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Abstract:  In this paper, a neural mass model is proposed to analyze some mechanisms un-

derlying the generation of fast oscillations (80 Hz and beyond) at the onset of seizures. This 

model includes one sub-population of pyramidal cells and one sub-population of interneurons 

targeting the perisomatic region of pyramidal cells where fast GABAergic currents are medi-

ated. We identified some conditions for which the model can reproduce the features of high-

frequency, chirp-like (from ~100 Hz to ~70 Hz) signatures observed in real depth-EEG sig-

nals recorded in epileptic patients at seizure onset (“fast onset activity”). These conditions in-

cluded appropriate alterations in i) the strengths of GABAergic and glutamatergic connec-

tions, and ii) the amplitude of average EPSPs/IPSPs. Results revealed that a subtle balance 

between excitatory and inhibitory feedbacks is required in the model for reproducing a ‘realis-

tic’ fast activity, i.e., showing a reduction of frequency with a simultaneous increase in ampli-

tude, as actually observed in epileptogenic cerebral cortex. Results also demonstrated that the 

number of scenarios (variation, in time, of model parameters) leading to chirp-like signatures 

was rather limited. First, to produce high-frequency output signals, the model should operate 

in a “resonance” region, at the frontier between a stable and an unstable region. Second both 

EPSP and IPSP amplitudes should decrease with time in order to obey the fre-

quency/amplitude constraint. These scenarios obtained through a mathematical analysis of the 

model show how some alteration in the structure of neural networks can lead to dysfunction. 

They also provide insights into potentially-important mechanisms for high-frequency epilep-

tic activity generation.  

  

      

Keywords: Neural mass model, fast onset activity, focal seizures, partial epilepsy, fast inhibi-

tory interneurons, high-gamma, chirp. 
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1. Introduction 

Focal seizures recorded in patients with partial epilepsy are often characterized by the oc-

currence, at their onset, of a typical electrophysiological pattern marked by the appearance of 

sustained (several seconds) high-frequency oscillations (60-100 Hz). This pattern, also re-

ferred to as “rapid discharge” (Bancaud et al., 1970; Talairach et al., 1992), has long been ob-

served in stereoelectroencephalographic (SEEG) signals recorded with intracerebral elec-

trodes (depth-EEG) during pre-surgical evaluation of drug-resistant partial epilepsies (Allen et 

al., 1992; Fisher et al., 1992; Traub et al., 2001; Wendling et al., 2003). During the past dec-

ade, the fast activity observed at seizure onset has received increased attention. Indeed, most 

epilepsy units are now equipped with recording systems allowing for high-frequency sam-

pling of EEG, ECoG (electrocorticography) or SEEG signals (up to 1 kHz in clinical routine). 

Therefore, since the first recordings performed in the 90s (Allen et al., 1992; Fisher et al., 

1992), a number of reports have shown the potential relevance of high-frequency oscillations 

in the study of the epileptogenic zone (Traub, 2003) and in the subsequent definition of the 

surgical therapy aimed at suppressing seizures or at significantly reducing their frequency. In-

deed, in the study of (Alarcon et al., 1995), as the authors analyzed the power spectrum of 

ictal intracranial EEG signals, they could relate the surgical outcome with the resection of 

brain sites where localized high-frequency activity was generated. Results showed that the 

removal of such sites could be associated to favorable prognosis. In (Lee et al., 2000), neocor-

tical seizure-onset patterns recorded with intracranial electrodes were analyzed in 53 patients 

candidate to resective epilepsy surgery. Among the observed electrophysiological patterns, 

extratemporal and regional onset were more commonly associated with low voltage fast activ-

ity (in the gamma range) and were more often characterized by favorable outcome. Later, spa-
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tio-temporal correlations in human intracerebral EEG signals measured during rapid dis-

charges were studied using a cross-correlation analysis in the classical frequency sub-bands of 

the EEG (Wendling et al., 2003). Results revealed a “de-correlation” phenomenon that can be 

interpreted as a functional decoupling of distant brain sites at seizure onset followed by an 

abnormally high re-coupling when the seizure develops. More recently, in order to objectively 

identify epileptogenic brain structures, a quantity called the “epileptogenicity index” and 

computed from intracerebral recordings was proposed and evaluated in 17 patients with tem-

poral lobe epilepsy (Bartolomei et al., 2008). It is noteworthy that the energy associated to 

high frequencies during the rapid discharge at the onset of seizures is one of the main contrib-

uting features in this index. 

