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Abstract: 

Analysis of count data from clinical trials using mixed effect analysis has recently 

become widely used. However, algorithms available for the parameter estimation, 

including LAPLACE and Gaussian quadrature (GQ), are associated with certain 

limitations, including bias in parameter estimates and the long analysis runtime. The 

stochastic approximation expectation maximization (SAEM) algorithm has proven to be 

a very efficient and powerful tool in the analysis of continuous data. The aim of this 

study was to implement and investigate the performance of a new SAEM algorithm for 

application to count data. A new SAEM algorithm was implemented in MATLAB for 

estimation of both, parameters and the Fisher information matrix.  Stochastic Monte 

Carlo simulations followed by re-estimation were performed according to scenarios 

used in previous studies (part I) to investigate properties of alternative algorithms (1). A 

single scenario was used to explore six probability distribution models. For parameter 

estimation, the relative bias was less than 0.92% and 4.13 % for fixed and random 

effects, for all models studied including ones accounting for over- or under-dispersion. 

Empirical and estimated relative standard errors were similar, with distance between 

them being <1.7 % for all explored scenarios. The longest CPU time was 95s for 

parameter estimation and 56s for SE estimation. The SAEM algorithm was extended for 

analysis of count data. It provides accurate estimates of both, parameters and standard 

errors.  The estimation is significantly faster compared to LAPLACE and GQ. The 

algorithm is implemented in Monolix 3.1, (beta-version available in July 2009). 
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Introduction:    

The analysis of the count data with mixed linear models has been frequently reported in 

recent history (2, 3). This approach offers several advantages, as it allows for estimation 

of the central tendency of population parameters as well as quantification of the inter-

individual variability (4, 5). These parameter estimates are further utilized in many 

different aspects, e.g. for simulation of novel scenarios with respect to new dosing 

schedules or new patient populations. Therefore it is important that these parameter 

estimates are unbiased and reliable.    

Using maximum likelihood methods to estimate parameters for count data models 

requires approximation of the true likelihood since the integral of the likelihood cannot 

be explicitly solved(6).  

For the discrete data, these approximations include LAPLACE and Gaussian quadrature 

methods (7). In mixed effect analysis, model parameters enter non-linearly into the 

model function form, which impose certain difficulties to approximate the likelihood 

integral precisely. Consequences of different integral approximation include difficulties 

in the estimation procedure, bias in parameter estimates, and prolonged runtime for 

the analysis (1, 8-10).  

In recent years, there have been several approaches/algorithms developed for the 

analysis of continuous data which provide a solution to the likelihood function without 

approximation of the model(11). A stochastic approximation version of EM algorithm 

(SAEM) linked to a Markov Chain Monte Carlo procedure has been suggested for 

maximum likelihood estimation within the non-linear mixed effects framework. This 
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procedure has been demonstrated to possess excellent statistical convergence 

properties as well as the ability to provide an estimate close to the maximum likelihood 

estimate in only few iterations (12). In addition to the maximization of the likelihood of 

the observations, the SAEM algorithm also provides the user with the Fisher Information 

Matrix, which is further used to assess parameter estimate uncertainty. However, to our 

knowledge, there have not been studies reported with respect to application of a 

stochastic algorithm to the analysis of discrete data. 

 

The aims of this study were (i) to extend the SAEM algorithm for estimation of 

parameters in count data models, (ii) to evaluate its performance via stochastic Monte 

Carlo simulations followed by the re-estimation procedure, (iii) to implement estimation 

of the Fisher information matrix for this case, and (iv) to evaluate precision of the 

standard error estimates using the proposed implementation.   
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Methods:  

Notation: the mixed count data models 

A parametric count data model is defined by the probabilities P ( )Y kΨ = , for k=0,1,…. 

Here, Ψ is a vector of parameters. Consider a Poisson model for example. Then, Ψ=λ 

and P ( ) / !kY k e kλλ−
Ψ = = . 

In the population approach, each subject i has their own vector of parameters ψi=(ψil). 

