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Abstract

The use of quantitative imaging for the characterization of hepatic tumors in MRI can improve the diagnosis and therefore the

treatment of these life-threatening tumors. However, image parameters remain difficult to interpret because they result from a

mixture of complex processes related to pathophysiology and to acquisition. These processes occur at variable spatial and temporal

scales. We propose a multiscale model of liver Dynamic Contrast-Enhanced (DCE) MRI in order to better understand the tumor

complexity in images. Our design couples a model of the organ (tissue and vasculature) with a model of the image acquisition. At the

macroscopic scale, vascular trees take a prominent place. Regarding the formation of MRI images, we propose a distributed model of

parenchymal biodistribution of extracellular contrast agents. Model parameters can be adapted to simulate the tumor development.

The sensitivity of the multiscale model of liver DCE-MRI was studied through observations of the influence of two physiological

parameters involved in carcinogenesis (arterial flow and capillary permeability) on its outputs (MRI images at arterial and portal

phases). Finally, images were simulated for a set of parameters corresponding to the five stages of hepatocarcinogenesis (from

regenerative nodules to poorly differentiated HepatoCellular Carcinoma).

Author Keywords Computational modeling ; Liver ; Blood ; MRI simulation ; Magnetic resonance imaging ; Mathematical model ; Portals ; Tumors ; complex system ; 

image analysis ; liver tumors

Introduction

Combining image analysis and computational modeling is one of the possible means to understand complex living systems . The[1 ]
liver, and its pathological modifications, such as tumors, is a system with very complex dynamics, especially related to its original double

vascular supply. Understanding the anatomical (structural) and functional processes underlying the observations, whatever the modality, is

a necessary step to a better characterization of lesions and consequently to propose the best therapy to the patient. The definition of a

model is always done taking into account the way it will be used. In this study, we propose a model-based image analysis approach whose

objective is to give a physiological sense to parameters extracted from Dynamic Contrast Enhanced Magnetic Resonance Imaging

(DCE-MRI) of the liver. These features result from many interacting components associated to organ characteristics (tissue,

vascularization) and to image formation parameters (contrast agent, sequence). We focused on the liver and its most widespread malignant

tumor, which is the HepatoCellular Carcinoma (HCC). Worldwilde, it is one of the most common malignant primitive tumors; its

incidence has been regularly increasing over the past years without slowing down ,  and the prognosis is generally bad. Several kinds[2 ] [3 ]
of therapy, including resection, radiofrequency ablation, chemotherapy, and antiangiogenic molecules, can be proposed to patients.

Regardless of the therapeutic solution, the treatment will be better if the tumor detection and characterization are realized during the first

stages of its development, when the tumor size is less than 2 or 3 cm, and when the hepatic function is still correct. MRI is a non invasive

and very safe observation method, particularly well adapted to evaluate hepatic lesions because it provides a good lesion to liver contrast [4
. The use of contrast agents, and especially those based on gadolinium, provides an estimation of the tumor hypervascularization, and]

perfusion modifications, which are the main markers of the tumoral growth and malignancy. Rapid acquisition MRI sequences allow us to

follow the enhancement just after injection and then to show the differences of biodistribution of the contrast medium between normal and

tumoral tissues. However, the correct interpretation of MR images of HCC, and consequently the resulting diagnosis, requires a good

comprehension of the physiological phenomena involved in the contrast agent distribution, and of the physical processes related to the

image formation. DCE-MRI, based on sequences of MR images acquired after contrast agent injection, is used in clinical practice to assess

liver tumor malignancy. Classical pharmacokinetic models are usually fitted to perfusion curves extracted from DCE-MRI, in order to

determine physiological markers such as and , two constants that are used to classify tumors. The contribution of such analysis toKep Ktrans 

the diagnosis and classification of liver lesions has been proven  and is not discussed here. However, as far as the comprehension of[5 ]
physiological phenomena is concerned, DCE-MRI is somewhat limited regarding the amount and variety of the available data. Since the

technique is based on real data, it is impossible to control every step that leads to the observation (image contrast) from the modifications

occuring in the organ, to the image formation. Physiological modeling represents a non invasive way to control parameters that would be

difficult or even impossible to access with real experiments. In this aim, we propose the framework presented in , where theFig. 1 
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coupling between a model of the tumoral liver and a model of dynamic MRI is presented. This multiscale model of liver DCE-MRI

