

Effect of a collector bag for measurement of postpartum blood loss after vaginal delivery: cluster randomised trial in 13 European countries.

Wei-Hong Zhang, Catherine Deneux-Tharaux, Peter Brocklehurst, Edmund Juszczak, Matthew Joslin, Sophie Alexander, Euphrates Group

▶ To cite this version:

Wei-Hong Zhang, Catherine Deneux-Tharaux, Peter Brocklehurst, Edmund Juszczak, Matthew Joslin, et al.. Effect of a collector bag for measurement of postpartum blood loss after vaginal delivery: cluster randomised trial in 13 European countries.. BMJ / BMJ (CLINICAL RESEARCH ED); Br Med J; British Medical Journal; Briti Med J, 2010, 340 (c293), pp.c293. inserm-00455479

HAL Id: inserm-00455479 https://inserm.hal.science/inserm-00455479

Submitted on 10 Feb 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 1 Effect of a collector bag for measurement of postpartum blood loss after vaginal
- 2 delivery: a cluster randomised trial in thirteen European countries
- 3

4 Authors

- 5 Wei-Hong Zhang (Senior researcher)^{*}, Catherine Deneux-Tharaux (Senior researcher)[†], Peter
- 6 Brocklehurst (Professor of Perinatal Epidemiology)[‡], Edmund Juszczak (Senior Medical
- 7 Statistician)[‡], Matthew Joslin (General Practitioner)^{*}, Sophie Alexander (Professor of Public
- 8 Health)^{*} and the EUPHRATES Group[§]
- 9 *Perinatal Epidemiology Research Unit, School of Public Health, Université Libre de
- 10 Bruxelles (ULB), Belgium.
- 11 †INSERM, UMR S953, UPMC, Epidemiological research unit on perinatal health and
- 12 women's and children's health. Bâtiment de recherche Hôpital Tenon 4, rue de la Chine
- 13 75020 Paris, France.
- 14 *‡*National Perinatal Epidemiology Unit, University of Oxford. Old Road Campus, Headington,
- 15 Oxford OX3 7LF, United Kingdom.
- 16 § EUPHRATES (EUropean Project on obstetric Haemorrhage, Reduction, Attitudes, Trial
- 17 and Early warning System) collaborators : Sophie Alexander (Project leader, Belgium),
- 18 Diogo Ayres-de-Campos (Portugal), Istvan Berbik (Hungary), Marie-Hélène Bouvier-Colle
- 19 (France), Gérard Bréart (France), Peter Brocklehurst (United Kingdom), Vicenç Cararach
- 20 (Spain), Anna Maria Marconi (Italy), Catherine Deneux-Tharaux (France), Risto Erkkola
- 21 (Finland), Mathias Klein (Austria), Jens Langhoff-Roos (Denmark), Alison Macfarlane
- 22 (United Kingdom), Walter Prendiville (Ireland), Jos van Roosmalen (Nederlands), Babill
- 23 Stray-Pedersen (Norway), Carolyn Troeger (Switzerland), Clare Winter (United Kingdom),
- 24 Wei-Hong Zhang (Belgium)
- 25

- 1 **Keywords**: severe post-partum haemorrhage, collector bag, cluster-randomised controlled
- 2 trial, Europe

3 CORRESPONDING AUTHOR:

- 4 Wei-Hong ZHANG, M.D., MPH. PhD
- 5 Unité de recherche en Santé Reproductive et Epidémiologie Périnatale, Ecole de Santé
- 6 Publique, Université Libre de Bruxelles (ULB), Route de Lennik 808, CP 597, B-1070
- 7 Bruxelles, Belgium
- 8 Tel: ++ 32 2 555 63 68, Fax: ++ 32 2 555 40 49
- 9 Email: <u>wzhang@ulb.ac.be</u>
- 10

1 Abstract

2 Background- Postpartum haemorrhage (PPH) remains a leading cause of maternal morbidity 3 and mortality worldwide. Delay in diagnosis and care for PPH has been reported. The 4 inaccuracy of visual estimation of postpartum blood loss has been demonstrated. 5 **Objectives-** To evaluate the effectiveness of the systematic use of a transparent plastic 6 collector bag for measurement of postpartum blood loss after vaginal delivery in reducing the 7 incidence of severe PPH 8 Design- A cluster randomised trial 9 Setting- Thirteen European countries 10 Participants-78 maternity units and 25381 women who had a vaginal delivery 11 Interventions- Maternity units were randomly assigned to systematically use a collector bag 12 (intervention group), or to continue to visually assess postpartum blood loss after vaginal 13 delivery (control group) 14 *Main outcome measures*- The primary outcome was the incidence of severe PPH in vaginal deliveries, defined as a composite of one or more of the following events: blood transfusion, 15 16 intravenous plasma expansion, arterial embolisation, surgical procedure, admission to 17 intensive care unit, treatment with recombinant factor VII, or death. 18 Results- The incidence of severe PPH was 189 out of 11037 of vaginal deliveries (1.71%) in 19 the intervention group compared to 295 out of 14344 in the control group (2.06%). The 20 difference was not statistically significant either in individual level analysis (adjusted odds 21 ratio 0.82; 95% CI 0.26 to 2.53) or in cluster level analysis (difference in weighted mean rate 22 adjusted for baseline rate 0.16%; 95 % CI -0.69% to 1.02%). 23 *Conclusion-* The use of a collector bag after vaginal delivery did not reduce the rate of severe 24 PPH as compared to visual estimation of postpartum blood loss.

- 1 *Trial registration*: International Standard Randomised Controlled Trial Number (ISRCTN)
- 2 66197422.

