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ABSTRACT 

 

 Holoprosencephaly (HPE), the most common developmental defect of the 

forebrain and midface, is caused by a failure of midline cleavage early in gestation. 

Isolated HPE, which is highly genetically heterogeneous, can be due to major 

chromosomal abnormalities. Initially, karyotype approach led to the identification of 

several recurrent chromosomal anomalies predicting different HPE loci. 

Subsequently, several genes were isolated from these critical HPE regions, but point 

mutations and deletions in these genes were found only in 25% of the genetic cases. 

In order to identify other HPE genes, a more accurate investigation of the genome in 

HPE patients was necessary. To date, high-resolution cytogenetic techniques such 

as subtelomeric multiplex ligation-dependent probe amplification (MLPA) and 

microarray-based comparative genomic hybridization (array CGH) have enhanced 

chromosomal aberration analysis. 

In this article, we have updated the cytogenetic anomalies associated with HPE 

in a map listing all the subtelomeric and interstitial deletions that have been 

characterized either by karyotype, MLPA or array CGH. The accumulation of 

recurrent genomic imbalances will lead to the further delineation of minimal critical 

HPE loci, which is the first step to the identification of new HPE genes. 

 

KEY WORDS: holoprosencephaly, HPE, array CGH, MLPA, candidate loci molecular 

diagnosis. 
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INTRODUCTION 

 

The etiology of holoprosencephaly (HPE) is heterogeneous and complex, as 

this developmental disorder can be due to environmental factors, chromosomal 

aberrations, or genetic anomalies. In this chapter, we focus on the chromosomal 

aberrations that have been seen in HPE patients. 

 

Chromosome analysis constitutes an excellent approach to identifying the cause 

of genetic syndromes, particularly for central nervous system (CNS) malformations 

[Shaffer and others 2007]. The first cytogenetic anomalies reported in HPE were 

trisomy 13, trisomy 18, and triploidies [Norman 1995; Roessler and Muenke 1998]. 

Subsequently, advances in cytogenetic techniques such as chromosome banding 

allowed for higher resolution and for the description of chromosomal anomalies in a 

collection of patients with HPE. Estimates of the prevalence of karyotype anomalies 

in live births range from 24% to 45% [Bullen and others 2001; Croen and others 

1996; Olsen and others 1997]. Numerous isolated HPE case reports show that most 

of the chromosomes have been implicated, emphasizing the genetic heterogeneity of 

HPE [Norman 1995; Roessler and Muenke 1998]. 

Despite this heterogeneity, extensive studies on patients with brain 

malformations and autosomal deletions demonstrate that four main regions are 

associated with HPE [Brewer and others 1998; Tyshchenko and others 2008]. 

Molecular studies of these four recurrent chromosomal regions have resulted in the 

definition of a minimal critical region and ultimately in the identification of HPE-

specific genes. The implication of these regions in HPE was confirmed by the 

discovery of specific point mutations or deletions in the following genes: Sonic 
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Hedgehog, SHH (7q36) (HPE3) [Belloni and others 1996; Dubourg and others 2004; 

Roessler and others 1996], ZIC2 (13q32) (HPE5) [Brown and others 2001; Brown 

and others 1998], SIX3 (2p21) (HPE2) [Gripp and others 2000; Pasquier and others 

2000; Wallis and others 1999], and TGIF (18p11.3) (HPE4) [Aguilella and others 

2003; Gripp and others 2000].  

These genes have since constituted the four major genes implicated in the 

susceptibility to HPE, but have only been found to explain 25% of the genetic cases, 

including deletions and microdeletions [Dubourg and others 2007]. This suggests the 

involvement of other genes, a hypothesis later confirmed by the identification of 

numerous additional genes: GLI2 (HPE9) [Rahimov and others 2006] [Roessler and 

others 2003], PATCHED-1 (HPE7) [Ming and others 2002; Roessler and others 

2003], DISP1 [Roessler and others 2009a; Roessler and others 2009b], FOXH1 

[Roessler and others 2008], NODAL [Roessler and others 2009c], and TDGF1 [de la 

Cruz and others 2002] (Figure 1). However, mutations or deletions in these genes 

occur infrequently and are generally associated with HPE microforms. In fact, 

dysfunction of only one of these genes appears to be not sufficient to cause severe 

features of typical HPE. Consequently, these genes are thought to have a minor 

overall effect (present review). Considering this multigenic aspect of the disease, 

investigation of HPE loci and identification of new HPE genes need to continue. 

Originally, the altered chromosomal regions described previously overlapped 

with one or several G bands and were generally too large to allow for the 

identification of single candidate genes. Use of molecular screening techniques such 

as subtelomeric multiplex ligation-dependent probe amplification (MLPA) or 

microarray-based comparative genomic hybridization (array CGH) has enhanced 

chromosomal aberration analysis. In the last five years, these techniques have been 
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used to delineate critical genomic regions, and their high resolution capabilities have 

accelerated the identification of novel chromosomal abnormalities. In this article, we 

summarize the new deleted loci identified by these newer cytogenetic methods and 

refine the HPE locus map. 