provides data we already have a precise knowledge on, in order to relate physiological phenomena to simulated observations. The general

aim here is not to replace DCE-MRI but to provide understanding of the mechanisms of production of the DCE-MRI signal, based on a

detailed model of contrast agent transport in the liver. Two main steps can be distinguished in this model-based approach: thei) 

macroscopic model of the liver, including tissue and vessels, where the structure and the geometry of the vascular network are simulated in

normal and tumoral cases (see section A), and the dynamic image formation model including transport of the contrast agent andii) 

microscopic characteristics related to this transport at the capillary level (see section B). Only a brief presentation of the macroscopic

model is given in the next section, compared to the more detailed description of the dynamic image formation model. Indeed, the most

important and original part of the work presented here concerns the model of parenchymal distribution of MRI contrast agents. Detailed

explanations on the macroscopic model and some of its applications can be found in our previous studies (   ). Results are presented[6 ] – [9 ]
in the last section: a sensitivity analysis of the model for two main physiological parameters (blood flow and permeability), and an MRI

simulation of HCC in different pathophysiological conditions describing the main steps of carcinogenesis from normal liver to poorly

differenciated HCC (HCCp) ( ).Fig. 2 

Model based approach
Model of the hepatic tumor growth

In their very recent paper , Lloyd present a generic framework for modeling tumor growth and emphasize that two main[10 ] et al. 

components, which are tissue and vascularization, have to be integrated in the model. We already proposed a very comparable framework

in 1999 . However, when considering an organ such as the liver, this kind of generic approach must be specified because of the very[6 ]
particular irrigation of this organ and its tumors (double blood supply by the hepatic artery and the portal vein) and especially if this model

is used to simulate dynamic images. This section deals with the macroscopic part of the hepatic computational model. The modeled liver

consists of two main components: the tissue (which corresponds to the parenchyma) and the vascular network. The tissue modeling is first

explained, taking into account the liver growth, and the possible differences in tissular characteristics. Then, in the vascular model, the

structure and geometry of the three hepatic vascular trees (hepatic artery, portal vein and hepatic vein) are precisely considered, as they are

essential elements that appear clearly in images and also constitute the pipes that transport blood and contrast agent molecules toward

capillaries (place of exchanges between blood and tissue).

Tissue modeling

The tissue is represented by a set of Macroscopic Functional Units (MFU) evenly (but randomly) distributed inside the tridimensional

organ shape. Each MFU is a small, fixed size part of the tissue. It is characterized by its spatial, relative position inside the shape, and by

its class, which determines most of functional/structural properties (rhythm of mitosis/necrosis), and physiological features (e.g. blood

flow rate). Several classes of MFUs can be defined to differentiate functional (or pathological) regions of tissue (normal/tumoral).

Furthermore, the MFU class can be modified over time, simulating the possible evolution of a disease (e.g. tumor). Certain parameters

(such as blood flow rate) of a class are described by their distribution, and are randomly chosen for each new MFU; (e.g. This is the case

for the terminal blood flow whose natural variability is modeled in such a way).

Vascular network modeling

A literature review on vascular models is given in  and in . Some of them are generic, and others have been specifically[6 ] [11 ]
developed for a particular organ (such as the heart in ,  or the kidney in ). The tissue is supplied by a vascular network,[12 ] [13 ] [7 ]
composed of three trees, with blood going from the arterial and portal trees to the venous one, through the MFUs. A vessel segment (part

of vessel between two consecutive bifurcations) is represented by an ideal, rigid tube with fixed radius, wall thickness and position. In the

model, all vessels except the capillaries are distinguishable. On the contrary, the geometry of capillaries is not considered, as these smallest

vessels are hidden  in the MFU (see .B.1.). Based on morphometrical investigation dealing with bigger vessels (e.g. conducted by Zamir“ ” §
and Chee ), it is assumed that a single vascular structure has a form of a binary tree. Blood is considered as a Newtonian fluid, with[14 ]
constant viscosity, and its flow is governed by Poiseuille s law (which relates the pressure difference between two extremities of a vessel’
with the blood flow rate, length and radius of that vessel). At each bifurcation the law of matter preservation is in effect (the quantity of

blood, which enters a bifurcation by a vessel, leaves it through its two descendant vessels). Another constraint deals with the decreasing

vessel radii in the vascular tree, creating a relationship between the radius of a vessel and radii of its two descendants. Assuming that

positions of all vessels are fixed, the vascular trees  consistency is assured. A vascular tree is consistent if: it has the same blood pressure’ i) 

and fixed blood flow in all terminal vessels attached to MFUs, the Poiseuille s law in each vessel, matter preservation and bifurcationii) ’
laws in each bifurcation are fulfilled. A computationally effective method for the consistency assurance in the vascular tree is described in 