We assume here that ψi =h(φi) where φι is a Gaussian vector with mean µ and variance-

covariance matrix Ω (extension to the case where the mean of φι depends on some 

covariates is straightforward). We can use different transformations h, according to the 

constraints on ψi. For example, we can set ψil=exp(φil) to constrain the I'th parameter ψil 

to be non negative, or φil =logit(ψil) to constrain ψil to take its values between 0 and 1. 

 

Implementation of the SAEM algorithm for count data models 

We propose to extend the SAEM algorithm described in (12) for continuous data models 

to count data models. SAEM is an iterative procedure where, at iteration k, a new set of 

individual parameters ϕ( k)
 =(ϕi

(k)
) is drawn with the conditional distribution p(ϕ | y ; 

µ(k) , Ω(k)
 ). Then, the new population parameters (µ(k+1) , Ω 

(k+1)
) are obtained by 

maximizing Qk+1(µ , Ω ) defined as follows: 

( )( )
1( , ) ( , ) ( ; , ) ( , )k

k k k kQ Q l Qµ µ γ ϕ µ µ+ Ω = Ω + Ω − Ω   (1) 
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where l(y, ϕ(k)
;µ , Ω ) is the complete log-likelihood 

 

( )∑ Ω⋅=Ω
i

k
i

k
ii

k pypyl )()|(log),;,( )(
),(

)()( ϕϕµϕ µ  (2) 

 

 

Here, p(µ,Ω) is the probability density function of the normal distribution with mean µ  

and variance-covariance Ω.  

The simulation step is identical to the simulation step of SAEM for continuous data. The 

maximization step is slightly different, since there is no error model to estimate. The 

only parameters to estimate are the fixed effects and the variance-covariance matrix of 

the random effects. 

For the numerical experiments presented below, we used γk=1 during the first 200 

iterations of SAEM and γk=1/(k-200) during the next 100 iterations. 

An MCMC algorithm was used for the simulation step (see (12, 13) for more details). 

 

Estimation of the Fisher information matrix 

Let θ= (µ , Ω ) be the set of population parameters to be estimated, and let   

 be the maximum likelihood estimate of θ  computed with SAEM. The Fisher Information 

  

matrix is defined as   where   is the log-likelihood of the  

 

observations, computed with θ= . 
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For continuous data models, it is now widely acknowledged that techniques based on 

the linearization of the model (first order and first order conditional estimation, FO and 

FOCE) present severe drawbacks for the estimation of the population parameters (14). 

In contrast, several numerical experiments have shown that linearization of the model 

for estimating the Fisher information matrix (as implemented in MONOLIX 2.4) is 

satisfactory. 

  

However, this approach is not applicable for discrete data models. As alternative we 

propose to compute a stochastic approximation of the Fisher Information matrix using 

the Louis formula (see(12) for more details): 

 

( ) ( )2 2( ; ) E ( , ; ) | ; Var ( , ; ) | ;l y l y y l y yθ θ θθ ϕ θ θ ϕ θ θ∂ = ∂ + ∂  (3) 

 

 

The procedure consists in computing first  with SAEM then applying the Louis formula 

with θ=  which requires the computation of the conditional expectation and conditional 

variance. These quantities are estimated by Monte-Carlo simulation: we performed 300 

iterations of MCMC for the numerical experiments – these will provide 300 simulated 

values used to compute empirical means and variances as defined in the equation 3. For 

discrete data models, this method is a default method for computation of Fisher 

information matrix in MONOLIX.  
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Evaluation of the SAEM algorithm  

The performance of the SAEM algorithm was evaluated via Monte Carlo simulation-

estimation exercises. The settings were identical to ones presented previously in the 

part I, where a single scenario was studied to evaluate performance of the algorithm 

with six different count data models, including Poisson (PS), Zero-inflated Poisson (ZIP), 

Generalized Poisson (GP), Poisson with Markovian Features (PMAK), Poisson with a 

mixture distribution for individual observations (PMIX) and Negative binomial (NB) 

model. As this communication is focused on application of SAEM to count data, the 

reader is kindly asked to refer to Part I of this report (for detailed description of the 

study design, model parameters and specific notation (1)).For each scenario, one 

hundred datasets were simulated in MATLAB and parameters were estimated using the 

SAEM algorithm implemented in MATLAB.  All procedures were performed on laptop 

DELL D830 2.4 GHz 

 

To assess statistical properties of the method, relative bias (RB), relative estimation 

error (REE) and root mean square errors (RMSE) were computed for each scenario using 

equations 4, 5 and 6 , were is the kth estimated parameter,  θ* is the true parameter 

and  is a median of n estimated parameters, where n=100.  CPU runtime was also 

measured to assess the efficiency of the algorithm and the runtime for the analysis.       

