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Introduction

Cardiac diseases remain a leading cause of mortality in Europe and in the US . Quantitative and accurate characterization of [START_REF] Mackay | The Atlas of heart disease and stroke[END_REF] abnormal wall and vascular patterns (location, shape, motion) of the heart is thus of major importance for diagnosis and treatment . For [START_REF] Frangi | Three-dimensional modeling for functional analysis of cardiac images: a review[END_REF] a long time, the mono-and bi-plane X-ray techniques were only available to deal with coronary and ventricular structures. Pioneering attempts, mainly focused on static reconstruction, were thus based on computer vision approaches relying on epipolar techniques and feature matching. A first coupled reconstruction-motion estimation was proposed in and led to a fast and efficient scheme to recover [3 ] the centerlines over the entire time sequence. However, technical advances in 3D echography, cine-MRI, tagged-MRI and multislice computed tomography (MSCT) devices open today new perspectives. It is now possible to describe the dynamic behavior of the heart over the entire cardiac cycle. MSCT offers in particular a full 3D access to the all cardiac structures, including right and left coronary trees and opens new paths for intra-operative planning capabilities . Although promising, a few works have been devoted to motion analysis in [START_REF] Shechter | Prospective motion correction of x-Ray images for coronary interventions[END_REF] [START_REF] Coatrieux | Ray casting with on-the-fly region growing: 3-D navigation into cardiac MSCT volume[END_REF] MSCT and mainly on left ventricle . Much less attention has been paid to the estimation of coronary motion. Some studies have [START_REF] Song | Computation of 3-D velocity fields from 3-D cine CT images of a human heart[END_REF]- [START_REF] Garreau | Assessment of left ventricular function in cardiac MSCT imaging by a 4D hierarchical surface-volume matching process[END_REF] been performed on image sequences in bi-plane angiography , EBCT and MRA . The only work related to MSCT

[3 ] [START_REF] Puentes | Dynamic feature extraction of coronary artery motion using DSA image sequences[END_REF][10 ] [START_REF] Achenbach | In-plane coronary arterial motion velocity: Measurement with electron-beam CT[END_REF] [12 ] [START_REF] Saranathan | Adaptive vessel tracking: automated computation of vessel trajectories for improved efficiency in 2D coronary MR angiography[END_REF] data relied on manual measurements on the position of bifurcation points. [START_REF] Husmann | Coronary artery motion and cardiac phases: dependency on heart rate implications for CT image reconstruction[END_REF] This paper describes a semi-automatic method to extract the motion of coronary in MSCT volume sequences. It is organized as follows. The methodology designed to extract the coronary networks and their pairing by a point matching algorithm is described in section 2. The experiments conducted on several volume sequences are then presented in section 3. Discussion and perspectives are provided in conclusion.

Methodology Coronary tree extraction and representation

The coronary centerlines are first extracted by using a tracking-based algorithm proposed in our previous work . It is based on a [START_REF] Yang | A multiscale tracking algorithm for the coronary extraction in MSCT angiography[END_REF] local cylinder model that provides the vessel position, local contrast, its orientation and diameter. The tracking procedure is initialized by manually selecting seed points (lying on targeted vessels). The centerline point and local diameter is estimated by geometric moment-based operator. A multiscale approach has been used to handle highly varying vessel diameters and criterions have been [START_REF] Frangi | Multiscale vessel enhancement filtering[END_REF] proposed to deal with branching and end points. To represent the extracted vessels, we introduce a -tuple vector for each centreline point N that may gather vascular features, including the 3D space coordinates and the local intensity, diameter, direction, etc. This point-based attributed vector is denoted as , , (where the prime means the vector or matrix transpose). For the coronary tree at cardiac

x = [x 1 … x N ]′
phase , we define as the related attributed point set (with the total number of points). Then, a total of dynamic volumes t n t K provide a sequence of dynamic point sets that characterizes the temporal and spatial behavior of the coronary tree.