. Newly appeared MFUs are initially not perfused by the existing vascular network. The closest vessels (in each tree) sprout towards it.[15 ]
A new bifurcation is created, and its geometry is controlled by local minimization of additional blood volume needed for the MFU

perfusion. In order to find out the optimal configuration, each candidate vessel temporarily creates a bifurcation perfusing the MFU and

the configuration volume is calculated. Additionally, the problem of avoiding possible collisions between perfusing vessels is taken into
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account. It concerns both intersections of vessels coming from the same tree or from two trees. Finally, the configuration of new

bifurcations from all the trees with the lowest sum of volumes is chosen to permanently perfuse the MFU. The next step is devoted to a

recalculation of vessels  characteristics (i.e. blood flow, pressures and radii) in the whole tree to fulfill all constraints (i.e. physical and’
physiological laws). The fast-updating method used to accelerate this time consuming operation is presented in . The development of a[15 ]
pathological process (e.g. tumor) is obtained by means of the conversion mechanism: a conversion represents the period when the current

class of MFU inside a chosen region (e.g. sphere) can be changed (with the given probability) to another class. The sequence enables to

model various stages of pathology development, when macro-cells characteristics evolve gradually.

Some illustration of simulated vascular models can be seen on , where the vascular network of a normal liver is represented.Fig. 3 

Model of dynamic MRI

Parenchymal biodistribution of MRI contrast agents

The simulation of the propagation of an MRI contrast agent in the liver parenchyma involves a precise mathematical description of its

distribution in every sub-unit of the tissue. As far as gadolinium-based extracellular contrast agents are concerned, the main components to

deal with are the plasma region and its surrounding interstitial space between capillaries and hepatic cells , called the space of Disse. In– –
this aim, a first compartmental Physiologically Based PharmacoKinetic (PBPK) model has been developed and is described in . This[16 ]
five-compartments model considers the terminal branches of the vascular trees (hepatic arteriole, portal venule and hepatic venule) as full

compartments, which communicate with the space of Disse. However, since changes in the permeability of these normally“ ”
non-exchanging micro-vessels, are not well defined today, especially in the context of hepatocarcinogenesis, these micro-vessels are

assumed impermeable in the present study. As a matter of fact, they only constitute the double arterio-portal input and the hepatic output

of the microscopic model. The capillary network (sinusoids) is consequently the only media where exchanges occur, through its

fenestrated endothelium ( ).Fig. 4 

These transcapillary exchanges, occuring through the pores and fenestrations of the endothelial cells, are described by a pore model.

From physico-chemical parameters related to the targeted molecule (radius and molecular diffusion ), and physical parameters relatedr D 

to the capillary membrane (pore radius and density ), this model enables the computation of transport parameters, such as hydraulicrk dk 

conductivity ( ), permeability ( ), and reflection coefficient ( ). Three types of ideally cylindrical pores, , are considered:Lk 1 Pk 2 σk 3 k 

small pores , large pores and fenestrations .sp lp f 

Where defines the capillary surface area, whereas the surface area of exchange, , is obtained from the size and density of the poreSp Ak 

and from . is the perfusate viscosity. and are two decreasing hydrodynamic functions defined by Curry  and recentlyk Sp  η F G [17 ]

modified by Bassingthwaighte . These functions depend on the molecule/pore radii ratio (  / ). The solute partition coefficient[18 ]  α αk = r rk 

is defined by  (1  ) . φ = −  α 2 

Transmembranar exchanges are described by Kedem-Katchalsky equations , , which traduce fluid ( ), and solute ( )[19 ] [20 ]
exchanges for each type of pathway . Both mechanisms (solute and solvant) can be coupled, especially in the case of transport throughk 

pores and fenestrations. Fluid movement, based on filtration through the vessel wall, is governed by Starling s hypothesis, and depends on’
hydrostatic ( ) and osmotic ( ) pressure gradients through the membrane ( ).p Π 4 