1 Introduction

2 Worldwide, postpartum haemorrhage (PPH) remains one of the leading causes of maternal mortality¹ and the main component of severe morbidity²⁻⁵, jeopardizing the woman's fertility, 3 4 exposing her to risks of transfusion and intensive care, and incurring costs. From reports in developed countries, about one percent of deliveries are associated with severe PPH³⁻⁶. 5 6 Decreasing the prevalence of severe PPH remains challenging. This appears all the more 7 important given the recent increase in the incidence of PPH reported in several developed countries^{2, 7, 8}. Individual risk factors have been described but they poorly predict the 8 occurrence of PPH ^{9, 10}. Interest has focused on care-processes as they are potentially 9 10 amenable to change. Studies of maternal deaths show that most deaths due to PPH involve delayed and substandard care in the diagnosis and management of haemorrhage¹¹⁻¹³. Similar 11 findings were drawn from a population-based study of severe non-lethal PPH¹⁴. 12 13 Delay in diagnosis and treatment of PPH may result from an underestimation of blood loss at 14 delivery. Assessment of post-partum blood loss, particularly following vaginal birth, is recognised as difficult. Many studies demonstrate that visual estimates of peripartum blood 15 loss are frequently inaccurate¹⁵⁻²¹, showing an overestimation of blood loss at low volumes 16 17 and an underestimation at larger volumes, the magnitude of underestimation typically 18 increasing with the volume of haemorrhage. 19 The hypothesis of this study was that if blood loss is monitored and objectively measured by

collection in a transparent plastic bag, rather than being visually assessed, care-giver response will be triggered more rapidly when excessive blood loss occurs. Specifically when bleeding is excessive but before haemorrhage has become catastrophic, appropriate management will take place without delay, so reducing the incidence of severe PPH. A preliminary study shows that a plastic collector bag constitutes a simple instrument to diagnose haemorrhage in the delivery room²². However, the impact of its use on PPH-related health outcomes has never

1 been tested. Despite lacking evidence, the bag is routinely used in a significant proportion of maternity units in Belgium, France, Italy, and Portugal (Euphrates survey²³, unpublished data). 2 3 The objective of this trial was to evaluate the effectiveness of the systematic use of a 4 transparent plastic collector bag for measurement of postpartum blood loss after vaginal 5 delivery in reducing the incidence of severe PPH. 6 **Methods** 7 8 Trial design 9 A cluster-randomised design with maternity unit was the unit of randomization. Given the 10 logistics of clinical practice on the delivery suite, contamination appeared to be inevitable in 11 an individual-patient randomised trial setting. 12 Setting 13 The sites selected for the trial comprised 78 maternity units in 13 European countries (see 14 Table1). **Participants** 15 16 Maternity units 17 Maternity units were eligible if they had more than 200 vaginal deliveries annually (excluding 18 water births), and no previous policy of routine use of collector bags. In addition, to ensure 19 that the standard of care for management of the third stage of labour was similar across all 20 participating units, they had to comply with the EUPHRATES consensus statement on the prevention and management of PPH²⁴; a minimum standard, not a detailed guideline. 21 22 Women 23 In all maternity units of participating countries (except Denmark), all women undergoing a vaginal delivery during the study period were included. In Denmark, enrolment into the study 24

in each maternity unit was midwife-dependant; if a midwife agreed to participate, all his/her
 vaginal deliveries were included.

3

4 Randomization

The random allocation was produced centrally by the National Perinatal Epidemiology Unit in
Oxford, UK. A stratified design was used to ensure that the two arms of the trial were as
similar as possible at baseline with respect to the stratification factors (i) country and (ii) size
of maternity unit (median split within country).

9 Maternity units were randomly allocated to either systematically use a collector bag after

10 vaginal delivery (intervention arm), or not use the bag (control group).

11

12 Intervention

13 The trial was implemented between January 2006 and May 2007, depending on the country.

14 Prior to participation, each centre was visited by the national coordinator. At the visit, staff

15 were reminded of the EUPHRATES consensus statement on the prevention and management

16 of PPH and familiarised with the processes and the data collection instrument.

17 In the intervention group, a second visit from the national coordinator took place after

18 randomisation, during which, use of the collector bag was explained to birth attendants with

19 standard written instructions and a training video aid. The bag was to be placed under the

20 pelvis of the mother as soon as the baby was born and before delivery of the placenta. It was

21 transparent and graduated, allowing continuous monitoring of blood loss. It did not require

22 sterilization and could be used in dorsal, lateral or lithotomy positions. Women delivering

standing or crouching could be offered the opportunity to lie down for the third stage,

allowing the bag to be placed under their pelvis. The bag was to be left under the woman's

25 buttocks until the birth attendant was no longer concerned about blood loss e.g. when the

sanitary towel was applied to the vulva. Bags were purchased centrally and provided to each
 cluster in the intervention arm.

In the control group, no collector bag was used, postpartum blood loss being visually assessed.
During the study period, use of collector devices was monitored to assess compliance with
allocation.

6

7 *Outcomes*

The primary outcome for the trial was the incidence of severe PPH following vaginal
deliveries, defined as a composite of all women who experienced one or more of the
following: blood transfusion, intravenous plasma expansion, arterial embolisation, surgical
procedure, admission to intensive care unit, treatment with recombinant factor VII and death.
Secondary outcomes were each of the components of the primary outcome, manual removal
of the placenta and administration of prostaglandins after delivery.

14

15 Data collection

16 Each participating centre was asked to collect data from all women undergoing a vaginal17 delivery for a period of 4 months.

Data were collected during two time intervals: a 1-month period pre-randomisation (baseline period), and a 3-month period beginning immediately following randomisation in the control group (trial period). In the intervention group, the 3-month period of data collection followed a 2-week training period during which the unit started using the collector bag on women undergoing vaginal delivery.

23 Data were collected using a form filled in by the birth attendants for each vaginal delivery,

and included information on the woman's age, induction of labour, mode of delivery, number

25 of babies and birth weight, prophylactic uterotonics, and outcome data. Additionally, a second

form was used for deliveries where severe PPH occurred, collecting detailed information
 regarding delivery and PPH management. This form was used to cross-check criteria for the
 primary outcome.

4

5 Sample size

Sample size calculation took into account the cluster-randomised design; the intracluster
correlation coefficient was estimated to be 0.01. Assuming an event rate for the primary
outcome of 2.5% in the control group, in order to detect a decrease in the event rate to 1.5% (a
40% relative risk reduction) with 80% power, a 2-sided significance level of 5% and an
average cluster size of 300 women, 82 clusters (41 in each arm of the trial) were required²⁵.