Consequently, in humans, data about the relationship between fast activity and epilepto-

genic nature of the brain tissue that generates this activity has accumulated. However, so far, 

the mechanisms underlying the generation of fast oscillations at the onset of seizures remain 

elusive. In mesio-temporal epilepsies, although observed discharges are of lower frequency 

than those observed in the neocortex, results from computational studies (Wendling et al., 

2002; Wendling et al., 2005) demonstrated that the transition from interictal to ictal activity 

can be explained by time-varying synaptic interactions between pyramidal cells and interneu-

rons with slow and fast GABAA kinetics. In addition, the appearance of the rapid discharge at 

seizure onset is explained by an abrupt drop of dendritic inhibition and a crucial role of in-

terneurons targeting the perisomatic region of pyramidal cells. Interestingly, in line with these 

findings from computational modeling, a recent experimental study performed in the isolated 

brain preparation showed that in the superficial neurons of the entorhinal cortex, the fast onset 

activity is correlated with rhythmic inhibitory-post synaptic potential IPSPs (Gnatkovsky et 

al., 2008). Authors concluded that in their acute model of ictogenesis, inhibitory networks 

have a prominent role in the transition to seizure activity. In human focal neocortical epilep-



5 

sies, only few studies have addressed the potential mechanisms. Using detailed network simu-

lations, it has been hypothesized that gap junctions could play a role in very fast EEG oscilla-

tions (Traub, 2003; Traub et al., 2001). 

In this paper, we report a study of electrophysiological patterns showing high frequency os-

cillations (70 Hz and beyond) using a physiologically-plausible neural mass model of the 

cerebral cortex. We show that this model can reproduce chirp-like spectrographic signatures 

(Schiff et al., 2000) actually observed in human data quite accurately. In addition, results 

demonstrated that the number of scenarios (variation, in time, of model parameters) leading to 

these signatures is rather limited. These scenarios obtained through a mathematical analysis of 

the model provide insights into potentially-important mechanisms for high-frequency epilep-

tic activity generation and show how the alteration of the structure of neural networks leads to 

their dysfunction. 

2. Methods and material 

2.1. The model 

2.1.1. Level of modeling 

In order to simulate signals generated in the cerebral cortex, we designed a physiologically-

plausible computational model the level of which is that of the neuronal assembly (“neural 

mass”). This means that our model considers the average activity of interconnected sub-

populations of principal neurons and interneurons without explicit representation of mecha-

nisms lying at the level of single cells, conversely to detailed models. Although macroscopic, 

these models rely on neurophysiological data and have two essential features. First, their pa-
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rameters relate to excitatory and inhibitory processes taking place in the considered neuronal 

tissue. Second, the temporal dynamics of their output (analogous to a local field activity) can 

be directly compared to those reflected in real signals recorded with electrodes located in the 

cerebral cortex. Indeed, it can be assumed that field potentials reflect overall dynamics rising 

from interconnected populations of principal neurons and interneurons. 

This type of approach was first described theoretically by Wilson and Cowan (Wilson HR, 

1973). Nunez (Nunez, 1974), Freeman (Freeman, 1978) and Lopes Da Silva (Lopes da Silva 

et al., 1974; Lopes da Silva et al., 1976) were the first to use it for interpretation of 

electrophysiological data. During the past decade, an increasing number of studies made use 

of this class of models in various neurophysiological or clinical studies. Jansen et al. (Jansen 

BH, 1995; Jansen BH, 1993) proposed a lumped-parameter model of the visual cortex to 

study the generation of evoked potentials. In the context of epilepsy, Wendling et al. showed 

their relevance for interpretation of interdependence measures (Wendling et al., 2001; Wend-

ling et al., 2000) and then elaborated a model describing the hippocampus activity in TLE 

(Wendling et al., 2002; Wendling et al., 2005). Suffczynski et al. (Suffczynski et al., 2004) 

investigated the mechanisms of transition between normal EEG activity and epileptiform 

paroxysmal activity using a computational macroscopic model of thalamocortical circuits. 

