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Analysis-Synthesis of the Phonocardiogram
Based on the Matching Pursuit Method

Xuan Zhang, Louis-Gilles Durand,*Senior Member, IEEE, Lotfi Senhadji,Member, IEEE,
Howard C. Lee, and Jean-Louis Coatrieux,Fellow, IEEE

Abstract—The matching pursuit method of Mallat and Zhang
is applied to the analysis and synthesis of phonocardiograms
(PCG’s). The method is based on a classical Gabor wavelet or
time-frequency atom which is the product of a sinusoid and a
Gaussian window function. It decomposes a signal into a series
of time-frequency atoms by an iterative process based on selecting
the largest inner product of the signal (and the subsequent
residues) with atoms from a redundant dictionary. The Gaussian
window controls the envelope duration and time position of each
atom; and the sinusoid represents the frequency. The method
was applied to two sets of PCG’s: one with very low-noise level
and the other with 10% noise energy. Each data base includes 11
PCG’s representing the normal and the pathological conditions of
the heart. The normalized root-mean-square error (NRMSE) was
computed between the original and the reconstructed signals. The
results show that the matching pursuit method is very suitable to
the transient and complex properties of the PCG’s, as it yielded
excellent NRMSE’s around 2.2% for the two sets of 11 PCG’s
tested.

Index Terms— Analysis-synthesis, heart murmurs, heart
sounds, matching pursuit method, phonocardiogram, signal
processing, wavelet transform.

I. INTRODUCTION

A phonocardiogram (PCG) is a recording of the acoustic
waves produced by the mechanical action of the heart.

It generally consists of two kinds of acoustic vibrations: the
heart sounds and the heart murmurs [12]. The heart sounds
are low-frequency transient signals produced by the vibration
of the heart valves after closure and opening, and/or by
the vibration of the whole myocardium and the associated
structures. The murmurs are noise-like signals having a more
complex structure as they are caused by the turbulence of
blood flow. They can be heard sometimes in normal hearts,
but most generally in abnormal hearts.
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Although heart auscultation has been recognized for a long
time as an important tool for the diagnosis of heart disease,
its accuracy is questionable due to the limitations of auditory
perception of the sounds which are closely spaced in time
or have low-frequency components. In addition, as the art of
heart auscultation is difficult to learn for medical students, it
is desirable to develop new methods for helping them to learn
faster and easier [4], [11]. We propose to apply time-frequency
scaling transformations to the PCG to solve some of the
difficulties found during auscultation and help the physicians
to provide a better diagnosis of heart diseases. Some examples
of the application of time-frequency scaling transformations of
the PCG for this purpose can be summarized as follows.

1) The temporal rate of the various PCG components
can be reduced by time-scale expansion. This could
help the physicians to better detect the different sound
components which are difficult to distinguish on the
original PCG sequence, especially when the heart rate is
increased. Also, it may help medical students to better
understand the PCG structure and learn faster the art of
auscultation.

2) Time-scaling can be useful in veterinary medicine for
the auscultation of small animals like cats, which have
fast heart rate up to 200 bpm.

3) Frequency expansion could be helpful to better dis-
tinguish the heart sounds with multiple low-frequency
components.

4) Heart sounds produced by mechanical heart valves have
a much higher frequency bandwidth (1–50 kHz) than bi-
ological heart sounds [4]. Frequency compression could
be useful to shift the ultrasonic part (above 18 kHz) to
the sensitive range of human hearing (2–10 kHz) and
help the physician to better appreciate these mechanical
sounds.

In summary, the time-frequency scaling transformations
could be used to expand the temporal rate of the PCG in time
without changing its perceptual qualities, or alternatively shift
the frequency components while the temporal characteristics
are maintained. In order to achieve this objective, we need
high-quality analysis-synthesis of the PCG in our approach.
In the present paper, we propose an analysis-synthesis method
that is suitable for time-frequency scaling transformations and
applicable to both the transient property of the heart sounds
and the random property of the heart murmurs. The results of
a study of the time-frequency scaling of the PCG are reported
in a companion paper [14].