Constrained point-based matching

We assume that the point set relates to a point set by a mapping ( ):

. Then, a global motion of coronary tree X t X t 1

+ φ t x ℝ N ↦ ℝ N
might be established by solving a group of mappings . In this paper, we have limited our study to the B-spline based parametric

{φ t } φ
which can be expressed as with representing the cubic B-spline basis functions for the th Cartesian direction, and the corresponding unknown n coefficients, where , represent the dimensions of attribute points and the number of control points on the th dimension respectively. n L n n

This parametrization is very popular in image registration and suitable for modeling the nonrigid local movement. For conciseness, let us define and as the generalized target and source attributed point sets. Then, when estimating , we let equal to φ t P and equal to . This avoids repeated notations. We further suppress the subscript of to denote for simplicity.

X t Q X t 1 + t φ t φ
However, the estimation of the mapping is nontrivial since 1) even in an ideal situation, because the points are independently φ extracted from different cardiac volumes, a one-to-one relationship between and can not be assumed; 2) in real case, the possible X t X t 1 + loss of parts of vascular segments (due to contrast variations, reconstruction artifacts, etc.) must be considered: thus, subsets of attributed points can be missing and will not have any pairing in the previous or next volume. As noted by , instead of a hard one-to-one [START_REF] Chui | A new point matching algorithm for non-rigid registration[END_REF] mapping, we suppose that a source point can be assigned to all target points with a certain probability. This results in the so-called soft-assign, i.e., the correspondence between points and is measured by an additional parameter where 0 1.0, , and

p i q j w ij ≤ w ij ≤ ∀i, j Σ j
1.0 (for 1, , , which ensures that form a valid probability distribution). Such s therefore should be resolved together

w ij = i = … I {w ij } w ij '
with the mapping .

φ A particular feature of the object (i.e., coronary network) is that its topology does not change under motion. Thus, branching (or bifurcation) and ostium points can be seen as stable landmarks onto which the pairing can rely. Establishing such relations is highly important and has to be considered in the construction of an accurate dynamic tree tracking. So, these landmark points are distinguished by defining the sets and in which the th point in matches the th point in . In the following, this prior knowledge will be P ̃Q ̃m p ̃m P ̃m q ̃m Q ũsed to develop a specific regularization for motion estimation. To sum up, the desired mapping, including unknown correspondences, can be achieved by minimizing with respect to and , subject to 0 1.0 ( ) and 1.0 ( ) where , , and are adjustable parameters.

{c n ℓ } {w ij } ≤ w ij ≤ ∀i, j Σ w j ij = ∀i α β γ
The larger probability, it can be expected that (for a fixed ) should have a peak around certain point (as well as ) forming a narrowed

{w ij } i j
distribution. Thus, a good choice to impose such prior information is to use the entropy as it was recommended by : [START_REF] Chui | A new point matching algorithm for non-rigid registration[END_REF] Another interesting advantage for this penalty is that, when performing iterative optimization, the update for has a closed form w ij expression that automatically fulfills the required nonnegativity constraints. Finally, we solve the optimal and of each two

{c n ℓ } {w ij }
consecutive phases and 1 using the alternating minimization algorithm. t t +

Model reconstruction

Once have been solved, we are able to track the movement of each point of centerlines throughout the overall cardiac cycle. More

{φ t }
precisely, given a point , we can find out its spatial locations as ( ), ( ( )), for the complete volume image

x 0 ,i ∈ {X 0 } { φ 0 x 0 ,i φ 1 φ 0 x 0 ,i …}
sequence. We then interpolate the all point-based trajectories in order to get a continuous description of the movement. Therefore, any intermediate states of the beating heart within the cardiac cycle can be approximated.

Results and Discussion

Five breath-hold MSCT sequences, acquired on a GE Light Speed VCT 64 multi-detectors scanner, were used to evaluate the method.