 
 

 (4) 

 
 

(5) 
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(6) 

 

Evaluation of the standard error estimates 

The Fisher information matrix was estimated for each data set, and its inverse was used 

to assess the standard error estimates. These were further used to assess the relative 

standard errors, as a ratio of the standard error and parameter estimate, expressed as a 

percentage (%), denoted as ( ).  Uncertainty of parameter estimates   around 

model parameter θ* was assessed by computing the empirical relative standard 

errors ) using equation 7. 

Comparison between estimated relative standard errors and empirical relative standard 

errors was computed by determining the relative distance between those, as shown in 

equation 8, expressed as a percentage (%). This quantity we denote as absolute error 

estimate (AEE). 

   
(7) 

 

 (8) 

  
Outcomes of all Monte-Carlo simulation studies exploring both, the parameter 

estimation process and estimation of Fischer information matrix, were presented as 

box-plots where bias and imprecision of the method can easily be visualized.   
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Visual evaluation  

Visual evaluation was performed by generating visual predictive check (VPC) and 

normalized prediction distribution errors (NPDEs)(15, 16).  For visual predictive check, 

1000 new datasets were simulated and in order to perform statistical calculations, a 

randomly chosen simulated dataset was treated as the observed data.  The visual 

predictive check was derived on the quantity such as individual variances versus 

individual means of counts. The median (50
th

 percentile), quartiles (25th and 75th 

percentiles) as well as 10
th

 and 90
th

 percentiles were calculated. These visual evaluation 

techniques were generated by using the true parameter values, which were quite 

similar to the estimated parameters across all 100 datasets. In order to show the 

strength of these visual simulation-based diagnostics for detecting the impact of the 

model misspecification by means of biased parameter estimates (variances) , we also 

generated VPCs and NPDEs using the biased variances (1.5 and 2 times of the original 

value).  

. 
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Results: 

Overall, the estimation procedure with the SAEM algorithm in a non-linear mixed effect 

modelling framework for count data models, showed satisfactory performance with low 

bias and high precision. For parameter estimation, the absolute value of relative bias 

was less than 0.92% and 4.13 % for fixed and random effects and RMSE was less than 

12.34 % and 13.13% for fixed and random effects, across all tested models. For standard 

error estimation, the absolute value of relative bias was less than 1.7 and 1.6 % for fixed 

and random effects, and RMSE was less than 1 and 1.54% for fixed and random effects. 

The variances of over-dispersion parameters, shown to be biased when estimated with 

LAPLACE, were precisely estimated with SAEM, exhibiting relative bias of 1.62%, 1.26% 

and 2.38% for p0, δ and OVDP .  Detailed results are listed below. The distribution of REE 

and AEE for all models and all parameters is shown in Figure 1a-f, while the numerical 

results are represented in Table I The summary for imprecision estimate (RMSE) for all 

parameters and their standard error estimates across all models using SAEM is shown in 

Table II.   

 

Poisson model: Parameters of this model were precisely estimated with relative biases 

of -0.6 % and 0.75 % for fixed and random effect. Relative bias for standard errors 

estimate was also very low:  -0.37 % and -0.13 % for fixed and random effect, indicating 

good accuracy for uncertainty estimation. 
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Poisson model with Markov element: Fixed effects of this model along with their 

uncertainty were accurately estimated with relative bias less than 0.41 %, for both, 

parameter estimates and standard error estimates. The relative bias of random effects 

estimate ranged from -1.36 % to -4.13 %, indicating satisfactory accuracy. Also 

uncertainty of random effects was accurately assessed, with relative bias <1.33 %. 