 

THE STATE OF THE KARYOTYPE APPROACH 

 

Previous analysis of recurrent chromosomal deletions detected by karyotype led 

to the identification of 12 HPE candidate loci [Norman 1995; Roessler and Muenke 

1998]. Subsequently, several genes were isolated from these critical HPE regions, 

leading to a new nomenclature. The HPE loci previously identified as HPE2, 3, 4, 5, 7 

and 9 (OMIM) are now named by their corresponding genes: SIX3, SHH, TGIF, ZIC2, 

PTCH1 and GLI2, respectively. In addition, there are three recurrent HPE regions 

that are also considered most likely to be candidate HPE loci, although no specific 

genes have been identified. These regions have been listed by OMIM as HPE1 

(21q22), HPE6 (2q37) and HPE8 (14q13). 

In this paper, we have designed a new chromosomal map for HPE to account 

for these recent changes (Figure 1). This map schematizes the validated HPE gene 

positions and the cytogenetically abnormal regions for which no specific candidate 

genes have been identified to date.  

This map also represents isolated karyotype abnormalities in 1pter, 3q, and 

5pter that may also contain potential candidate genes for HPE [Campeau and others 

2008; Schroeder and others 1986; Simovich and others 2008]. It is necessary to 

exhaustively record all the chromosomal rearrangements that could be validated by 

further studies; nonetheless, only deletions are reported here in the interest of clarity. 
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IDENTIFICATION OF SUBTELOMERIC GENOMIC IMBALANCES BY MULTIPLEX 

LIGATION-DEPENDENT PROBE AMPLIFICATION (MLPA) 

 

Bendavid et al. demonstrated that testing for microdeletions is a useful 

approach in the evaluation of HPE patients as this method increased the diagnosis 

efficiency from 18% to 25% of this cohort. However, since these studies were based 

on FISH, real time quantitative PCR (qPCR) and quantitative multiplex PCR of short 

fluorescent fragments, these pilot evaluations were restricted the to known HPE 

genes [Bendavid and others 2006a; Bendavid and others 2006b]. 

Of note, two of the microdeleted genes were subtelomeric (TGIF and SHH), 

constituting some of the previously described HPE loci [Roessler and Muenke 1998]. 

Such subtelomeric rearrangements were successfully identified in several studies on 

mental retardation using a PCR based method named multiplex ligation-dependent 

probe amplification (MLPA) [Koolen and others 2006; Northrop and others 2005]. 

These studies led to the conclusion that submicroscopic rearrangements in the 

subtelomeric regions played an important role in the etiology of congenital defects 

[Rauch and others 2006] [Ledbetter and Martin 2007]. 

Therefore, using the same method, subtelomeric screening of HPE patient 

samples was performed to identify new rearrangements in HPE patients. First, 

Bendavid et al. tested 10 HPE patients with known deletions: eight SHH deletions 

(7q36) and two TGIF deletions (18p) [Bendavid and others 2007]. They observed that 

the previously described microdeletions were not restricted to the gene itself, but 

instead encompassed several Mb from the gene to the telomere. Further qPCR 

analyses showed that the size of the 7q36 deletions was about 7 Mb in the four 



 8 

patients tested. Moreover, five of the 7q36 deletions were associated with gains on 

another telomere: two on 7p, two on 8p and one on 1p. This also resulted in the 

identification of a parental balanced translocation that could be used secondarily for 

prenatal diagnosis. 

Subsequently, a panel of 181 HPE patients without any known chromosomal 

anomaly was tested and subtelomeric aberrations were detected and confirmed in 

8/181 HPE cases (4.4%, see green bars in Figure 1). One patient had a deletion on 

21q, or the HPE1 locus, where no gene is yet firmly identified. The lanosterol 

synthase gene (LSS) was considered to be the best candidate, but its direct 

involvement in HPE was never demonstrated [Roessler and others 1999]. Also of 

note, two unrelated patients showed deletions in 1pter, a region that has been further 

implicated by karyotype analysis [Campeau and others 2008]. For the five other 

patients, a gain and/or loss of chromosomal material was detected in novel 

subtelomeric regions, not previously reported as candidate HPE loci by karyotype 

analysis (Figure 1): a 1q gain, a 5q deletion associated with a 17q gain, an 18q 

deletion associated with an Xq gain, a 15 subcentromeric gain, and a 20p gain with a 

22q deletion [Bendavid and others 2007]. 