 

 



 

The previous studies performed for the analysis and syn-
thesis of the PCG were focused only on the heart sounds.
For instance, a pole-zero model (or autoregressive moving
average model) was used by Jooet al. [5] for the reconstruction
of the second heart sound in patients with a bioprosthetic
heart valve implanted in the aortic position. Another method
proposed by Köymen is the damped sinusoid model [6] which
was used to study the power spectra of the first heart sound
produced by mechanical prosthetic heart valves implanted in
the mitral position. Yu, Chen, and Durand [10] also evaluated
the damped sinusoid model by using the mean filter of forward
and backward predictor for the analysis-synthesis of the aortic
component of the second heart sound in dogs. The pole-zero
and the damped sinusoid models were proven to be suitable
models for the analysis-synthesis of heart sounds.

The wavelet transform has been used recently for the
analysis of the electrocardiogram and evoked potentials [1],
[9]. But, to our knowledge, it has not been applied previously
for the analysis-synthesis of the PCG. In our preliminary
study, a few different wavelet families were tested for the
PCG analysis and synthesis, including the discrete wavelet
transform proposed by Bertrandet al. [1], the orthonormal
wavelet decomposition as used in Senhadjiet al. [9], and the
matching pursuit method developed by Mallat and Zhang [7].
The results showed that all these methods gave small errors for
both the heart sounds and the more general type of the PCG
which includes both the heart sounds and the heart murmurs.

We also found that the damped sinusoid method and the
matching pursuit method had promising potential for time-
frequency scaling of heart sounds and murmurs. These two
methods basically originate from the same principle: that
a complex and transient signal can be described by the
parameters of the envelope and frequency of each sinusoidal
component. Four parameters are used for each component in
the damped sinusoid model: the damping factor, the amplitude,
the frequency, and the phase. In addition to these parame-
ters, the matching pursuit method extracts another parameter
called the time-transition or the time-position. The damped
sinusoid method gave good reconstruction results for short
transient signals, but not for the heart murmurs with longer
duration. Therefore, a segmentation procedure was needed to
separate the PCG into short segments in order to satisfy the
requirements of the damped sinusoid method. The steps for
segmenting the PCG’s are complex and time consuming. Also,
the reconstruction results are affected by the discontinuity
between consecutive segments. The matching pursuit method
has been used for analysis-synthesis of signals such as speech
and chirps [7]. Instead of using a damped sinusoid wavelet,
a Gaussian wavelet with a varying standard deviation and
time-transition is used to model the local waveform of the
nonstationary signal. The advantage of this method is its
capability of analyzing signals with longer time duration. Due
to these characteristics, the reconstruction of PCG’s based
on the matching pursuit method provided a much better
approximation of the original PCG’s than the damped sinusoid
model [13], and therefore only the matching pursuit method
is presented in this paper. In Section II, the matching pursuit
method is introduced briefly and a data base of 11 typical

PCG’s used for testing is described. This will be followed by
the analysis-synthesis results and the conclusion.

II. M ATERIALS AND METHODS

A. The Matching Pursuit Method

The analysis or decomposition of a signal by the matching
pursuit algorithm is a complex iterative process which was
developed independently by Mallat and Zhang [7] and by Qian
and Chen [8]. The method is based on a dictionary which
contains a family of functions called time-frequency atoms.
The decomposition of a signal is performed by projecting the
signal over the function dictionary and by selecting the atoms
which can best match the local structure or waveform of the
signal. A complete redundant dictionary of time-frequency
atoms is generated by scaling, translating, and frequency
modulating a normalized window function which is the
product of a wavelet envelope function and a sinusoid

The matching pursuit method represents a signal as

(1)

with

(2)

and

(3)

where are the expansion coefficients. The square of
represents the part of the signal energy associated with atom

The scale factors are used to control the width of the
envelope of , and the parameters control the temporal
placement. The parameters are normalizing factors to keep
the norm of equal to one. The parameters and
are the frequency and the phase of the cosine function,
respectively. Therefore, five parameters need to be extracted
for each atom by the matching pursuit method. For simplicity,
we let represents the parameter set In
our application

(4)