 

Poisson model with a mixture distribution for individual observations Both, fixed and 

random effects of this model were accurately estimated with relative bias values 

ranging from -0.4 % to 0.54 %. The same was true for estimates of uncertainty for these 

parameters, with relative bias ranging from -0.47 % to 1.7 %. 

 

Zero inflated Poisson model Fixed effects of this model along with their uncertainty were 

accurately estimated with relative bias less than -0.75 %, for both, parameter estimates 

and standard error estimates. The same holds for random effect estimates and their 

uncertainty with relative bias < 1.62 %. 

 

Generalized Poisson model Similar to all other models, parameter estimates, including 

fixed and random effects and their uncertainty, were accurately estimated with relative 

bias ranging between -1.61 % and 1.26 %. 
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Negative binomial model Relative bias in fixed effects and their uncertainty was less 

than -1.36 % for this model. Random effects and their uncertainty were also accurately 

estimated with relative bias < 2.38 %. 

 

Overall convergence was 100% for both parameter and standard error estimation. The 

average CPU time per run was 48s for parameter estimation and 34s for standard error 

estimation, when the algorithm was implemented in Matlab. Test runs were performed 

with all models implemented in C++, and this sped up the estimation process by 

approximately 1/3 for 5 out of 6 models. Comparison of CPU times between SAEM and 

other algorithms, including Gaussian quadrature with one quadrature point (equivalent 

to LAPLACE) and Gaussian quadrature with nine quadrature points, is shown in Table III. 

 

Visual predictive check revealed good accordance between observed and simulated data 

no matter which variances were used for simulations, indicating the weak power of this 

visual technique to detect model misspecification (Figure 2a-c). Numerical predictive 

check showed somewhat more sensitivity, indicating higher disagreement between 

expected and observed number of data points outside prediction intervals for mis-

specified models (Table IV).  However NPDEs showed to be most sensitive towards 

indicating model misspecification as illustrated in Figure 3a-c. Visual findings of 

normalized prediction distribution errors (NPDEs) were confirmed by statistical tests, 

including Kolmogorov-Smirnov and chi-squared tests: hypotheses that NPDEs are 
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normally distributed with zero mean and variance of 1 was rejected for two mis-

specified models (p<10
-32

).  
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Discussion:  

A new SAEM algorithm has been developed, implemented and evaluated for application 

to count data models in the non-linear mixed effects framework.   Six relevant models 

for analyzing this type of data were evaluated, including those that can deal with 

overdispersion, when individual variances exceed the individual means. The algorithm 

was also implemented for computation of Fischer Information matrix in order to assess 

the uncertainty estimate.  

 

The SAEM algorithm performed well under all tested model scenarios resulting in 

accurate and precise estimation of all parameters. Even, variances of over-dispersion 

parameters were accurately and precisely estimated, which was not the case reported 

previously in part I of this report in analysis with LAPLACE method (1). The explanation 

for previously observed biases was presumed related to the poor approximation of the 

likelihood integral, when models are highly non-linear, which is the case for models 

handling over- and under-dispersion cases.  In addition, random effects often enter 

models in a non-linear fashion; therefore these are most likely to suffer from the poor 

integral approximation. Observed poor approximation of the likelihood integral by 

LAPLACE was explained by the asymmetric shrinkage of Empirical Bayes Estimates 

(EBEs); indeed the LAPLACE method is conditioned on point estimate of EBEs, however 

reliability of this estimate is not taken into account. Poor performance of other 

estimation methods due to EBE shrinkage has also been previously demonstrated (17)  

When better approximation of the likelihood integral was used in previous work 
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involving nine quadrature points of the Gaussian quadrature method, the bias 

disappeared (1). Similar observations were made when  analyzing ordinal type of data 

(9). The SAEM algorithm does not involve any approximation of the model in 

computation of the likelihood integral; it provides estimation of both the likelihood and 

Fischer information matrix, without linearization of the model. Moreover, SAEM does 

not condition the likelihood computation on the EBE estimate and therefore it is not 

affected by poor estimates of the likelihood particularly in the case of shrinkage. Clearly, 

this is a favorable property of the algorithm, which leads to accurate and unbiased 

parameter and standard error estimates.  