Where indexes and stand for the plasma and the space of Disse, respectively. Transport of molecules through the pores of thep d 

capillary wall, is described by ( ), derived from Patlak s equation  and which accounts for concentration gradient through the wall.5 ’ [21 ]
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Where the P clet number, , is a dimensionless number measuring the ratio of transport by convection to transport by diffusion. Theé Pe 

total fluid and solute fluxes, respectively and through the sinusoidal membrane, are thus given by the sum of fluxes through each kindJv Js 

of pathway :k 

One important improvement of the present model, compared to the compartmental model presented in , relies on the axial[16 ]
distribution of its plasma and interstitial (space of Disse) regions. Such additional feature allows for concentration gradients along the

capillary length and, in this sense, gives a better representation of the real transport processes, than compartmental models where

well-stirred regions are filled instantaneously. The new model, presented in , is then comparable to BTEX units (Blood TissueFig. 4 

EXchange units), defined by Bassingthwaighte et al in , where the convection-permeation-dispersion mechanisms are described in the[22 ]
following system of partial differential equations (PDEs):

Where is the capillary length and is the concentration at the input of the plasma compartment, resulting from the dualL Cin 

arterio-portal supply ( ).9 

In addition, the model allows for variations in regions  volume, reflected in pressure variations (( ) and ( )). Such phenomena has’ 10 11 

been highlighted in the past by Goresky, with the help of the Multiple Indicator Dilution (MID) technique .[23 ]

Where defines the surface area of the volume base, and enables the conversion from the fluid volume height to a pressure. TheBase  ρ
choice for the base surface area controls changes in pressure: a small base induces high pressure variations whereas a large base reduces

the pressure influence on the flux.

Furthermore, high interstitial pressures , combined to low lymphatic pressures , may give rise to an evacuation of the interstialpd pl 

fluid (confined to the space of Disse), the lymphatic network, thus resulting in a lymphatic outflow ( ):via Fl 12 

Where is the lymphatic conductance.KL 

Mass conservation, in this system, is consequently ensured by the following system of ordinary differential equations:

Coupling the two levels, in order to obtain a multiscale model of contrast-agent propagation, necessitates the calculation of the global

concentration in each functional unit of the macroscopic model (MFU). This is done by ( ), from which an averaged concentration is15 

computed.
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MRI acquisition simulation

A 3D MRI simulator, named SIMRI and recently developed by Benoit-Cattin , was used to generate simulated images of theet al. [24 ]
liver. The simulation system is based on the Bloch equation resolution. A 3D virtual object constitutes the input of the simulator. Each

voxel is defined by three values describing the proton density PD, the spin-lattice relaxation time T and the spin-spin relaxation time T ,1 2 

associated to the corresponding tissue. After application of a MRI sequence on the input, the magnetization kernel computes a set of RF

signals, stored in the k-space. Addition of noise to the k-space, associated to its filtering before the reconstruction of the MR image using

fast Fourier transform, provides relatively realistic images. Since each voxel of the liver model may contain both types of tissue (blood and

parenchyma), the corresponding MRI parameters are computed knowing the proportion of each tissue in the voxel. The generation of new

post-injection MRI maps (PD, T and T ) is then a necessary step to simulate DCE-MRI. gives the relationship between the1 2 Equation (16) 

relaxation terms (  1/ ), characteristic of a voxel, and the associated contrast agent concentration.R 1,2 = T 1,2 

Where relaxivities, , are constants that are contrast agent dependent.r 1,2 

Simulation results and discussion
Simulation procedure

All the results presented in this paper were obtained following the same simulation procedure. After coupling both macro- and

microscopic models, a virtual tumor is generated, based on a simulated adult liver. Propagation of a Gd-DOTA contrast agent (Dotarem , ®