In practice, a large redundant and complete dictionary (also
called the Gabor dictionary) of time-frequency atoms is first
built. The dictionary also includes two special cases: One is
when and , and for this, the discrete-time window
function is taken as an impulse at positionThe other
case is when and , and is a sine wave represented
by In order to decompose a signal into
a set of atoms which can best describe the time-frequency
structure of the signal, an iterative orthogonal projection of

onto the dictionary is necessary. Let be one of the
atoms in the dictionary. The first projection decomposes the
signal into two parts as [7]

(5)



  

where denotes the inner
product of and , and is the complex conjugate
of The first term in the right-hand side of (5) is the
projection of onto the atom , and the second term

is the residual vector after approximating in the
direction of It is clear that these two components are
orthogonal to each other. Because is always equals to
one, the energy of the signal can be expressed by

(6)

In this case, the best match with the signal is obtained
when the residue is minimum. In other words,
is the best choice among all the atoms in the sense that it
gives the maximum inner product with After this first
step, the same process is repeated by using the residue
instead of If this procedure is repeated until the signal is
decomposed into components, is represented as

(7)

where is the signal residue for theth iterations and
Similar to (6), can be written as

(8)

It can be shown [7] that as the signal can be
represented as an infinite series of time-frequency atoms from
the dictionary without any distortion

(9)

and the energy of the signal is

(10)

From the above description, it can be seen that the matching
pursuit method finds the time-frequency atoms in a decreasing
energy order. The higher-energy components of the signal
are always extracted first. These higher-energy components
are regarded as the coherent part of the signal due to the
similarity between their waveforms and the signal. In practice,
two thresholds are used for stopping the iterative process: one
is a specified limiting number of time-frequency atoms, and
the other is a residual energy level The iteration process
can be stopped either by reaching the preset numberor
by satisfying the following relation between the signal residue
and the energy threshold:

(11)

TABLE I
THE ZENECA DATA BASE OF NORMAL AND PATHOLOGICAL PCG RECORDINGS

B. Data Acquisition

The data base used to evaluate the method is from a
compact disc called “Heart Sounds” containing a selection
of 11 PCG’s of normal and pathological heart sounds and
heart murmurs.1 These PCG’s are characteristics of important
clinical conditions and they were recorded for educational
purpose. All the 11 different digitally recorded signals were
used in our study. Table I gives a short description of these
PCG’s. The first column of the table contains the label of each
PCG as recorded on the compact disc, and the second column
its description. Each PCG was played back with a Sony CD
player (model D-125) and digitized with 16-bit resolution at
a sampling frequency of 3 kHz by a Sound Blaster 16 card
(Creative Technology Ltd.) in a Pentium computer. Before
digitizing the data, the PCG’s were low-pass filtered at 1 kHz
with an eighth-order Butterworth filter to prevent frequency
aliasing.

Since the PCG’s recorded on the compact disc are for educa-
tional purposes, the background noise level is relatively low.
In our study, a significant background noise was introduced
to better simulate the recording of PCG’s in hospitals. In
practice, the noise sources contributing to the PCG recorded
on the thorax may be composed of noise produced by the
recording instrumentation, ambient noise, thoracic muscular
noise, peristaltic intestine noise, and respiratory noise. The
contribution of each source may vary significantly depending
on the technical characteristics of the recording instrumenta-
tion, the recording environment and the physiological status
of the subject. In previous studies performed by our group in
patients and in animals, it was shown that the mean signal-
to-noise ratio of the PCG was around 30 dB and the power

1The compact disk containing a selection of normal and pathological heart
sounds characteristics of important clinical conditions is produced by Zeneca
Pharmaceuticals, Alderley House, Alderley Park, Macclesfield, Cheshire,
England, SK10 4TG (project 1693), February 1993. (Fax: 44 16 25 51 74
36).

 



(a) (b)

Fig. 1. (a) PCG of the normal first and second heart sounds data (Z1). (b) The PCG in (a) with 10% added Gaussian white noise. The noisy PCG is
used to simulate a PCG recorded in relatively severe background noise conditions.