11

12 Statistical analysis

13 Participants/maternity units were analysed in the groups to which they were assigned 14 regardless of the management received by individual women or deviation from the protocol. 15 Baseline characteristics of maternity units and individual women were summarized with 16 counts (percentages) for categorical variables, mean (standard deviation [SD]) for normally 17 distributed continuous variables, or median (interquartile [IQR]) for other continuous 18 variables. Comparative statistical analysis was performed at both individual and cluster level 19 and took into account the effect of clustering. All statistical tests were two-sided (5% 20 significance level) and not adjusted for multiple comparisons. Statistical analyses were 21 performed using SPSS version 17 (SPSS) and Stata v10.0 software (Stata Corporation, 22 College Station, Texas, USA). 23 Individual woman level analysis - primary and secondary outcomes were compared between

the two study groups both unadjusted and adjusted for the effect of clustering. In order to

25 determine the magnitude and direction of any differences in outcomes between the two

1 groups, crude odds ratios and 95% confidence intervals were calculated. Furthermore, logistic 2 regression was used to adjust for clustering and key prognostic factors. The cluster 3 randomised design imparts a data structure that facilitates the calculation of a valid 4 intracluster correlation coefficient, p. 5 Cluster level analysis was only performed on the primary outcome. Some hospitals 6 contributed fewer events than others, and some recruited fewer women. We allowed these 7 hospitals to have less effect on the treatment estimate by weighting the analysis based on the 8 precision, i.e. calculating the weighted mean difference for the treatment comparison. A 9 weighted linear regression model was used to test the effect of the intervention on the rate of 10 severe PPH during the trial period, adjusting for the baseline rate, expressed as the weighted 11 mean difference (plus 95% confidence interval).

12

13 Ethical aspects

Ethics approval was obtained in each country from relevant local or national research ethics committees. Consent to participate was taken from the maternity units. Because the procedure being tested was not invasive or different from current clinical practice, and because outcome data were routinely collected at maternity units and anonymously transmitted, no individual consent was sought.

19

20 Role of the funding source

The project was funded by the European Union (EU) under Framework 5 (contract QLG4CT-2001-01352). EU had no role in the design, management, data collection, analyses, or
interpretation of the data. EU had no role in the writing of the manuscript or in the decision to
submit for publication.

25

1

Results 2

3	Figure 1 shows the flow of maternity units and women through the study. Of the 84 maternity
4	units meeting the inclusion criteria, two maternity units declined to participate before
5	allocation. Forty one maternity units were randomised to the intervention group and 41 to the
6	control group. Two maternity units in each group opted out before receiving notification of
7	allocation because they lacked the necessary resources. Thirty-nine maternity units in each
8	group completed the trial. Table 1 shows the number of participating maternity units and
9	women included in each country.
10	One maternity unit did not collect baseline data in the intervention group. Deviating from the
11	protocol, the majority of maternity units (31 of 39) continued collecting data during the 2-
12	week training period in the intervention arm. In these units, trial data collection started after
13	the first month of baseline data collection. Four units in the control group collected trial data
14	for more than 3 months (up to 5 months). Only the 3-month period of data collection specified
15	in the protocol was considered for all units. In some Austrian hospitals, the number of women
16	included was low, given the total expected number of deliveries. The national coordinator
17	confirmed that the missing data were all caesarean deliveries, and that in some hospitals the
18	caesarean rate was very high. Nevertheless, sensitivity analyses were performed, and showed
19	that excluding these hospitals or even the entire Austrian data set did not influence the results.
20	

21 Characteristics of maternity units and women

22 Baseline data were collected for 4937 in the intervention group and 4758 vaginal deliveries in 23 the control group and characteristics of maternity units and women (Table 2) were broadly 24 similar in the two groups for all factors, except for manual removal of the placenta and 25 prophylactic uterotonics, which were more common among women in the intervention group.

1 **Primary outcome**

2 Individual level analysis

3 A total of 25381 women were included in the analysis (11037 in the intervention group and 4 14344 in the control group). The greater number of women in the control group was due to a 5 larger median cluster size (241 and 284 in the intervention and control groups, respectively)... 6 The incidence of severe PPH was 189 out of 11037 of vaginal deliveries (1.71%) in the 7 intervention group compared to 295 out of 14344 in the control group (2.06%). The difference 8 was not statistically significant (Table 3). The crude odds ratio for the effect of the 9 intervention was 0.83 (95% CI, 0.69 to 1.00). The odds ratio adjusted for clustering was 0.83 10 (95% CI, 0.27 to 2.60); after further adjustment for age, prophylactic uterotonics in the third 11 stage, mode of delivery and birth weight, the odds ratio was 0.82 (95% CI, 0.26 to 2.53). 12 Sensitivity analyses were conducted to test the robustness of this result excluding units 13 deviating from the protocol, and also by country, and by baseline rate of severe PPH (median 14 split by country); these analyses provided similar results. 15 Cluster level analysis 16 The weighted mean severe PPH rate was 1.71% (SD 2.51) in the intervention group and 17 2.06% (SD 3.52) in the control group. The intracluster correlation coefficient for severe PPH 18 was 0.023. There was no significant difference in the rate of severe PPH between the two 19 groups (weighted mean difference -0.34%, (-2.56% to 1.87%); p=0.75). Adjusting for the 20 baseline rate of severe PPH resulted in a slight change in this result (adjusted weighted mean 21 difference 0.16%, (-0.69% to 1.02%); p=0.70). Rates of severe PPH in the baseline and trial 22 periods for each maternity unit were heterogeneous across units in different countries (Figure 23 2).

Figure 3 shows the difference in baseline and trial rates of severe PPH for each unit in the intervention group, according to the compliance of bag usage. There was no relationship

between the difference in severe PPH rates (baseline and trial) and the actual proportion of
bag use. The analysis of the intervention effect on the primary outcome, including in the
intervention arm only maternity units where the bag was used in at least 50% of vaginal
deliveries, showed no significant difference between the two groups (individual level analysis
adjusting for cluster and individual characteristics; adjusted OR 0.59, 95% CI (0.23-1.53)).

7 Secondary outcomes (individual level analysis)

Analyses were performed to test the effect of the intervention on the main components of the primary outcome (Table 3). The proportion of blood transfusion, surgical procedure or embolisation and of manual removal of placenta, did not substantially differ between the intervention and control groups, whether after adjusting for cluster or after further adjusting for other prognostic factors. There were no maternal deaths.

13 The proportions of receipt of intravenous plasma expanders and of prostaglandins use were 14 different between intervention and control groups, but the differences were not significant 15 after adjusting for clustering effect.

16

17 **Discussion**

18 Strengths and limitations of study

19 In this cluster randomised trial conducted on 25381 vaginal deliveries in 78 maternity units of

20 13 European countries, the systematic use of a collector bag after vaginal delivery did not

21 modify the rate of severe forms of postpartum haemorrhage. There was no evidence of

22 heterogeneity, the results not differing according to country or size of hospital.