Guerbet, France), currently used in clinical routine, is simulated, using, as entry functions, real concentration-vs-time curves obtained from

a DCE-MRI study. The arterial input function (AIF) was measured from a ROI selected in the aorta (arteries are thin and hardly visible on

images), on a sequence of MR images acquired after an intravenous bolus injection of Gd-DOTA, with a time step of approximately 10

seconds. The time needed by the mixing blood-contrast agent to reach the main branch of the hepatic artery is neglected since the

aorta-hepatic artery pathway is straightforward compared to the aorta-portal vein pathway. In order to account for the portal delay as

accurately as possible, a second ROI was selected in a portal vein (larger than the hepatic artery). Once the agent concentration is

computed in every voxel as a function of time, post-injection T , T and PD maps are created at typical arterial and portal phases (i.e.1 2 

when the concentration of contrast agent is first higher in the hepatic artery and then later in the portal vein). Finally, these 3D maps are

used to simulate MR images via the simulator SIMRI. A typical T -weighted 3D Gradient Echo sequence is simulated at 3 Tesla1 

(repetition time ( ), 2.75ms, echo time ( ), 1.36ms, flip angle, 10 ).TR TE °

Qualitative analysis

A HCCp-like virtual tumor is first generated, based on a simulated adult liver. Results presented in correspond to imagesFig. 5.a 

simulated after applying a T -weighted 3D Gradient Echo sequence on a 4mm-slice. Corresponding real images (obtained from the same1 

acquisition parameters) are presented in . At arterial phase, the amount of contrast agent is higher in the tumor than in normalFig. 5.b 

tissue. Indeed, the arterial neovascularization, combined with an inhibition of the portal vascularization, produces an arterialization“ ”
phenomena, known as a typical symptom in hepatic tumoral development. In consequence, the global concentration of Gd-DOTA in the

tissue presents a peak that is close to the arterial one. The contrast between tumoral and normal tissues is then higher at this time, and T1 

and T values, driven by ( ), are decreased in the tumor. The T -weighted gradient echo sequence enhances the T contrast in images,2 16 1 1 

brightening tissues with lower T , thus explaining the observed contrast ( ). Later, at portal phase, Gd-DOTA concentration has1 Fig. 5 

decreased and the contrast appears hypointense compared with the normal surrounding tissue ( bottom).Fig. 5 

Sensitivity analysis

A large number of parameters controls each level of the multiscale model, thus enhancing the difficulty of its identification. However,

it is possible and relevant to evaluate its sensitivity to some particular parameters, such as those related to the development of the HCC.

For instance, inflows and capillary permeability play an important role in the evolution of the pathology from a benign regenerative nodule

to a poorly-differentiated HCC ( ). First, the influence of each parameter is separately evaluated through a sensitivity analysis. TheFig. 2 

output of the model, i.e. simulated MR images of the liver, is obtained for increasing values of arterial inflow, , and then for increasingFha 

values of the permeability-surface area product, which is referred to by the notation in the following study. In each case, enhancementPS 

concentration curves are simulated at the microscopic scale and corresponding simulated bi-phasic (arterial and portal) images are

depicted. A tumoral  region is considered, and the ratio of the mean signal in the tumor to the mean signal in the surrounding normal“ ” RS “ ”

tissue is compared to the ratio of Gd-DOTA concentration in both tissues.RC 
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Concentration-vs-time curves obtained for varying inflows , are presented on the graph of . These concentrations areFha Fig. 6 

simulated from the distributed model of contrast agent propagation, separately uncoupled from the vascular model, for the classical

gadolinium chelate (Gd-DOTA) ( ). In order to observe the influence of the arterial inflow only, the portal supply is inhibited, and the15 

parameters controlling the permeability are chosen so that the latter is high and the model is therefore not diffusion-limited. Concentration

profiles obtained for increasing arterial flow are well aligned with the established arterialization phenomena that occurs in liver tumors,

showing an enhancement peak at the so-called arterial phase. In addition, a non-linear behavior of the concentration, as a function of ,Fha 

can be observed at the portal phase, where the concentration in the liver grows as the inflow grows, to reach a maximum value above

which it decreases again. Values of the concentration in the liver, at two particular times after injection, corresponding to arterial (24

seconds) and portal (50 seconds) phases, are extracted from these curves, and the ratio / is depicted as a function of , onCtumoral Cnormal Fha 

the right graphs of , respectively. Such representation not only confirms the previous observations regarding the linearity of Fig. 7.a and b 