 

Pharmacokinetic and pharmacodynamic (PKPD) models are becoming more widely used 

as decision support tools in drug development, particularly towards the goal of 

individualized therapy. Therefore, having both an appropriate model as well as precisely 

and accurately estimated parameters, is critical for the forward looking utility of these 

models. Correct approximation of the likelihood integral plays an important role, as it 

allows for both, unbiased parameter estimation, but also for performing a reliable 

likelihood ratio test in the model building procedure. It is well known that employing 

different types of model linearization leads to poor properties of the likelihood ratio 

test, which is widely used as a tool for model discrimination (18). Having a reliable 

likelihood ratio test is important for utilizing other techniques in the model building 

procedure, such as log-likelihood profiling used for assessment of parameter 

uncertainty. 
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 The importance of unbiased parameters has been discussed previously (9, 14) ; 

however the importance of unbiased standard error estimates has seldom been the 

topic of discussion. Unbiased SE estimates are an important aspect of prospective 

simulations and exploration of competing study design scenarios. The SAEM algorithm 

appeared to satisfy the goal toward required precision and unbiased estimates of 

parameter uncertainty.   

 

The results of the part I showed that when employing Gaussian quadrature method with 

nine quadrature points, precision and accuracy appeared to be good.  However, the 

consequences of the implementation of this method results in a lower convergence rate 

(ranging from 77% - 100%) and increased runtimes (up to 1h) All these potential 

limitations are circumvented with the new SAEM algorithm. All studied models (100%) 

converged successfully, for both parameter estimation and standard error estimation. 

This is a convenient property and strength of the algorithm, as it almost always 

guarantees the user with successful runs and usable results. With respect to CPU 

runtime, the SAEM algorithm appeared to be fast. The longest time for parameter 

estimation was still in range of seconds (93s, when ran on laptop DELL D830 2.4 GHz)), 

implying that, for example for estimation of parameters of the negative binomial model, 

it performs 90 times faster than Gaussian quadrature method.  The runtime can be 

improved even further by compiling SAEM via in C++ instead of  MATLAB. The SAEM 

algorithm, which forms the core of MONOLIX is a freeware available at 

http://www.monolix.org and is based on the evaluated and documented thorough 
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statistical theory and it is an ongoing project implementing new statistical developments 

in a dynamic environment (12, 19). The new version of Monolix program will include the 

extension of the algorithm for the analysis of count and ordered categorical data.
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In conclusion, the SAEM algorithm was extended for analysis of count data. It provides 

accurate estimates of both, parameters and standard errors with convergence rate of 

100%.  The estimation is significantly faster compared to other algorithms. The 

algorithm will be implemented in Monolix 3.1. 
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Tables:  
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Table 1. Summary of relative bias (RB) for parameter estimates and absolute estimation 

error (AEE) for standard error estimates for all parameters and all models.  

 

 

Poisson model 

 λ Ω(λ) 

RB (parameter) (%) -0.6 0.75 

AEE (standard error) (%) -0.37 -0.13 

Poisson model with Markov element 

 λ1 λ2 Ω(λ1) Ω(λ2) Cov(λ1- λ2) 

RB (parameter) (%) -0.41 -0.07 -2.39 -4.13 -1.36 

AEE (standard error) (%) -0.13 0.17 -1.33 -0.93 -0.33 

Poisson model with mixtures in individual observations 

 λ1 λ2 MP Ω(λ1) 

RB (parameter) (%) -0.4 0.54 -0.05 -0.13 

AEE (standard error) (%) -0.47 -1.70 -0.55 -0.61 

Zero inflated Poisson model 

 λ1 P0 Ω(λ1) Ω(P0) 

RB (parameter) (%) -04.05 -0.75 -1.08 1.62 

AEE (standard error) (%) 0.14 -0.74 -0.64 -0.59 

Generalized Poisson model 

 λ1 δ Ω(λ1) Ω(δ) 

RB (parameter) (%) -0.19 -0.21 -1.03 1.26 

AEE (standard error) (%) 0.02 -0.79 -0.41 -1.61 

Negative binomial model 

 λ1 Ovdp Ω(λ1) Ω(Ovdp) 

RB (parameter) (%) -0.02 -0.92 -1.42 2.38 

AEE (standard error) (%) -0.01 -1.36 -0.79 -0.33 
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Table 2. Summary of RMSE for parameter estimates and standard error estimates for all 

parameters and all models.  