Robinson et al. used this type of modeling approach to study epileptic seizures and different 

normal EEG rhythms such as slow-wave sleep, alpha and low-gamma waves (Breakspear et 

al., 2006; Rennie et al., 2000; Robinson et al., 2002; Robinson et al., 2003). Steyn-Ross et al. 

(Steyn-Ross et al., 2004), Bojak and Liley (Bojak and Liley, 2005) and Molaee-Ardekani et 

al. (Molaee-Ardekani et al., 2007) included some different underlying mechanisms of EEG 

signals (synaptic and ionic mechanisms) during general anesthesia in similar mean-field mod-

els, and simulated EEG signals in different depths of anesthesia. The readers may also refer to 
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(Deco et al., 2008) for a recent review on models of brain dynamics, including neural mass 

and mean field descriptions. 

In this study, the macroscopic modeling approach we followed required a description of 

both the different sub-populations of cells present in the cerebral cortex and the synaptic in-

teractions among these sub-populations. Therefore, in order to design the model, we started 

from neurophysiological data about neuronal organization and connectivity of the cerebral 

cortex. The main features were obtained from the literature, synthetically reviewed in appen-

dix A. 

2.1.2. Formal description of the model 

2.1.2.1. Model structure and equations 

As illustrated in figure 1, the model accounts for the main salient features we found about 

the cyto-architecture of the cerebral cortex, and includes the following sub-populations: i) py-

ramidal cells ( ), ii) soma- and proximal- dendrite-targeting cells (P I : basket cells and chan-

delier cells mediating GABAA,fast currents), and iii) dendrite-targeting cells ( I ′ : neurogliaform 

cells mediating GABAA,slow and GABAB currents). Therefore, the contribution of bitufted, 

double bouquet, stellate cells and martinotti cells to the network activity is not represented in 

the model. 

According to the neural mass modeling approach, a pulse-to-wave function transforms the 

average pre-synaptic pulse density of afferent action potentials (input) into an average postsy-

naptic membrane potential (output) whereas a wave-to-pulse function relates the average 

postsynaptic potential to an average pulse density of potentials fired by the neurons, at the 

level of each sub-population (Jirsa and Haken, 1996).  
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The pulse-to-wave function is represented by a 2nd order linear transfer function impulse re-

sponse  where W and  are amplitude and rate constant of the average receptor-

mediated postsynaptic potential, respectively, denoted as 

wth t Wtwe−=( ) w

A a,  in the excitatory case (AMPA) 

and as  (GABAA,slow), G  (GABAA,fast) and  (GABAB) in the inhibitory case.  B b, g, D d,

The wave-to-pulse function for given sub-population X  is modeled by a static nonlinear 

function of sigmoid shape 1 X X v
X X

rS v Q e θ −= + ( )max( ) ( )  to represent saturation and threshold ef-

fects taking place at the soma (see the legend of table 1 for parameter values).  

Besides synaptic transmission, interactions between neuronal sub-populations are also 

characterized in the model by connectivity constants ( ) which 

account for the average number of synaptic contacts or “connection strength” between con-

sidered sub-populations. In addition, the non specific influence from neighboring or distant 

populations is represented by a Gaussian input noise corresponding to an excitatory input 

PP PI IP IIC C C C, , , , PI I P I I I IC C C C′ ′ ′ ′ ′, , ,

0p t p N σ= +( ) ( , )  ( 90p = , ) that globally describes the average density of afferent action 

potentials. 

30σ =

Model equations are derived from the set of pulse-to-wave transfer functions of impulse re-

sponse , as presented above. Each introduces a 2nd order ordinary differential equation of 

the form: 

h t( )

2

2
22 Xtt

w w t WwQ tϕ∂ ∂
∂∂

+ + =( ) ( ) ( )  where  and XQ t( ) tϕ( )  are the respective input (afferent 

pulse density) and output (average postsynaptic membrane potential) signals. The set of sec-

ond order stochastic nonlinear ordinary differential equations obtained for all synaptic interac-

tions present in the model was numerically solved using a fixed step ( ) forth-order 

Runge-Kutta method. 