23 This trial provides new results on an unexplored although controversial aspect of care in the third

24 stage of labour. Although objective measurement has been shown to increase the accuracy of

25 postpartum blood loss assessment compared to visual estimation¹⁵⁻²¹, the routine use of a collector

1 bag is not associated with a significant decrease in severe PPH. This result constitutes an important 2 contribution to the on-going debate on strategies to improve the care of women with PPH and 3 decrease the incidence of severe cases. 4 Additionally, the cluster-randomised design, the large number of clusters and their diversity 5 provide good external validity to this trial. 6 There were small deviations from the protocol for data collection, but sensitivity analyses showed 7 that none of these changed the internal validity of the trial. 8 There was large heterogeneity of baseline rates for the severe event between units (0 to 13.4 %). In 9 theory, such a variation should be an asset, and reflect a broad range of levels of risk in the 10 participating maternity units. However, because these differences were strongly related to the 11 country, there remains some concern regarding the criteria in use for the management of PPH in 12 different parts of Europe. Again sensitivity analysis showed that this aspect did not alter the 13 results. 14 There was some heterogeneity in baseline data between the intervention and control groups. 15 Heterogeneity in PPH-related practices and PPH rates has been reported across maternity units in Europe, both between and within countries^{4, 23}. Although randomization is expected 16 17 to balance these differences between the two arms, the number of units randomized, although 18 large for a cluster RCT, makes residual imbalance possible although probably very slight. 19 However, analyses were adjusted for the main determinants of PPH (individual level analysis), 20 and baseline rate of severe PPH (cluster-level analysis); in addition, sensitivity analysis 21 indicated that the absence of significant impact of the intervention was similar whether the 22 maternity units had high or low baseline rate of severe PPH. In consequence, any perceived or 23 real imbalance in these characteristics should have little or no impact on the findings. 24

25 *Hypotheses for the results*

1 Different mechanisms may explain the absence of difference in the rates of severe PPH between 2 maternity units which used the bag and those where blood loss was visually assessed. 3 This may be due to a lack of compliance to the intervention. However, the persistent absence 4 of difference between the 2 groups when the analysis was restricted to the units where the bag 5 was used in a high proportion of deliveries suggests this is unlikely. 6 One potential reason for the apparent ineffectiveness of the intervention might be that the 7 bags were actually not used correctly; in particular, there might be concern that the bags were 8 covered most of the time and thus could not be viewed. However, because detailed oral and 9 written instructions were provided and the training video clearly showed the care giver watching the bag and the graduations, such misuse is unlikely to explain the observed lack of 10 11 effect. 12 Participation in the study may indicate a particular interest in the management of PPH so that 13 existing management had little room for improvement. However, the variety of baseline rates 14 of severe PPH in these units makes such a selection process unlikely. 15 It may be hypothesized that the intervention has a double effect, in two opposite directions: 16 increasing the rate of ascertainment through increased vigilance and decreasing the prevalence rate 17 through timely management of excessive bleeding. If these two components were of the same 18 order of magnitude, the global effect would be no effect. However, if this explanation was 19 realistic, one would expect different size of effects with different baseline rates and/or different 20 degrees of compliance. None of this occurred, making it unlikely that a benefit of the intervention 21 in terms of decreased severe outcome was balanced by an equivalent increase in ascertainment. In 22 fact the intervention appeared to increase PPH rates, reflecting possibly, that the intervention was 23 more effective on improving ascertainment than on changing practice. 24 A concomitant effect in the control group may also have contributed to the absence of 25 difference between the two arms. Contamination of the intervention to control units is

unlikely since participating units were not in contact, and no use of bags was reported in any
control unit. Participation in a research study, independently of any specific intervention, has
been reported to change behaviors of participants (Hawthorne effect²⁶). The hypothesis that
the management of PPH would have improved in the control arm is, however, not supported
by the absence of change in the rate of severe PPH between the baseline and trial periods in
this group.

7 The most plausible explanation of the negative result of this trial is that having a more 8 accurate assessment of postpartum blood loss is not, by itself, sufficient to change behaviors 9 of care givers and improve PPH management. Lack of identification of women with excessive 10 postpartum bleeding is a considerable problem, potentially leading to higher levels of medical 11 intervention if the bleeding progresses to severe haemorrhage. We designed a strategy to 12 increase care-givers awareness. The fact that this has not translated into a change in clinical 13 outcomes probably reflects the complexity of management decisions, which are influenced by 14 multiple factors such as organization of the delivery ward, and how care givers perceive and 15 cope with emergencies.

16 **Comparison with other studies**

17 We did not find any other published study assessing the effectiveness of the collector bag. 18 However we have identified other large multicentre randomised trials in the field of maternal 19 and child health where a diagnostic or screening test was evaluated without any associated instructions about the management of abnormal results²⁷⁻²⁹. None of these trials showed 20 benefit with the introduction of the test. In addition Althabe et al have shown that simple 21 information is not sufficient to impact birth attendants readiness to change³⁰. These various 22 23 reports suggest that the effect of enhanced diagnostic methods should include an 24 accompanying protocol of management, and maybe a specific behavioral intervention, which in effect becomes a "complex intervention". 25

1 **Conclusions and policy implications**

2 The practical implication of these results for high income countries, is that those units which 3 are using a collector bag (at a cost between 1 and 11 € per bag in Europe) need to reconsider 4 their practice, and maybe reallocate the resources to other aspects of care. Units which are not 5 routinely using the bag should keep the same policy. For resource poor countries positive results of the use of the "kanga collector" have been reported³¹. This needs to be tested in a 6 7 randomised design. In the current context of reported on-going increase in the prevalence of 8 PPH, further research is needed to develop and test effective strategies to decrease the 9 prevalence of severe PPH through improvement of management. These will probably be 10 multifaceted interventions, and in this context, the collector bag may warrant further 11 investigation.