( ) at the arterial phase, and its non-linearity during the portal phase, it also allows expectation of some particular contrast dynamicsC Fha 

on simulated MR images. Indeed, a linear relationship exists between the contrast agent concentration and relaxation parameters ( ).16 

However, an exact quantification of the contrast enhancement is not straightforward, since the relationship between the tissue relaxations

and the effective NMR signal intensity also depends on the applied sequence and on the acquisition parameters. Nevertheless, constrast

dynamics can at least be explained by the concentration dynamics, as shown on , where the behavior of with matchesFig. 7. a and b RS Fha 

that of . These observations are illustrated by the corresponding set of simulated MR images, on which the contrast tumoral/normalRC 

tissue confirms the quantitative measurements. Furthermore, the nonlinearity of the contrast evolution with the inflow at the portal phase,

whereas it is linear at the arterial phase, suggests an easier interpretation of real images at the arterial phase, concerning the relationship

between the observation on the image and the inflow it reflects. In addition, images were simulated for three different slice thicknesses (1

mm, 4 mm and 8 mm). From the measurements presented on , it seems evident that the larger the slice, the better the contrast. ForFig. 7 

very thin slices (1 mm), it can even become relatively difficult to give a correct interpretation of the relation between the contrast and the

inflow. Since the intensity of the signal in the tumor region is higher than in the normal tissue, the SNR increases faster in this region, with

the slice thickness, which may explain the higher contrast in this cases. In addition, in thicker slices, tumor regions are more vascularized

whether normal tissue is more homogeneous whatever the slice thickness. However, the important issue here is not slice thickness per se

but SNR, which can be improved by a number of means other than changing slice thickness, including changing the in-plane resolution,

changing the receive coil, changing field strength, changing the number of averages.

In the following simulations, the relation between the contrast enhancement and the capillary permeability is studied. This time, results

are presented for only one slice thickness. Slices of 4 mm are a good compromise between the quality of the contrast and the computation

time. In addition, this is commonly used in clinical routine, as shown in qualitative observations presented in  III.B. Among the numerous§
physiological parameters that control the permeability, variations in the quantity of pores and fenestrations on the membrane of sinusoids

are directly related to the capillarization phenomena (progressive disappearance of fenestrations), which is one of the main mechanisms

involved in hepatocarcinogenesis. However, it is more common among the modeling community to deal with the permeability-surface area

product, , an upper scale parameter that generally describes solute transport through a membrane barrier. The pore model described inPS 

the first section does not allow a direct calculation of from the pores  density. As a matter of fact, an estimated value of is extractedPS ’ PS 

after fitting concentration curves, simulated for varying values of the densities of small and large pores and fenestrations, to a simple

BTEX model in which the diffusion term is replaced by (  ) in and . Simulation results showed a differentS Jp s PS Cp − Cd equations (7) (8) 

concentration-time course when setting a low input arterial flow, compared to a high one ( ). Effectively, for a low inflow,Fig. 8. a and b 

the concentration in the liver parenchyma is clearly not dependent on the capillary permeability at both arterial and portal phases and is

thus flow-limited. Consequently, almost no variation can be noticed in the signal intensity with this parameter ( ). In addition, theFig. 9 

contrast agent concentration is very close in both classes of tissue, which explains the poor contrast on corresponding simulated images at

the two phases. On the contrary, at high inflow, a linear relationship exists between the concentration and the permeability, and then

indirectly between the signal intensity and the permeability. This relationship is no longer linear at portal phase. Indeed, when capillaries

are weakly permeable, the contrast agent is mainly confined to the vascular space. Consequently, the solute is primarily driven from the

arterio-portal entrance to the hepatic venous extremity of the network, by convection and dispersion. The washout is therefore completed

much faster. When the permeability is no longer negligible, the diffusion process tends to hinder this washout. However, when it becomes

significant, i.e. above some threshold, the steady-state is rapidly reached and the model is no longer diffusion-limited.

Although the previous results show the evidence of the existence of relationships between phenomena observed on images and some

physiological parameters that are markers of the tumoral development, the kinetics of contrast enhancement remain difficult to explain.

Furthermore, in this sensitivity analysis, only one parameter was varied at a time. However, the real processes involved in the development

of a pathology and its evolution are obviously much more complex and imply the variation of a set of parameters instead of a single one.