1t mΔ = s

Finally, regarding the model output, summated postsynaptic potentials on pyramidal cells 

can be interpreted as a field potential. The corresponding simulated signal will be considered 
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as the main model output. Other possible model outputs can be the postsynaptic activity or the 

firing rate at the level of each sub-population.  

2.1.2.2. Time constants of glutamatergic and GABAergic PSPs 

In addition to connectivity parameters, time constants (i.e. 1/  with w = a, b, d, and g) are 

crucial parameters as they define cut-off frequencies of  functions that can be seen as im-

pulse responses of low-pass filters. Therefore, it is essential that these parameters are adjusted 

in a “physiological” range.  

w

( )h t

It is noteworthy that, in the proposed model, the time constant used in a given  func-

tion  (either excitatory or inhibitory) determine both the rise time (trise) and the decay time (tde-

cay) of its impulse response mimicking the PSP (as h is a second order transfer function). In 

general, trise is defined as the time going from zero to the time corresponding to the maximum 

value of the PSP (PSPmax). tdecay is defined as the time required for the PSP to reach the value 

PSPmax/exp(1). In our model where , it can be shown that the time constant 1/w 

is equal to trise and that tdecay = 3.146 / w  indicating that the decay of the modeled PSP is about 

three times longer than its rise.  

( )h t

wth t W w t e−=( ) . . .

Regarding EPSPs, it is known that excitatory synaptic transmission is primarily mediated 

by ionotrophic glutamate receptors: AMPA, NMDA and kainite. As reported in (Kidd and 

Isaac, 1999), fastest components of the EPSPs are mediated by AMPA receptors. Many stud-

ies have reported accurate measurements of EPSP features. For instance, AMPA-mediated 

EPSPs in neocortical pyramidal neurons are shown in (Nettleton and Spain, 2000). Typically, 

trise is equal to 4.5 to 7.5 ms and tdecay is about 20 ms for a total duration of about 40 ms (re-

turn to baseline). According to these values, we adjusted the value of  at about 5.5 ms.  a/1

Regarding IPSPs, we found less studies as these potentials are technically more difficult to 

measure than EPSPs. In general, IPSCs are easier to evaluate. Nevertheless, regarding 
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GABAA,fast and GABAA,slow synapses, the work performed by Pearce and colleagues (Czeiger 

and White, 1993; Pearce, 1993) allowed us to adjust the corresponding time constants (1/g 

and 1/b, respectively). In particular, the paper by (Hardie and Pearce, 2006) shows the fea-

tures of both the IPSCs and the IPSPs corresponding to fast and slow inhibition mediated at 

the level of GABAA receptors. The study reported in (Thomson et al., 1996) also provides 

some temporal properties (rise time 10-90% = 2.71 ± 0.6 ms, width at half amplitude = 

14.72 ± 3.83 ms) of averaged IPSPs triggered by fast spiking interneurons and recorded in 

neocortical pyramidal cells. Based on these studies, we determined that time constants  

and could be adjusted in the two intervals [30, 70] ms and [3, 8] ms, respectively. Finally, 

GABAB-mediated IPSPs are much longer than GABAA-mediated IPSPs. In the study reported 

in (Deisz, 1999) performed in neocortical neurons of the rat in vitro, the time-course of the 

isolated IPSPB was measured under various conditions (including control). These data indi-

cate that the value of can vary from 200 to 400 ms.  

b/1

g/1

d/1

The values of time constants of glutamatergic and GABAergic PSPs we used in the model 

are summarized in table 1, along with the corresponding rise and decay times, as defined 

above. 

2.2. Mathematical analysis of the fast inhibitory loop in the model 

In this study, we focus on a reduced model that corresponds to the loop between pyramidal 

cells and basket cells. A prior general investigation (not reported) showed that the fast activity 

is generated in this loop and that type I ′  interneurons (neurogliaform, GABAA,slow and 

GABAB synaptic interactions) do not contribute to high frequency oscillations. Figure 2 illus-

trates the structure of the reduced model that is investigated. Such a model structure is, more 

or less, consistent with previously published models (Rennie et al., 2000), but with a major 
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difference that the inhibitory synaptic interactions are established by GABAA,fast rather than 

GABAA,slow. 