The subtelomeric MLPA technique has proven to be a good approach to detect 

new chromosomal aberrations in HPE patients and confirms that submicroscopic 

rearrangements were implicated in this disorder. Thus, genome-wide screening for 

submicroscopic anomalies were needed to test for the presence of rearrangements in 

the whole genome. 
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IDENTIFICATION OF SUBMICROSCOPIC REARRANGEMENTS BY 

MICROARRAY-BASED COMPARATIVE GENOMIC HYBRIDIZATION (ARRAY 

CGH) 

 

Novel genomic technologies such as microarray-based comparative genomic 

hybridization (array CGH) allow for the mapping of genomic copy number alterations 

at submicroscopic levels. The resolution of these arrays has progressively increased 

from 1 Mb, using BAC arrays, to approximately 8 kb, when using high density 

oligonucleotide arrays. Notably, studies on large cohorts of patients with mental 

retardation and associated facial dysmorphisms were performed using array CGH 

and have delineated the major HPE loci in accordance with the previous karyotype 

results [Shaffer and others 2007]. Therefore, this technology has been applied to a 

cohort of HPE patients and to case reports. 

In this way, a group of 111 HPE patients (64 fetuses and 47 live-born children) 

with normal karyotype was analyzed using high performance Agilent oligonucleotide 

arrays [Bendavid and others 2009]. Among these patients, all fetuses had 

characteristic HPE phenotypes (CNS findings consistent with HPE) whereas of the 

47 live-born cases, 32 (68%) had microforms of HPE and 15 (32%) had a severe 

form. Chromosomal imbalances not described in the CNV databases were detected 

in 28 patients (17 fetuses, 11 children) (25%), out of which 19 had de novo 

anomalies (17% of the whole cohort). In total, of these 19 patients with de novo gains 

or losses, 13 presented isolated deletions, only four showed isolated duplications, 

and two demonstrated associated gains and losses. Considering that the clinical 

impact of duplications is more difficult to establish and that gene duplications are less 
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deleterious than deletions in HPE cases [Bendavid and others 2009], we will only 

discuss here the potential implications of the genome losses. 

Deletions were found in the 21qter and 14q loci, which are previously annotated 

in the literature [Kamnasaran and others 2005; Roessler and others 1999], 

reinforcing their potential involvement in HPE. Several new candidate loci not 

suspected to be involved in the disease at that time were also identified: some were 

interstitial deletions in 1p, 6q, 10p, 16p, 18q, 20p, 21q and Xp; others were 

subtelomeric deletions in 19pter and 6qter (Figure 1). The size of these imbalances 

ranged from 50 kb to 17 Mb without an obvious correlation with the severity of the 

phenotype [Bendavid and others 2009]. 

Although most of these deletions were not redundant, two of them – one in 6qter 

and one in 10p – were observed in more than one HPE case. Notably, the two 

overlapping deletions in 6qter mapped a new region, but their large size makes the 

identification of new candidate genes difficult. In fact, the smallest deletion contains 

at least 35 genes or putative open reading frames. More significantly, the small (0.1 

Mb) deletions observed in 10p12.1 were detected in four HPE patients and contained 

PATCHED3. This gene belongs to the SHH receptor family and thus represents an 

excellent candidate. Nevertheless, no point mutation has been found in a cohort of 

100 HPE patients (data not published, CD). Also notably, five of the non-redundant 

deletions are small in size. For instance, the 19pter locus is about 0.4 Mb in size and 

contains only six genes; unfortunately, none of them is known to be implicated in 

brain development. 

Other deletions included a hemizygous deletion of about 10.4 Mb in size that 

was detected on another 6q band (6q22-6q23) in an isolated case of middle 

interhemispheric variant (MIHV) HPE [Abe and others 2009]. In this large area 
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comprising many genes, the authors have considered EYA4 as a new HPE candidate 

gene based on its expression during forebrain development and on its protein 

interaction with SIX3 [Abe and others 2009]. Nevertheless, only the identification of 

point mutations or microdeletions in HPE patients will definitively validate the 

participation of EYA4 in HPE. 

 

THE IMPACT OF ARRAY CGH IN HOLOPROSENCEPHALY RESEARCH  

 

The array CGH study conducted on the HPE cohort clearly demonstrates that 

microcytogenetic abnormalities are a frequent cause of HPE with 17% of de novo 

anomalies. In addition, this high frequency, regardless of the size, location, and 

redundancy of the rearrangements, demonstrates that array CGH is an important tool 

to detect submicroscopic molecular defects in HPE patients. 

Nevertheless, the interpretation of the non-recurrent rearrangements should be 

cautious and their clinical relevance should take into account several parameters. 

First, the presence of potential copy number polymorphisms (CNP), which account 

for over 20% of the human genome, should be ruled out by comparison with the 

Database of Genomic Variants (http://projects.tcag.ca/variation/), which compiles 

most known CNPs. Second, it is crucial to test for the presence of chromosomal 

anomalies in the parents, as it can be postulated that only anomalies that are not 

associated with a mutation and that arise de novo in the proband are relevant. 