Application to the hepatocarcinogenesis

The multi-step hepatocarcinogenesis describes the different stages of the development of a liver hypervascularized tumor, from benign

regenerative nodules (RN) to poorly-differentiated hepatocellular carcinoma (HCCp), through respectively low- and high-grade dysplastic
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nodule (DNl,h), and medium-differentiated HCC (HCCm) ( ). Parallel modifications of several physiological characteristics affectingFig. 2 

both the tissue and the vascularization are involved in the evolution of the lesion from one step to the other. For instance, we have seen

previously that arterial/portal inflows and capillary permeability may affect the observed contrast differently. Gadolinium-enhanced T1 

-weighted GRE MRI is specifically used to detect HCC because of the highly arterialized neovascularization of this lesion, compared to

DNs and RNs. However, the same sequence (same acquisition parameters as used in previous simulations) has been used here to simulate

MR images of all different grades, so that only physiological parameters are responsible for differences observed between the simulated

images.

In this section, simulation results are still given at two scales: concentration-time curves at the microscopic scale ( ), andFig. 10.a 

associated MR images at the macroscopic one ( ). This time, though, a set of parameters (arterial, , and portal, , inflows,Fig. 10.b Fha Fpv 

and permeability, reflected in the density of fenestrations ) is applied in correspondance to the five different stages ofdf 

hepatocarcinogenesis. The values are given in . Exact values for each grade of the lesion remain undefined and vary according totable I 

the study they are extracted from. However, a general behavior of portal and arterial supplies during hepatocarcinogenesis has been

established and enables us to define reasonable values . In the present study, arterial and portal flows were thus chosen taking into[25 ]
account normal inflows and relative variations described on the diagram of Figure 8 in . Similarly, the number of fenestrations is[25 ]
known to decrease progressively in capillary wall so values have been chosen relatively to known normal values .[26 ]

In term of contrast tumor/normal tissue, simulated images are coherent with common observations brought on typical post-contrast T1 

-weighted (T1W) imaging. For benign lesions such as regenerative nodules (NR) and eventually low grade dysplastic nodules (DNl),

arterial and portal inflows are close to normal ones, and sinusoids are still fully permeable, which explains the difficulty, not only in their

characterization but also in their detection since there is no arterial enhancement in Gd-DOTA-enhanced T1W images. At early stages of

the malignancy, the arterial inflow slightly diminishes, resulting in a hypointense lesion on T1W GRE MR images at arterial phase (Fig.

.DNh). On the contrary, when the nodule evolves to a carcinoma, the decrease in the portal supply is progressively compensated by an10.b 

increase in the arterial one, in a so-called neoangiogenesis process. Consequently, the tumor appears hyperintense at the arterial phase and

hypointense at the portal one ( ), when the concentration is higher in the normal tissue ( ). This enhancement isFig. 10.b Fig. 10.b 

particularly strong for highly graded carcinoma (HCCp), for which the portal supply is completely absent in the tissue.

Although the capillarization phenomena tends to reduce the contrast enhancement at the arterial phase, as shown in the last paragraph,

this enhancement is higher for the HCCp, for which, capillaries are almost impermeable. Indeed, on the graph of , we have seenFig. 8.b 

that for a high arterial inflow, the concentration is high, whatever the permeability. This example illustrates rather well the difficulty of an

interpretation from the single images, and the utility of a multiscale analysis.

Conclusion

The multiscale model of liver DCE-MRI presented in this paper has already shown good qualitative results regarding the coherence of

contrast enhancements in pathological situations, especially in the case of a HCC. Furthermore, its ability to provide a multiscale analysis

by coupling dynamic concentration curves to simulated MR images contributes to a better understanding of the physiological phenomena

involved in the hepatocarcinogenesis. In the attempt to obtain more information on tumors, it is crucial for the model to describe the

physiology and the dynamics of tissues that affect the contrast, as precisely and as realistically as possible. Here, the axially-distributed

model generates more realistic time distribution of the contrast agent in the liver parenchyma, than commonly used compartmental models,

in which each compartment is a well-stirred tank. In addition, parameters used in the current model have a direct physiological, physical or

geometrical meaning. However, an essential identification step is still to be achieved, before being able to provide a useful tool for the