In the following, we first summarize the differential equations of the reduced model and 

describe the method we used to obtain the equilibrium points of this model. Then, we give the 

formula of the eigenspectrum of the output signal for stable state. A special attention is paid 

to the resonance characteristics of the model as they determine the presence of a high-

frequency component in the output signal.  

2.2.1. Differential equations of the model and the equilibrium solution 

In the reduced model, the connections among pyramidal cells and type-I interneurons allow 

us to establish the following four linked equations: 

 
2

2
22 Ptt

a a t AaQ tϕ∂ ∂
∂∂

+ + =( ) ( ) ( )P  (1) 

 
2

2
22 Itt Ig g t GgQϕ∂ ∂

∂∂
+ + =( ) ( ) t( )

)f

)I

 (2) 

  (3) (P P IP PP IPQ t S C t C t tpϕ ϕ= − +( ) ( ) ( ) ( )

 (I PI PI IIQ t S C t C tϕ ϕ= −( ) ( ) ( )  (4) 

where  is the strength of connection between sub-population XYC X  and Y .  is the pulse 

density of sub-population 

XQ t( )

X  and X tϕ ( )  is its average membrane potential.  is the sigmoid 

wave-to-pulse function. 

XS

A ,  are EPSP and IPSP amplitudes, and a , G g  are EPSP and IPSP 

rate constants. Finally,  is the response of the h-function (i.e. “filtered noise”) to the ex-

citatory input driving noise 

f tp ( )

tp( ) , which is expressed by the following differential equation: 

 
2

2
22 ftt

a a t Aa tp p∂ ∂
∂∂

+ + =( ) ( ) ( )  (5) 

The output signal of the model  is obtained by summation of postsynaptic membrane po-

tentials on pyramidal sub-population as follows: 

tv( )
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 P IPP IPt C t C t tpv fϕ ϕ= − +( ) ( ) ( ) ( )  (6) 

To calculate equilibrium solution of the model all  and the variance of the input noise 

were set to zero in equations 

/ t∂ ∂

(1)-(5). This yields the following equations: 

 ( ) , whereP P PP P IP I f fQ S C C A ap p pϕ ϕ= − + =  (7) 

 ( ) I
I I PI P II I

g
Q S C C

G
ϕϕ ϕ= − =  (8) 

The bar symbol in the above equations indicates that model variables are not time-

dependent anymore. If Pϕ  is treated as an independent variable, by the use of equation (7), Iϕ  

can be estimated as a function of Pϕ  as written below (the hat symbol indicates the estima-

tion): 

 1 1P
I P

P P
P PP f IP

AQ
C

a
p

r
θϕ ϕ

ϕ
⎛ ⎞
⎜= − + − + +
⎜
⎝ ⎠

max
ln( ) /ˆ C⎟

⎟
 (9) 

On the other hand, in a similar way, Pϕ  can be estimated from equation (8) as a function of 

the estimated Iϕ  (i.e. ˆ
Iϕ  in the above equation) as follows: 

 1 1I
P

I I
II II PI

GQ
C C

gr
θϕ

ϕ
⎛ ⎞
⎜= − − +
⎜
⎝ ⎠

max
ln( ) /ˆ

ˆ ϕ ⎟
⎟

ˆ  (10) 

The equilibrium solution of the Pϕ  variable is a Pϕ  value that minimizes ˆ
P Pϕ ϕ− . This 

equilibrium value, denoted by Pϕ• , and its corresponding Iϕ•  value were found numerically us-

ing the so-called ‘fzero’ function in MATLAB®. 

2.2.2. Stability, eigenspectrum and resonance features 

For small deviations from a stable equilibrium state a nonlinear dynamical system can be 

well approximated by the corresponding linear system derived by linearizing the system about 
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that equilibrium state. Then it is straightforward to take the Fourier transform of the transfer 

function of the linearized model to obtain the eigenspectrum  as follows: VP ω( )

 
2

V T
a

aAP V
L

σω ω
ω

=( ) ( )
( )

 (11) 

where, 

 
( )1 1 2

2 1 1 2
1

PP g PP II IP PI
T

a g II a PP g PP II IP PI

Aa C L c Ggc c C C C C
V

L L Ggc C L Aac C L AaGgc c C C C C

ω
ω

ω ω ω ω

+ −
= +

+ − − −

( ) ( )
( )

( ) ( ) ( ) ( ) ( )
 (12) 

2
aL i aω ω= +( ) ( ) 2

gL i gω ω= +( ) ( ),  and ,  are steepness values of sigmoid functions relat-

ing to pyramidal and interneuron sub-populations, respectively, at their equilibrium states. 