(a) (b)

Fig. 2. (a) The first heart sound. (b) The residual log energy curves for different maximum octave valuesJ of the scale s of the time-frequency atoms.
(log

10
"2 = 5;M = 100): A value of J = 7 provides the decomposition with the lowest number of atoms.

spectrum of the PCG background noise was relatively uniform
between 20 and 50 Hz and decreased at a rate of approximately

20 dB/decade between 50 and 500 Hz [2], [3]. In the present
study, we have used a Gaussian white noise with 10% of the
energy of each PCG signal to simulate PCG signals recorded
in relatively severe background noise conditions. Fig. 1(a) is
a recording of the normal heart sound signal Z1, and Fig. 1(b)
is the same signal with the added white noise.

C. Data Processing

The matching pursuit software package developed by Mallat
and Zhang was run on a UNIX station. The software was
written in the C language. The matching pursuit algorithm
could be very time consuming if each iteration must cover
all the atoms of a large and redundant dictionary. Mallat
and Zhang [7] proposed to discretize the dictionary into a
subdictionary to simplify the computation. If the signal has
samples, according to (2) and (3) and with , the

discretized window function of is

(12)

where is the normalized factor that sets The
window scale can only be inside the range of , while
the time-position and the frequency index are all integers
between zero and In order to reduce the computation,
the scale is also limited to an exponential relation with a
dilation factor such that

(13)

where is the octave of the scalewhich varies between zero
and Hence, only the scales which lie in and
satisfy (13) are selected from the dictionary. In the software
developed by Mallat and Zhang, Therefore, the signal
duration was always zero-padded to a power of two in our



(a) (b)

Fig. 3. (a) The heart murmur. (b) The residual log-energy curve of differentJ values. A value ofJ = 9 or 8 provides the decomposition with
the lowest number of atoms.

study. Because of the nonstationarity of the PCG, an upper
bound called the maximum octave value was
used for selecting the atoms during decomposition.

In order to get the best way to decompose the signal,
i.e., to find the closest projection of the signal in the time-
frequency atom dictionary, we studied the residual log-energy
as a function of the number of time-frequency atoms for
different maximum octave valuesof the scale The residual
energy is calculated by

(14)

where is the total energy of the signal
, and is the amplitude of theth time-frequency atom.

That is, is the energy left from the signal after extracting
the first time-frequency atoms by the matching pursuit
method. The performance of the method was evaluated on
more than one cardiac cycle (about 4000 samples, or 1.3 s)
of each digitized signal. The following normalized root-mean-
square error (NRMSE) between the original signal and the
reconstructed signal was used

(15)

where is the difference between the original and the
reconstructed signals. Also, the original signals and the recon-
structed signals were played back through the Sound Blaster
card for auditory comparison by a cardiologist as well as by
the authors of this paper.

III. RESULTS

Fig. 2(b) shows the residual energy curves for the first heart
sound of Fig. 2(a) extracted from the data Z1. A fixed energy

TABLE II
THE NUMBER OF m TIME-FREQUENCY ATOMS OBTAINED AT

THE END OF THE DECOMPOSITION AND THE CORRESPONDING

NRMSE’S IN THE RECONSTRUCTION OF THEFIRST HEART SOUND FOR

DIFFERENT MAXIMUM OCTAVE VALUE J("2 = 10�5;M = 100)

TABLE III
THE NUMBER OF m TIME-FREQUENCY ATOMS OBTAINED AT

THE END OF THE DECOMPOSITION AND THE CORRESPONDING

NRMSE’S IN THE RECONSTRUCTION OF THEMURMUR FOR

DIFFERENT MAXIMUM OCTAVE VALUE J("2 = 10�5;M = 300)

threshold of and a limiting number
of time-frequency atoms were used for the decomposition
process. The signal had 512 samples, so that the maximum
octave values of and were tested. Table II
gives the number of time-frequency atoms obtained from
the matching pursuit decomposition, and the NRMSE between
the original signal and the reconstructed signal. It can be easily
seen that for and , the iteration was stopped
by the same preset energy threshold, with almost the same
reconstruction error. For the iteration was stopped
by the limiting number , indicating that more atoms would
be needed to reach the energy threshold. This can also be
seen in Fig. 2(b), where the residual log-energy curves for

were stopped with the same preset threshold,
at almost the same residual log-energy , while



