Common themes in siRNA-mediated epigenetic silencing pathways.
Résumé
Small interfering RNAs (siRNAs) act through RNA interference (RNAi) pathways to silence gene expression either at the transcriptional or post-transcriptional level. Here, we review mechanisms and functions of siRNA-mediated silencing pathways that promote chromatin modifications in the fission yeast Schizosaccharomyces pombe, plants and animals. In fission yeast, siRNAs are involved in heterochromatin formation and key aspects of the underlying siRNA-dependent pathway have been uncovered. Two RNAi complexes, the RNA-Induced Transcriptional Silencing complex (RITS), which contains a siRNA bound to an Argonaute protein, and the RNA-Directed RNA polymerase Complex (RDRC) are critical components of the pathway. In addition, this pathway implicates non-coding nascent transcripts synthesized by RNA polymerase II (RNApII) and the RNApII itself. In Arabidopsis thaliana, the RNA-directed DNA methylation (RdDM) pathway appears to share a similar set of proteins and enzymatic activities, suggesting that, beyond certain aspects that are specific to each pathway, part of the siRNA-mediated epigenetic silencing mechanisms are conserved between fission yeast and plants. Moreover, in both organisms the pathways target repetitive DNA sequences. This conservation of mechanisms and genomic targets might actually extend to animals as recent investigations revealed the existence of endogenous siRNA-based pathways directed against repetitive DNA sequences in flies and mammals.