1 « What this paper adds » box

2 What is already known on this subject

Delay in diagnosis and initial care for postpartum hemorrhage (PPH) has been reported, and
may result from an underestimation of postpartum blood loss, due to the inaccuracy of visual
assessment. A collector bag has been proposed as a useful tool to objectively measure
postpartum blood loss. However, the impact of its use has never been tested. Despite lacking
evidence, the bag is routinely used in a significant proportion of maternity units in Europe. *What this study adds*Our study suggests that, for western countries, the routine use of a collector bag to objectively

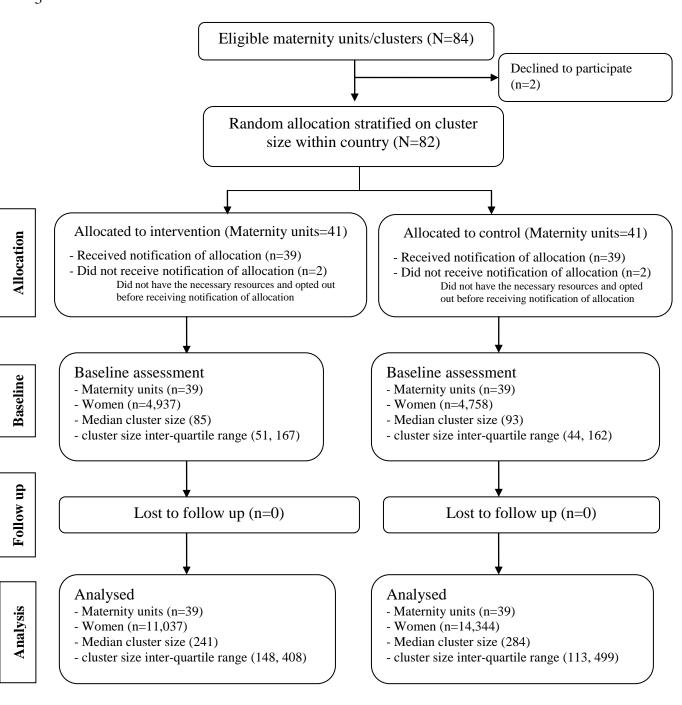
11 assess postpartum blood loss after vaginal delivery, without specific guideline regarding

12 threshold and action, does not reduce the incidence of severe PPH.

1 Acknowledgements

2 The project was funded by the European Union (EU) under Framework 5 (contract QLG43 CT-2001-01352).

We are grateful to Professors Allan Donner (Canada) and Pierre Buekens (USA) for their
scientific advice; to Stéphane Freze and Myriam Loubriat for their contribution to data
collection and cleaning.


7 The following people played an essential part in running the trial in their own country and 8 units: Austria: Co-ordination - Sylvia Artner-Matuschek, Adolf Beck, Daniela Meger David; 9 KH Ried- Penzinger Monika; LKH Bad Ischl – Carola Fuschlberger-Traxler; LKH Heinz 10 Klagenfurt- Leipold; Hanusch KH- Daniela Meger David; AKH Univ- Hans Helmer, 11 Katharina Klein; LKH Kufstein- Andrea Ehm. Belgium: Ambroise Paré (Mons)- Gilles 12 Ceysens, Annick Nouls, Yaacoub Salame, Linda Van Lierde; Ath-Françoise Clerquin, Pierre 13 Delvoye, Jean Piret; UZ Gent- Paul Defoort, Marleen Temmerman; AZ VUB (Brussels)-14 Maria Breugelmans, Lieve Devalckeneer, Monika Laubach; Baudour- Joël Annet, Renaud 15 Paquay, Valérie Vandenbosch; Brugmann (Brussels)- Thomas Pezin, Alain Vokaer; Erasme 16 (Brussels)- Christine Kirkpatrick, Anne Maas; Hopital St Pierre (Brussels)- Patricia Barlow, 17 Julie Belhomme, Nordine Ben Ali, Daniel Murillo; Ieper- Colette Berten, Geert Page; Ixelles 18 (Brussels)- Véronique Ziereisen; KUL (Leuven)- Bernadette Bijnens, Bernard Spitz, Joske 19 Timmermans; St Jean (Brussels)- Xavier de Muylder, Christine Stoop; Ste Anne & St Remi 20 (Brussels)- Paul Befahy, Anne Fostier; Tivoli – Maria Fabbricattore, Jacques Francotte, 21 Sylvie Hollemaert; Tournai IMC- Viviane Gadenne; Vésale (Charleroi)- Patrick De Nayer, 22 Didier Oberweiss. Denmark: Co-ordination - Ane Rom, Birgitte Rode Diness; Gentofte 23 Hospital- Anne Barfoed; Glostrup- Ambika Ravn; Hillerød- Gitte Ulriksen; Slagelse- Karen 24 Marie Wigh Felsen; Holbæk- Marianne Brandstrup Larsen; Frederiksberg- Ane Rom.

1 Finland: Helsinki University Central Hospital- Vedran Stefanovic; Midwifery Institute of 2 Helsinki- Veli-Matti Ulander; University central hospital of Turku- Risto Erkkola; University 3 Hospital of Tampere-Jukka Uotila. France: Moulin Hospital- Michel Beytout, Catherine 4 Damouret; University Hospital (Nancy)- Brigitte Guillemain; Antoine Béclère; University 5 Hospital (Clamart)-Aurélia Chauveaud; Tenon University Hospital (Paris)- Nadia Berkane, 6 Marie-Christine Chaux; University Hospital (Rouen)- Loic Marpeau, Sabine Sionville; 7 Villeneuve St Georges Hospital- Patricia Tran van. Hungary: Co-ordination – István Szabó; 8 Baranya County Hospital (Pécs)-József Bódis; City Hospital (Mosonmagyaróvár)- István 9 Barcza; Erzsébet Hospital (Sopron)- Károly Péter Csécsei; Petz Aladár Teaching Hospital 10 (Győr)- Sándor Gardó; Selye János Hospital (Komárom)- László Rokay; Szent Borbála 11 Hospital (Tatabánya)- Mihály Molnár; University Hospital (Sci. Univ. Pécs)- István Szabó, 12 Tamás Csermely; Vaszary Kolos Teaching Hospital (Esztergom)- István Berbik. Ireland: 13 Co-ordination - Reem Akkawi, Fidelma Cavanagh; Coombe Women's Hospital (Dublin)-14 Suzanne Kelly; Our Lady of Lourdes (Drogheda)- Dalia Sikafi, Ann Keating; Cavan General 15 Hospital- Iram Basit, Marie McCusker; Midland Regional Hospital Mullingar- Mary Corbet. 16 Italy: Az. SS. Antonio e Biagio e C Arrigo- Enrico Rovetta; Osp di Bassano del Grappa-17 Yoram Meir; Osp Civile San Paolo- Antonio Castellano; Osp Civile S Liberatore- Claudio 18 Angeloni; Osp San Massimo di Penne- Quirino Di Nisio; Pres Osp Di Piove Di Sacco-19 Antonino Oro. Netherlands: Co-ordination - Marlies Rijnders, Esteriek de Miranda; St Lucas 20 Hospital; Bronovo Hospital. Norway: Co-ordination -Bente Rønnes; Sykehuset Innlandet; 21 Gjovik- Anne Kari Gjestvang, Elham Mahjoob; Sykehuset Innlandet Elverum- Agneta 22 Stramrud. *Portugal:* Co-ordination – Maria Fatima Oliveira, Cristina Ferreirinha; 23 Maternidade Bissaya Barreto (Coimbra)- Ascenção Baía ; Maternidade Daniel de Matos 24 (Coimbra) - José Portugal; H. S. Marcos (Braga) - Lucília Guerra Sousa: H. S. Joao (Porto)-25 Cristina Ferreirinha; Senhora da Oliveira (Guimaraes) - Alice Santos .Spain: Co-ordination -