characterization and, eventually, for the diagnosis of the tumor. This problem might be partially overcome by experimental studies on

animal models of HCC. In addition, a precise study of the evolution of other parameters related to the images, such as texture parameters,

which has already shown an interest in tissue characterization, is foreseen. The determination of relationships between these features and

the physiological parameters related to the model would thus help in solving the inverse problem, by representing bridges between

observations on real images and the underlying physiological phenomena they reflect. In this aim, an initialization of the vascular model

by vessel branches segmented from acquired images would allow the creation of a patient-specific model, more efficient in the

characterization of the tumor.
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Coupling of a physiological model of the liver and a model of dynamic MRI acquisition.
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Fig. 2
Main steps of the hepatocarcinogenesis. The best characterization of the tumor (benign nodule, malignant carcinoma) has to be reached in

order to propose the most efficient therapy.

Fig. 3
The hepatic vein is represented until the venule level (smallest vessels have a diameter around 30 50 micrometers). At the end of the growth–
simulation, the tree counts almost 50000 endings. Right: The three hepatic vascular trees (hepatic artery, portal vein, hepatic vein) are

connected. For visualization purposes, the smallest vessels are not represented.

Fig. 4
Axially-distributed BTEX model, describing the hepatic microvascular transport of molecules.
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Fig. 5
Comparison between simulated a) and real b) Dynamic Contrast-Enhanced MR images of the liver. Acquisition conditions: 3D Gradient Echo

sequence 3T (  1.36 ,  2.75 ,  10 ,  4 ); Contrast agent: Gd-DOTA; arterial phase. TE = ms TR = ms Flip Angle = ° Slice Thickness = mm Up: 

portal phase. Note: arrows indicate the tumor.Bottom: 

Fig. 6
Simulated Gd-DOTA concentration-vs-time curves in the liver parenchyma, for increasing values of the arterial inflow . The parallelFha 

evolution of the concentration in the normal tissue is also presented (parameters fixed according to normal conditions). In the tumoral region, 

 0 and the permeability is high.Fpv =
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Fig. 7
Evaluation of the influence of the arterial inflow, . Its effect on the model is observed at a) arterial and b) portal phases, at two differentFha 

scales: at the macroscopic scale (left-hand graph), the mean signal is measured in two ROIs chosen in the tumoral and in the normal regions,

after simulating T -weighted GRE MR images for three different slice thickness; at the microscopic scale the concentration value is simulated1 

in a normal  MFU, and a tumoral MFU. Corresponding simulated 64 64 T -weighted GRE MR images are presented for a 4 mm slice“ ” × 1 

thickness.
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Fig. 8
Simulated Gd-DOTA concentration-vs-time curves in the liver parenchyma, for increasing values of the permeability. The parallel evolution

of the concentration in the normal tissue is also presented (parameters fixed according to normal conditions). In the tumoral region,  0.Fpv =

Simulation results are given for a) a low arterial inflow, b) a high arterial inflow.
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Fig. 9
Evaluation of the influence of the permeability, via the estimated permeability-surface product . Its effect on the model is observed at a)PS 

arterial and b) portal phases, at two different scales: at the macroscopic scale (left-hand graph), the mean signal is measured in two ROIs

chosen in the tumoral and in the normal regions, after simulating T -weighted GRE MR images (slice thickness 4 mm); at the microscopic1 =

scale the concentration value is simulated in a normal  MFU, and a tumoral MFU. Corresponding simulated 64 64 T -weighted GRE MR“ ” × 1 

images are presented for a 4 mm slice thickness. The model behavior with varying is evaluated for two values of the arterial inflow (lowPS 

and high).
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Fig. 10
Evolution of a) Gd-DOTA concentration profile in the hepatic parenchyma and of b) T -weighted GRE MR images, with the grade of the1 

lesion during hepatocarcinogenesis. 128 128 images are simulated from 4 mm-slices.×
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TABLE I
Some of the physiological parameters related to each stage of the hepatocarcinogenesis.

lesion grade NR DNl DNh HCCm HCCp

( . )Fha ml.g 1 − min 1 − 0.27 0.2 0.1 0.3 0.4

( . )Fpv ml.g 1 − min 1 − 0.7 0.5 0.35 0.2 0

( / )df nb f en m μ 2 11 11 5 0 0