 

 

Poisson model 

 λ Ω(λ) 

RMSE(parameter) 5.23 8.56 

RMSE (standard error) 0.26 0.66 

Poisson model with Markov element 

 λ1 λ2 Ω(λ1) Ω(λ2) Cov(λ1- λ2) 

RMSE(parameter) 4.23 3.91 7.60 8.68 7.91 

RMSE (standard error) 0.23 0.20 0.46 0.52 0.64 

Poisson model with mixtures in individual observations 

 λ1 λ2 MP Ω(λ1) 

RMSE(parameter) 4.97 2.47 0.79 7.14 

RMSE (standard error) 0.24 0.05 0.02 0.47 

Zero inflated Poisson model 

 λ1 P0 Ω(λ1) Ω(P0) 

RMSE(parameter) 4.35 7.85 8.07 10.81 

RMSE (standard error) 0.23 0.36 0.62 1.22 

Generalized Poisson model 

 λ1 δ Ω(λ1) Ω(δ) 

RMSE(parameter) 3.98 8.05 6.87 13.13 

RMSE (standard error) 0.20 0.36 0.44 1.54 

Negative binomial model 

 λ1 Ovdp Ω(λ1) Ω(Ovdp) 
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RMSE(parameter) 4.24 12.34 7.29 11.28 

RMSE (standard error) 0.22 1.00 0.47 1.43 

 

 

 

Table 3. Overview of the CPU runtimes for different models with different algorithms  

 

 

Model SAS GQ 

(1 point) 

SAS GQ 

(9 points) 

SAEM 

(Matlab) 

SAEM 

(C++) 

PS 0.04s NA 18s 

+ 19s (s.e.) 

13s 

+ 13s (s.e.) 

PMAK   58s 

+ 39s (s.e.) 

30s 

+ 20s (s.e.) 

PMIX   95s 

+ 56s (s.e.) 

112s 

+ 63s (s.e.) 

ZIP 60s 12min 51s 32s 

+ 31s (s.e.) 

20s 

+ 19s (s.e.) 

GP 59s 13min 37s 30s 

+ 29s (s.e.) 

24s 

+ 21s (s.e.) 

NB 4min 27s 60min 52s 

+ 30s (s.e.) 

27s 

+ 25s (s.e.) 
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Table 4. Numerical predictive check shown as empirical cumulative distribution function 

when the true and two misspecified zero-inflated Poisson models were used for 

simulations. 

 Empirical cumulative distribution function 

Expected 10 25 50 75 90 

Variance = 1*the true 9.3 25.2 51.7 75.7 90.5 

Variance = 1.5*the true 7.7 23 51 78.1 94.1 

Variance = 2*the true 16.6 37 67.6 88 97.4 
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Figure legends: 

Figure 1: 

Distribution of relative estimation error (REE) for all parameters (left panel) and 

standard errors (right panel) across all the models.  The errors (y axes) are given as 

percentages (%). (Abbreviations: PS = Poisson, PMAK = Poisson with Markovian 

Features, PMIX = Poisson with a mixture distribution for individual observations, ZIP = 

Zero-inflated Poisson, GP = Generalized Poisson, and NB = Negative binomial model) 

 

Figure 2.  

Visual predictive check of variance versus mean on normal (upper panel) and log (lower 

panel) scale. Observed data are given as scatter points, while prediction intervals are 

represented as red lines. VPC is shown for the true (left panel) and for a mis-specified 

zero-inflated Poisson models, when variance used for simulations is equal to 1.5 the true 

variance (right panel).  

 

Figure 3.  

Comparison of NPDEs and normal distribution with zero mean and variance of one, 

represented as histogram (upper panel) and q-q plot (lower panel). NPDEs are shown for 

the true (left panel) and for a mis-specified zero-inflated Poisson models, when variance 

used for simulations is equal to 1.5 times the true variance (right panel).  
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Figure 1.   
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Figure 2 
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Figure 3 

 

 

 