Each sequence included 10 volumes reconstructed from slices acquired every 10 of the cardiac cycle and on several cycles. The pixel % size ranged between 0.30mm and 0.35mm and the slice spacing was equal to 0.625mm. A 3D linear interpolation was systematically carried out on each volume of the sequence to make it isotropic. Then, all the sequences of volumes were processed. We provide, for illustration, the main results for two data sets, acquired on patients having respectively an arterial hypertension (Data 1) and a dilated cardiomyopathy (Data 2). In both cases, the coronary networks were considered as normal. The sizes of the data sets were 512 512 316

× ×
and 512 512 332 respectively.

× ×

Coronary tree extraction

The vessel tracking based on the extraction algorithm is initiated with user-defined seed points (in average, 2 to 6 points are required for extracting the left and right coronary trees). Some additional seed points may be needed when the scene is more complex, i.e. in presence of calcified plaques, or when the contrast is low.

Main arteries, such as left main (LM), left anterior descending (LAD), left circumflex (LCx), diagonals (DI), oblique marginal (OM), right coronary artery (RCA) and posterior descending artery (PDA), were extracted in almost all volume sequences. All branches are structurally defined by ordering their subsets of points (including their branching and end points). A cardiologist verified then the validity and the accuracy of centerlines for each volume of each sequence and labeled them with their anatomical names. For illustration, two centerline trees extracted from the 10 and 20 volumes (Data 1) are plotted together with landmarks in .

% %

Fig. 1(a)

Generally speaking, the extraction method behaves well on data sets that do not have too many artifacts. These artifacts are mainly due to reconstruction problems either caused by an irregular heart rate or by too fast motions of structures related to the rotation speed of the acquisition system. The latter one mainly occurs in early systolic and end-diastolic phases and can affect 50 of the volumes of the % sequence. Motion artifacts introduce blurring effects and a splitting of vessels, making difficult even impossible in some cases their extraction. This has been the case for the right coronary artery (RCA) in some volumes for two of the five sequences .

[18 ]

Other difficulties come from the low contrast with the surrounding tissues and its variability which lead to over-or underestimations of vessel diameters and loss of parts of segments over time. This explains why, in a first step, the diameter has been computed only on the volumes reconstructed at the rest phases of the heart (70 , 80 of the cardiac cycle), these ones being exempt of motion artifacts.

% %

Extracting the vascular trees may take up to 20 minutes for a whole time sequence, the major part being devoted to interactive seeding (the spatial tracking algorithm being very fast, about several seconds for a branch on a computer P4-3.06G, 1G RAM). The continuous advances of MSCT should provide better resolution and contrast, such that these limitations will be minimized in the next future.

Point Matching

The point sampling over a branch is uniform. We used only the 3D coordinates as attributes for the point matching algorithm, i.e., N = 3. As pointed out in Section II-B, the lengths of the branches are not the same all over the sequence due to different terminations of the vessel tracking algorithm. This situation is exemplified by the circle in for small vascular segments. To deal with this length Fig. 1(a) difference, the matching process considers the shortest segment to be paired within the two volumes. This is carried out by using the structural descriptions already available and the fact that the known branching points serve as constraints.

Matching results are shown in . We used 8 , ( 1, , 3) as the coefficient number of B-spline basis functions in each Fig. 1(b) L n = 3 n = … dimension of . The parameters in were: 3.0, 0.1 and 0.1. Their values have been obtained from an training phase x equation ( 2)

α = β = γ =
carried out on the five data sets. They were selected to minimize the error of matching defined below. The displacements resulting from the source and target pairing for each branch and estimated by are represented by straight lines. Significant cardiac motions can be φ t observed, especially for RCA. Their magnitudes are spatially and anatomically coherent while varying from proximal to distal segments.