1	Sonia Pisa, Sara Herrero; H. Clínic- Enrique Barrau, Jordi Bellart, Isabel Salgado; H. Vall
2	d'Hebró- Anna Suy; H. Sabadell- Jordi Costa, Maria Grimau; H. Joan XXIII- Ramón Mª
3	Miralles; H. del Mar- Antoni Payà; H. San Joan de Deu- Sergi Cabré; H. Sant Pau- Marta
4	Simó; H. Germans Trias- José Lecumberri. Switzerland: Co-ordination -Irene Hösli, Gideon
5	Sartorius; Aarau-Monya Todesco; Basel- Gideon Sartorius; Frauenfeld- Verena Geissbühler;
6	Fribourg- David Stucki, Heidrun Schönberger; Solothurn- Suzanne Zakher; St Gallen- Gero
7	Drack, Anika Hey-Moonen.

1 Figure 1

	Maternity units Women				-					
Country	Intervention Control		Total	% total	B	Baseline period			Trial period	
	Ν	Ν	Ν	(%)	Total	Intervention	Control	Total	Intervention	Control
Austria	3	3	1067	3.0	371	219	152	696	359	337
Belgium	8	8	6013	17.1	1552	728	824	4461	1867	2594
Denmark	3	3	1657	4.7	507	272	235	1150	562	588
Finland	2	2	4805	13.7	1347	656	691	3458	1551	1907
France	3	3	3702	10.6	972	544	428	2730	1351	1379
Hungary	4	4	2230	6.4	562	268	294	1668	784	884
Ireland	2	2	3971	11.3	950	300	650	3021	946	2075
Italy	3	3	926	2.6	196	138	58	730	491	239
Netherlands	1	1	1084	3.1	301	130	171	783	322	461
Norway	1	1	668	1.9	143	72	71	525	241	284
Portugal	2	3	3274	9.3	810	338	472	2464	901	1563
Spain	4	3	4351	12.4	1595	1097	498	2756	1239	1517
Switzerland	3	3	1328	3.8	389	175	214	939	423	516
Total	39	39	35076	100.0	9695	4937	4758	25381	11037	14344

.

Table 1- Number of maternity units and women in baseline and trial periods by allocation and by country*

* Baseline data were unavailable in one maternity unit in the intervention group

Table 2- Baseline characteristics of maternity	Intervention	Control
	group	group
Maternity units	N=38†	N=39
Rate of caesarean delivery – (%)		
Median	21.1	21.7
Interquartile range	17.4-26.6	14.6-26.0
>1600 deliveries/yr – no. (%)	20 (52.6)	19 (48.7)
Women	N=4937	N=4758
Age – yr		
Mean	29.6±5.4	$29.7{\pm}~5.5$
Median	30.0	30.0
Interquartile range	26-33	26-33
Missing data – no.	31	23
Mode of delivery – no. (%)		
Spontaneous vaginal delivery	4104 (83.1)	4062 (85.4)
Operative vaginal delivery	833 (16.9)	696 (14.6)
Induction – no. (%)	1080 (21.9)	1043 (21.9)
Number of babies – no. (%)		
Single	4833 (98.5)	4645 (98.6)
Multiple	76 (1.5)	68 (1.4)
Missing data – no.	28	45
Birth weight – grams		
Mean	3315±566.4	3349±549.1
Median	3330	3370
Interquartile range	3020-3660	3050-3690
Missing data – no.	26	29
Prophylactic uterotonics in 3rd stage – no. (%)	3527 (71.4)	3153 (66.3)
Missing data – no.	0	5
Prostaglandin used after birth – no. (%)	212 (4.3)	218 (4.6)
Missing data – no.	0	5
Manual removal of the placenta – no. (%)	204 (4.1)	121 (2.5)
Missing data – no.	0	5
Severe PPH – no. (%)	60 (1.22)	90 (1.89)

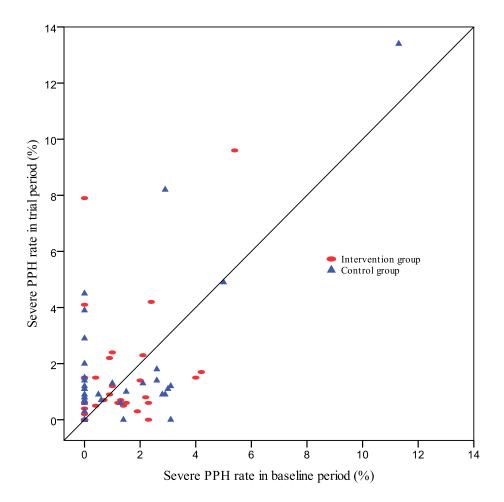
Table 2- Baseline characteristics of maternity units and individual women by allocation*

* Plus-minus values are mean ±SD. Severe PPH denotes severe Post-Partum Haemorrhage defined by one of the

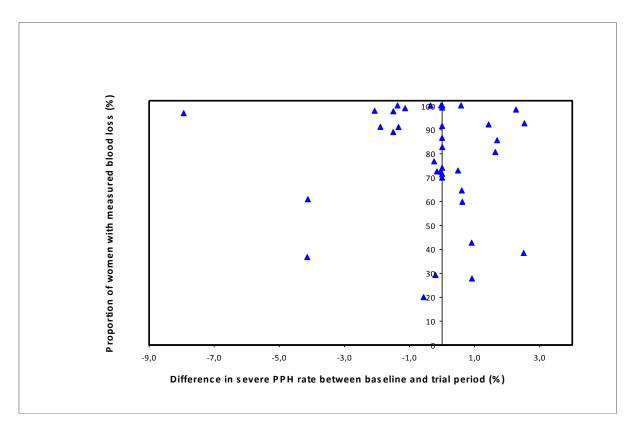
following: maternal death, transfusion, plasma expansion, surgery/embolisation, ICU, recombinant factor VII.

