseline ALAT level (IU/L) 29 5 114–
Baseline ASAT level (IU/L) 29 16 149–
Week 6 ALAT (IU/L) 38 7 175–
Week 6 creatinine clearance (mL/min) 87 23 178–
Week 6 albumin (g/L) 40.4 31.2 47.7–

Week 6 orosomucoid (g/L) 1.0 0.6 1.5–
ALAT: alanine aminotransferase
ASAT: aspartate aminotransferase

Table 2
Population pharmacokinetic parameters of atazanavir (estimates and relative standard errors of estimation) for the basic model and for the final model

Basic model Final model

Parameters Estimate RSE ( )% Estimate RSE ( )%

ka (h )1 − 0.75 7.6 0.73 10.7

Cl/F (L/h) 7.8 9.0 13.3 13.2
βALAT 

Cl/F - - 0.86 35.0

βAAG 
Cl/F - - 4.3 46.9

V/F (L) 78.2 10.5 79.7 10.5

βORM1 S *
V/F

- - 1.9 32.8

ωka ( )% 138.7 21.0a 139.3 26.2a

ωCl/F ( )% 43.4 54.4a 26.7 27.8a

ωV/F ( )% 31.1 64.8a 27.0 102.2a

σ ( )% 18.3 37.2a 19.9 50.3a

a RSE for , , and ω2 
ka ω

2 
V/F ω

2 
Cl/F σ2

ka: absorption rate constant, Cl/F: apparent clearance, V/F: apparent volume of distribution
: facteur associated with ALAT concentrations on atazanavir Cl/FβALAT 

Cl/F 
: facteur associated with AAG concentrations on atazanavir CL/FβAAG 

Cl/F 
: facteur associated with ORM1 S phenotype on atazanavir V/FβORM1 S *

V/F *
, : inter individual variabilities for ka, Cl/F and V/F respectivelyωka ωCl/F, ωV/F 

: residual errorσ