 

TABLE IV
THE NRMSE OF THE PCG SIGNALS WITHOUT THE ADDED SIMULATED BACKGROUND NOISE

for , the decomposition stopped at a higher level of
residual energy. The curves for and are very
similar, but when the decaying slope is little steeper
and the reconstruction error is less. Therefore, we can say
that it provides the best approximation and the most compact
representation of the signal with the matching pursuit method,
as confirmed in Table II since the number of atomsand the
NRMSE are both minimum when

Fig. 3(a) shows a murmur signal with 512 samples extracted
from the data Z6. Table III gives the number of time-
frequency atoms obtained from the decomposition, and the
NRMSE between the original and the reconstructed signals.
The corresponding residual energy curves for different val-
ues of are shown in Fig. 3(b). The energy threshold was

and the maximum number of atoms was limited
to Compared to the first heart sound signal, the
waveshape of the murmur changes faster, i.e., it involves more
atoms with shorter envelopes. Hence, a smaller octave value
like generated an energy log-residual curve similar
to those of and . Among them, gives
the best performance, as shown in Table III. Fig. 4 shows the
comparison of the residual energy curves of the first heart
sound and the murmur obtained by using the same energy
threshold and a value of . The murmur signal needs
much more time-frequency atoms to reach the same energy
threshold.

The matching pursuit method with a maximum octave value
of was applied to the analysis and synthesis of the
two sets of the 11 PCG signals, one set with low noise and
the other one with an additional white noise as described
in Section II. To stop the decomposition process, the energy
threshold was set at and the limiting number of
time-frequency atoms was set at For the PCG’s

Fig. 4. Residual log-energy curves of (a) the first heart sound and (b) the
murmur. Because the murmur is a random signal, it requires much more atoms
than the first heart sound to reach the same residual energy level.

with low background noise, the number of time-frequency
atoms at the end of each analysis was always less than 1000
because the energy threshold was reached first. The value of

also varied according to the structure of the signal. For
relatively simple PCG’s containing only the heart sounds, a
small number of atoms varying between 39 and 67 gave very
good reconstruction results (NRMSE For signals
containing more components, like the murmurs, varied
between 125 and 536. Table IV gives the NRMSE’s and the
required numbers of atoms for all the signals.

In the first study on analysis-synthesis of the noisy PCG’s,
the stopping criterion was set at the same level as for the low-
noise PCG’s described above. It was found that all the iteration
processes were stopped by the limiting number ,
before reaching the energy threshold, because of the presence
of the added noise. Table V gives the NRMSE’s of the
reconstructed noisy PCG’s. The mean value of the NRMSE’s
for the 11 noisy PCG’s is 6.08%, which is much larger



(a)

(b)

(c)

Fig. 5. Some typical results for noisy PCG reconstruction (a) The noisy PCG of data Z7 (aortic stenosis). (b) The reconstructed noisy PCG. (c) The difference
between these two PCG’s. This figure clearly demonstrates that the matching pursuit method can reconstruct noisy PCG’s with very low signal error.

than the error for the low-noise PCG’s. In order to further
reduce the NRMSE’s, the limiting iteration number was
increased to 2000. The second column of Table VI gives the
number of atoms required to reach the energy threshold, and
the corresponding NRMSE’s are shown in the third column.
It can be seen that the errors of the reconstructed PCG’s
with background noise were reduced by representing each
of them with more time-frequency atoms. The NRMSE’s of
the third column in Table VI are similar to those shown in
Table IV because the algorithm was stopped by using the same
energy threshold. Fig. 5 shows some typical reconstruction
results of the noisy PCG of data Z7. A total of 1571 time-
frequency atoms were used for reconstructing the PCG. The
error between the original and the reconstructed PCG’s is
negligible.