† Baseline data were unavailable in one maternity unit.

Table 3- Main outcomes*


1 able 5- Main Outcomes								
-	Intervention	Control	ICC	Crude odds ratio (95%	Adjusted OR	Adjusted OR		
	N=11037	N=14344	(p)	CI)	(95% CI)†	(95% CI)‡		
	no. (%)	no. (%)						
Primary outcome								
Severe PPH	189 (1.71)	295 (2.06)	0.023	0.83 (0.69-1.00)	0.83 (0.27-2.60)	0.82 (0.26-2.53)		
				P=0.05	P=0.8	P=0.7		
Secondary outcomes								
Blood transfusion	86 (0.78)	135 (0.94)	0.011	0.83 (0.63-1.68)	0.83 (0.35-1.96)	0.80 (0.33-1.90)		
				P=0.2	P=0.8	P=0.6		
Plasma expander	127 (1.15)	222 (1.55)	0.022	0.74 (0.59-0.92)	0.74 (0.20-2.72)	0.95 (0.62-1.46)		
				P=0.007	P=0.7	P=1.0		
Surgical procedure or	50 (0.45)	76 (0.53)	0.012	0.85 (0.60-1.22)	0.85 (0.20-3.63)	0.78 (0.18-3.40)		
embolisation				P=0.9	P=0.9	P=0.7		
Manual removal of	326 (2.95)	366 (2.55)	0.016	1.16 (1.00-1.35)	1.16 (0.76-1.77)	1.09 (0.72-1.67)		
placental				P=0.05	P=0.5	P=0.7		
Prostaglandins use	501 (4.54)	766 (5.34)	0.129	0.84 (0.75-0.95)	0.84 (0.40-1.77)	0.85 (0.40-1.80)		
				P=0.004	P=0.7	P=0.7		

* Severe PPH denotes severe Post-Partum Haemorrhage defined by one of the following: maternal death, transfusion, plasma expansion, surgery/embolisation, ICU, recombinant factor VII. ICC denotes Intracluster Correlation Coefficient (ρ)


† Adjusted for clustering (maternity unit)

‡ Adjusted for clustering (maternity unit), age of mother, prophylactic uterotonics using in the third stage, mode of delivery and birth weight

Figure 2

Legends for figures

Figure 1: Trial flow diagram

Figure 2: Rate of severe post-partum haemorrhage during baseline and trial periods for each maternity unit (Each dot represents one maternity unit. The diagonal line means no change in the PPH rate from baseline to trial period)

Figure 3: Difference in rate of severe post-partum haemorrhage (baseline rate- intervention rate) according to compliance with intervention (% of women with measured blood loss) in the 38 units in the intervention group during the trial period

References

1. Khan KS, Wojdyla D, Say L, Gulmezoglu AM, Van Look PF. WHO analysis of causes of maternal death: a systematic review. Lancet 2006;367:1066-74.

2. Callaghan WM, Mackay AP, Berg CJ. Identification of severe maternal morbidity during delivery hospitalizations, United States, 1991-2003. Am J Obstet Gynecol 2008;199:133 e1-8.

3. Wen SW, Huang L, Liston R, et al. Severe maternal morbidity in Canada, 1991-2001. Cmaj 2005;173:759-64.

4. Zhang WH, Alexander S, Bouvier-Colle MH, Macfarlane A. Incidence of severe preeclampsia, postpartum haemorrhage and sepsis as a surrogate marker for severe maternal morbidity in a European population-based study: the MOMS-B survey. Bjog 2005;112:89-96.

5. Zwart J, Richters J, Öry F, de Vries J, Bloermenkamp K, van Roosmalen J. Severe maternal morbidity during pregnancy, delivery and puerperium in the Netherlands: a natiowide populayion-based study of 371 000 pregnancies. BJOG 2008;115:842-50.

6. Al-Zirqi I, Vangen S, Forsen L, Stray-Pedersen B. Prevalence and risk factors of severe obstetric haemorrhage. Bjog 2008;115:1265-72.

7. Joseph KS, Rouleau J, Kramer MS, Young DC, Liston RM, Baskett TF. Investigation of an increase in postpartum haemorrhage in Canada. Bjog 2007;114:751-9.

8. Roberts CL, Ford JB, Algert CS, Bell JC, Simpson JM, Morris JM. Trends in adverse maternal outcomes during childbirth: a population-based study of severe maternal morbidity. BMC Pregnancy Childbirth 2009;9:7.

9. Sherman SJ, Greenspoon JS, Nelson JM, Paul RH. Identifying the obstetric patient at high risk of multiple-unit blood transfusions. J Reprod Med 1992;37:649-52.

10. Mathai M, Gulmezoglu AM, Hill S. Saving womens lives: evidence-based recommendations for the prevention of postpartum haemorrhage. Bull World Health Organ 2007;85:322-3.

11. Rapport du Comité National d'Experts sur la Mortalité Maternelle (CNEMM). France 2006: <u>http://www.invs.sante.fr/publications/2006/mortalite_maternelle/rapport.pdf</u>.

12. Berg CJ, Harper MA, Atkinson SM, et al. Preventability of pregnancy-related deaths: results of a state-wide review. Obstet Gynecol 2005;106:1228-34.

13. Lewis G. Saving mother's lives: reviewing maternal deaths to make motherhood safer-2003-2005. the seventh report of the Confidential Enquiries into maternal deaths in the United Kingdom. London: CEMACH; 2007.

14. Bouvier-Colle MH, Ould El Joud D, Varnoux N, et al. Evaluation of the quality of care for severe obstetrical haemorrhage in three French regions. Bjog 2001;108:898-903.