Alternatively, considering that HPE is a multigenic disease with variable expressivity, 

inherited genetic anomalies can contribute to an HPE genetic background and thus 

these inherited deletions should also be recorded (Figure 1, light blue). Finally, due to 

positional effects, genes localized outside but close to a rearrangement should not be 

http://projects.tcag.ca/variations
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discarded but instead be considered as candidate genes. Indeed, it was recently 

shown that not only hemizygous genes but also normal-copy neighboring genes can 

show decreased levels of expression [Merla and others 2006]. Therefore, genes 

flanking a genomic rearrangement should be considered as possible contributors to 

the phenotype. In addition, the interpretation of these observations is not obvious, as 

most of the chromosomal aberrations are large. One strategy would be to use 

software dedicated to the prioritization of candidate genes [Aerts and others 2006] 

[Tranchevent and others 2008], followed by functional analysis using animal models 

and research of mutations in these genes. 

Beyond these technical pitfalls, array CGH has been shown to be a powerful 

tool that significantly helped in the identification of genes involved in various 

pathologic conditions. The first instance was the identification of the gene responsible 

for CHARGE syndrome, following the localization of a deletion at an 8q breakpoint in 

an apparently balanced translocation [Vissers and others 2004]. A more recent 

example is a collaborative work leading to the identification of a new gene (MEF2C) 

involved in a specific form of mental retardation. In this case, array CGH led to the 

characterization of a minimal common deleted region in 5q14 in five patients, 

encompassing the gene MEF2C. Afterward, the identification of a MEF2C nonsense 

mutation in another patient supported its pathologic role [Le Meur and others 2009]. 

In HPE, the same strategy may lead to a better delineation of minimal critical 

regions in large recurrent chromosomal deletions that presently do not contain 

obvious candidate genes or where the major gene implicated to date is controversial. 

As an example, the 18p deletions are overrepresented among HPE chromosomal 

aberrations [Overhauser and others 1995], whereas a low rate of TGIF mutations 

(less than 1%) is observed in HPE patients [Dubourg and others 2004]. This would 
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suggest that this subtelomeric region should be investigated in detail in order to 

search for other HPE genes. In fact, in the context of a multigenic disease, the 

implication of several genes in the onset of HPE has to be strongly kept in mind. 

Ultimately, using array CGH routinely will enrich the present map (Figure 1) and 

the catalog of redundant deleted regions will lead to the further delineation of HPE 

candidate loci, which is the first step to the identification of new HPE genes. 

 

SUMMARY 

 

Here, we have updated the cytogenetic anomalies associated with HPE in a 

map listing all the subtelomeric and interstitial deletions that have been characterized 

either by karyotype, MLPA or array CGH. Considering the high rate of such 

anomalies observed in HPE, this technique must be integrated in the molecular 

diagnosis algorithm. The observation of cytogenetic anomalies in patients can lead to 

the detection of parental balanced translocations, and can subsequently enhance 

prenatal diagnosis in such families. 

This type of compilation must be systematically updated in the next years and 

will constitute a reference database either for the scientific community or for clinicians 

who will consult it for diagnostic assistance. 
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Figure 1:  Diagrammatic representation of the localization of HPE deletions and 

HPE genes on G banded chromosomes. 

Kaki bars on the left side represent deletions detected by routine karyotype. 

Green bars on the right side represent rearrangements identified by subtelomeric 

multiplex ligation-dependent probe amplification (MLPA), with dotted lines where the 

deletion is not bordered. [Bendavid and others 2007]. Blue bars on the right side 

represent submicroscopic deletions identified by microarray-based comparative 

genomic hybridization (array CGH): dark blue denotes de novo deletions, while light 

blue shows inherited deletions [Abe and others 2009; Bendavid and others 2009]. To 

demonstrate an exhaustive repertory of the genetics of HPE we have positioned the 

major (red) and minor (orange) HPE genes: CHR 1 [Campeau and others 2008; 

Roessler and others 2009b], CHR 2 [Lehman and others 2001; Pasquier and others 

2000; Rahimov and others 2006], CHR 3 [de la Cruz and others 2002; Lawson-Yuen 

and others 2006; Simovich and others 2008], CHR 5 [Schroeder and others 1986], 

CHR 7 [Belloni and others 1996], CHR 8 [Roessler and others 2008], CHR 9 

[Roessler and others 2003], CHR 10 [Roessler and others 2009c], CHR 13 [Brown 

and others 1998], CHR 14 - HPE8 [Kamnasaran and others 2005], CHR 18 [Gripp 

and others 2000], and CHR 21 - HPE1 [Roessler and others 1999]. 

 