Unlike the values of shown in Table IV which varied with
the different PCG’s, the numbers of atoms for reconstructing
the noisy PCG’s were almost constant. The matching pursuit
method decomposes the signals based on the energy of the
components, with all the significant events (the important
energy part, or the coherent part) extracted first (within the
first 536 iterations as shown in Table IV). Thus, the addi-
tional atoms are probably required to represent the noise.
For illustration, Fig. 6(c) shows the amplitude of the time-
frequency atoms as a function of the atom index for the
noisy PCG of data Z1 shown in Fig. 6(b). Only the first 100
time-frequency atoms among all the 1530 are shown. The
amplitude curve shows that the required number of atoms
for reconstructing the PCG without including the background
noise corresponds to the value of a transition point where
there is a rapid change of slope. The value of the transition
point which separates the 1530 time-frequency atoms into the
significant part (corresponding to data Z1 with low noise) and

TABLE V
NRMSE OF THE SIGNALS WITH THE ADDED

SIMULATED BACKGROUND NOISE (M = 1000)

the simulated background noise is 15 or less. In Fig. 6(d), the
reconstructed signal by using the first 11 atoms is displayed. It
contains all the significant events appearing in the low-noise
signal from data Z1, shown in Fig. 6(a), and the NRMSE
between it and the signal is 6.4%. Hence, adding more time-
frequency atoms for analysis-synthesis of the noisy PCG’s
actually is mostly required to reduce the error caused by the
background noise which always has lower energy, as shown in



(a) (b)

(c) (d)

(e) (f)

Fig. 6. (a) The low-noise PCG of data Z1 (first and second heart sounds). (b) The same data Z1 with added noise. (c) The amplitude curve of the
first 100 time-frequency atoms of the noisy PCG in (b). (d) The reconstructed PCG by using the first 11 time-frequency atoms. (e) The difference
between (b) and (d). (f) Histograms of the added noise(�) and the difference signal (e). This figure shows that the matching pursuit method can act
as a powerful filter for Gaussian background noise removal.

Fig. 6(e). Therefore, the additional atoms after the transition
point do not provide useful information on the significant
events.

The error signals between the original signals and the
reconstructed signals were very low because the energy thresh-
old used to stop the decomposition process was very low:

The error signal was generally distributed
across the complete duration of the signal. Also, it was very
difficult to visually found significant differences between the
graphics of the original signals and those of the synthesized
signals. Thus, the NRMSE was a very good index of difference
between the original and the reconstructed signal. According
to the results of the present study, the best values offor
analyzing PCG with heart sounds and murmurs is six or seven
and the maximal value of should be no more than 600.
The original and the reconstructed versions of the two sets
of 11 PCG’s using the number of atoms of Table IV and

Table VI, respectively, were compared through listening by
a cardiologist and some of the authors of the paper. The
reconstructed PCG’s were found to sound very natural.

IV. CONCLUSION

The present study shows that the classical Gabor wavelet,
as the product of a Gaussian window function with a sinusoid,
is a very suitable basis for the analysis and synthesis of the
PCG’s. With the matching pursuit method, the coherent part
or the significant events of the signal is always extracted first
by the iterative process, since the decomposition of a signal is
based on the selection of the maximum inner product between
a time-frequency atoms and the signal (or its residue). This can
be clearly seen from the results of the analysis-synthesis of the
noisy PCG where the heart sounds are recovered by using
the first 11 time-frequency atoms. In Fig. 6(f), histograms
of the added noise and the removed noise show that



TABLE VI
NRMSE OF THE SIGNALS WITH THE ADDED

SIMULATED BACKGROUND NOISE (M = 2000)

almost all the added noise has been removed by recovering
the signal from the 11 atoms. This phenomenon indicates
that the matching pursuit method can act as a powerful filter
for Gaussian noise removal like the one used in the present
study. Therefore, this method as the potential of improving
the quality of PCG’s recorded in the hospital environments.
Another important application of the matching pursuit method,
which is the object of the companion paper [14], is its potential
for the time-frequency scaling transformation of PCG’s, since
the Gabor wavelet provides good control of both the time
and the frequency parameters of each atom. The accuracy of
the decomposition of a PCG by the matching pursuit method
is determined by the limiting iteration number or the energy
threshold, and by the complexity of the signal structure. For the
same energy threshold, complex signals need more iterations
to reduce the reconstruction errors. A smaller energy threshold
always yields better reconstruction results.
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