15. Bose P, Regan F, Paterson-Brown S. Improving the accuracy of estimated blood loss at obstetric haemorrhage using clinical reconstructions. Bjog 2006;113:919-24.

16. Dildy GA, 3rd, Paine AR, George NC, Velasco C. Estimating blood loss: can teaching significantly improve visual estimation? Obstet Gynecol 2004;104:601-6.

17. Duthie SJ, Ven D, Yung GL, Guang DZ, Chan SY, Ma HK. Discrepancy between laboratory determination and visual estimation of blood loss during normal delivery. Eur J Obstet Gynecol Reprod Biol 1991;38:119-24.

18. Newton M, Mosey LM, Egli GE, Gifford WB, Hull CT. Blood loss during and immediately after delivery. Obstet Gynecol 1961;17:9-18.

19. Prasertcharoensuk W, Swadpanich U, Lumbiganon P. Accuracy of the blood loss estimation in the third stage of labor. Int J Gynaecol Obstet 2000;71:69-70.

20. Razvi K, Chua S, Arulkumaran S, Ratnam SS. A comparison between visual estimation and laboratory determination of blood loss during the third stage of labour. Aust N Z J Obstet Gynaecol 1996;36:152-4.

21. Stafford I, Dildy GA, Clark SL, Belfort MA. Visually estimated and calculated blood loss in vaginal and cesarean delivery. Am J Obstet Gynecol 2008;199:519 e1-7.

22. Tourne G, Collet F, Lasnier P, Seffert P. [Usefulness of a collecting bag for the diagnosis of post-partum hemorrhage]. J Gynecol Obstet Biol Reprod (Paris) 2004;33:229-34.
23. Winter C, Macfarlane A, Deneux-Tharaux C, et al. Variations in policies for

management of the third stage of labour and the immediate management of postpartum haemorrhage in Europe. Bjog 2007;114:845-54.

24. European consensus on prevention and management of postpartum haemorrhage, 2005. (Accessed at

http://www.euphrates.inserm.fr/inserm/euphrates.nsf/AllDocumentsByUNID/95A14F46F31A 5246C125707400485AED?OpenDocument&l=3.1.)

25. Donner A, Klar N. Design and analysis of cluster randomized trials in health research. London: Arnold; 2000.

26. Braunholtz DA, Edwards SJ, Lilford RJ. Are randomized clinical trials good for us (in the short term)? Evidence for a "trial effect". J Clin Epidemiol 2001;54:217-24.

27. Cheyne H, Hundley V, Dowding D, et al. Effects of algorithm for diagnosis of active labour: cluster randomised trial. Bmj 2008;337:a2396.

28. Buekens P, Alexander S, Boutsen M, Blondel B, Kaminski M, Reid M. Randomised controlled trial of routine cervical examinations in pregnancy. European Community Collaborative Study Group on Prenatal Screening. Lancet 1994;344:841-4.

29. Grant A, Elbourne D, Valentin L, Alexander S. Routine formal fetal movement counting and risk of antepartum late death in normally formed singletons. Lancet 1989;2:345-9.

30. Althabe F, Buekens P, Bergel E, et al. A behavioral intervention to improve obstetrical care. N Engl J Med 2008;358:1929-40.

31. Prata N, Mbaruku G, Campbell M. Using the kanga to measure postpartum blood loss. Int J Gynaecol Obstet 2005;89:49-50.

Authors' statements

Competing interest statement

All authors declare that the answer to the questions on your competing interest form are all No and therefore have nothing to declare.

Copyright statement

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd to permit this article (if accepted) to be published in BMJ editions and any other BMJPGL products and sublicences such use and exploit all subsidiary rights

Contribution statements

I declare that I participated in the design of the trial, the implementation of the trial in my country, the central monitoring of data collection, writing the statistical analysis plan, the cleaning and analysis of the data and the drafting and revision of the paper and that I have seen and approved the final version. I had full access to all the data in the study and had final responsibility for the decision to submit for publication. I have no conflicts of interest. Wei-Hong Zhang

I declare that I participated in the design of the trial, the implementation of the trial in my country, the analysis of the data and the drafting and revision of the paper and that I have seen and approved the final version. I have no conflicts of interest. Catherine Deneux-Tharaux

I declare that I participated in the design of the trial, the analysis of the data and the drafting and revision of the paper and that I have seen and approved the final version. I have no conflicts of interest. Peter Brocklehurst

I declare that I participated in the conduct of the trial, writing the statistical analysis plan, the central monitoring of data collection and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest. Edmund Juszczak

I declare that I participated in the design of the trial, the implementation of the trial in my country, the central monitoring of data collection and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest. Matthew Joslin

I declare that I initiated the collaborative project, participated in the design of the trial, the implementation of the trial in my country, the central monitoring of data collection, the analysis of the data and the drafting and revision of the paper and that I have seen and approved the final version. I have no conflicts of interest. Sophie Alexander

I declare that I participated in the design of the trial, the implementation of the trial in my country and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest.

Diogo Ayres-de-Campos

I declare that I participated in the design of the trial, the implementation of the trial in my country and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest. Istvan Berbik

I declare that I participated in the design of the trial, the implementation of the trial in my country and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest. Marie-Hélène Bouvier-Colle

I declare that I participated in the design of the trial, the analysis of the data and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest.

Gérard Bréart

I declare that I participated in the design of the trial, the implementation of the trial in my country and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest.

Vicenç Cararach

I declare that I participated in the design of the trial, the implementation of the trial in my country and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest. Risto Erkkola

I declare that I participated in the design of the trial, the implementation of the trial in my country and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest. Mathias Klein

I declare that I participated in the design of the trial, the implementation of the trial in my country and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest.

Jens Langhoff-Roos

I declare that I participated in the design of the trial and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest. Alison Macfarlane

I declare that I participated in the design of the trial, the implementation of the trial in my country and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest. Walter Prendiville

I declare that I participated in the design of the trial, the implementation of the trial in my country and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest. Jos van Roosmalen I declare that I participated in the design of the trial, the implementation of the trial in my country and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest. Babill Stray-Pedersen

I declare that I participated in the design of the trial, the implementation of the trial in my country and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest. Carolyn Troeger

I declare that I participated in the design of the trial and the revision of the draft paper and that I have seen and approved the final version. I have no conflicts of interest. Clare Winter