In order to get a more quantitative picture, we measured the Euclidean distance between and the target centerlines by using the φ { q j } P rule of comparison the nearest point. The root mean square error (RMSE) is computed as where is the point number in and J Q is the nearest point for ( ) on the centerlines represented by point set . φ q j P Mean RMSE and 3D displacement have been computed for all the extracted branches in all phases and patients. Considering the non-linear nature of cardiac motion, displacements have been measured separately for each of the coronary branches.

provides for illustration the mean RMSEs and 3D displacements for the LAD and RCA branches of Data 1 during a cardiac Fig. 2 cycle. The value at 0 is used as 100 to have a complete analysis throughout a cardiac cycle. For this sequence, considering the LAD % %

and RCA arteries, the maximum displacement and RMSE during a cardiac cycle are 7.20mm and 1.20mm, 18.07mm and 1.68mm

respectively.

If we consider now the whole set of sequences, we found a maximum 3D displacement for LAD that ranges between 5.03mm and 14.50mm with a maximum RMSE comprised between 0.82mm and 2.51 mm according to the considered sequence. For the RCA artery these values are 18.64 19.14 mm and 0.91 1.69 mm respectively. instants. We have used the landmarks proposed in with an additional one to analyze the dynamic behavior of the beating heart: LM 

Conclusion

The main contribution of this short paper is the 3D tracking of the coronary tree over a full cardiac period, which allows studying the beating heart behavior and patterns of individual vascular segments, thus bringing new cues on the corresponding myocardium territories.

The matching of centerlines is fully automatic and needs less than 10 minutes on a computer P4-3.06G with 1G RAM. The most critical feature is related to the choice of control parameters ( , and ). An intensive exploration of the parameter space has been conducted and α β γ the values applied in this paper represent the best compromise we found. A learning stage based on more extensive experiments will be conducted on that point.

The work in progress is devoted on one hand to improve the segmentation step and the local vessel characterization in order to enrich the attributed centreline description and to decrease the time required for processing a complete volume sequence. On the other hand, the robustness of the constrained point matching will be extended to deal with partial correspondence. Lastly, new features of the coronary network (for instance, the overall heart movement, i.e rotation-translation, local shapes and deformations, asynchronous segments) will be derived in order to enrich the set of information for diagnosis. 

  first right-hand-side term of ( ) is the figure of merit measuring the similarity between target point set and the deformed source 2 point set. It is defined by where || || is the Euclidean norm. The second term regularizes the landmarks pairings and has the form • It forces any selected source feature point to be as consistent as possible with its target pair . p ̃m q ̃m The term ( ) is the smoothing penalization term for the mapping . Here, we consider the discrete Markov random field R 1 {c n ℓ } φ (MRF) so that the penalty can be written where denotes the usual second-order neighborhoods of the B-spline control point , and is the reciprocal distance between ∂ ℓ ℓ r ℓ s control point and . ℓ s The last term ( ) penalizes the correspondence s. Since one source point must be assigned to one target point with relatively R 2 {w ij } w ij '

+

  Two 3D coronary trees with a total of 40 volumes are finally generated after interpolation. The vascular networks at four distinct +t instants are displayed together in where the vessel diameters are approximated through the moment-based operator at 70 or 80 Fig.3% %

[ 19 ]B o 5 o 5 (Fig. 4 positions

 1954 Fig. 4 positions at 0 . It can be seen that RCA landmarks have larger displacements, and subsequently larger velocities. The maximum % displacements are obtained for the time-indexed volumes 40 and 50 corresponding to the end of systole. Three main peaks, located % % approximately at 20 , 60 and 90 on the velocity curves, represent three main cardiac phases with fast cardiac motion, i.e., systole, % % % diastolic filling and atrial contraction. The first peak representing the systolic period is related to opening and closing of aortic valve throughout the R-R interval illustrated in . These results are in accordance with those reported in . Fig. 4(c) [14 ][19 ]
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 123 Figure 1 (a) Centerline extraction results for the 10 (red) and 20 (blue) volumes of Data1. The centerlines are depicted by their coordinates in the % %

Figure 4

 4 Figure 4 3D displacement(a) away from the position at 0 at each instant and velocity(b) for the landmarks LM , LM , LAD , LCx , RCA and%

PDA
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