These values are expressed as follows: 

1c 2c

 
( )

( )( )
1 21

PP P IP I f

P P

P

P P

P x C C p

Q x
c

x

r r

r
ϕ ϕ

θ

θ • •= − +

−
=

− +

max exp ( )

exp ( )
 (13) 

 
( )

( )( )
2 21

PI P II I

I I

I

I I

I x C C

Q x
c

x

r r

r
ϕ ϕ

θ

θ • •= −

−
=

− +

max exp ( )

exp ( )
 (14) 

Roots of the denominator of equation (12) determine the stability mode of the model. If the 

maximum real part of these roots is a positive value the model is unstable. 

An important step in the theoretical analysis is the quantification of the characteristics of 

the resonance frequency of the model when free parameters vary. To proceed, the resonance 

frequency of  is first calculated approximately by obtaining the roots of 4th order poly-

nomial in the denominator of equation 

VP ω( )

(12). We used Descartes' cubic resolvent method to ob-

tain the roots analytically. The eigenspectrum may exhibit a resonance frequency if there are 

two conjugate complex roots in the solution. The resonance frequency is approximately equal 

to the imaginary parts of the complex solutions with the highest real value. This real value de-
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termines the strength of the resonant frequency. Strongest resonance frequencies correspond 

to closest roots to the imaginary line. 

To characterize the shape of the eigenspectrum around the resonance frequency, we fitted 

the normalized eigenspectrum, that usually appears with only one pair of strong conjugate 

complex roots, with a function that combines a Lorentzian resonance at Rf f=  of quality  

with a power law decay 

q

Bf − , i.e., 

 2 22
1 4 1

N

V N N
R

K CP f
q f f f C

π = +
+ − +

( )
( / )

 (15) 

We set 1K =  and we fitted parameters in a reasonable limited range ( ,  and 

) by ‘lsqcurvefit’ function in MATLAB®. After fitting the parameters, bandwidth 

of the output signal was expressed as

50q < 2 50C ∈ [ , ]

0 25 3N ∈ [ . , ]

2Rf q/( ) . The resonance frequency, total energy of the 

output signal and the bandwidth were the three parameters that we used in this study to char-

acterize the output signal. For real signals and for signals simulated by running the model, we 

expressed the energy as square of data samples averaged over a 1 s sliding window. 

2.3. Real depth-EEG signals 

The real depth-EEG signal analyzed here and shown in figure 3 was recorded in a patient 

undergoing pre-surgical evaluation of drug-resistant partial epilepsy (Bartolomei et al., 2002). 

In this patient, a focal cortical dysplasia was located in the left parietal region. Depth-EEG re-

cordings were performed using intracerebral multiple lead electrodes (10 to 15 leads, length: 2 

mm, diameter: 0.8 mm, 1.5 mm apart) placed intracranially according to Talairach's stereotac-

tic method (Bancaud and Talairach, 1973). The intracerebral electrode that recorded the ana-

lyzed depth-EEG signal was positioned in the vicinity of the lesional brain site located in the 

inferior parietal lobule. This intracerebral EEG signal was selected because it contained a 



15 

chirp-like signature (figure 3, white arrow) considered as representative of the type of fast ac-

tivity encountered at the onset of neocortical seizures. This signal was sampled at 512 Hz 

were recorded on a DeltamedTM system. No digital filter was used except a hardware analog 

high-pass filter (cut-off frequency equal to 0.16 Hz) used to remove very slow variations that 

sometimes contaminate the baseline. 

3. Results  

Results are organized into four main sections. The first section describes the features of 

chirp-like signatures observed in real depth-EEG signals at seizure onset. Then, we report the 

results about the model investigation, according to the type of parameters under study (con-

nectivity parameters and amplitudes of EPSPs and IPSPs). The last section provides an exam-

ple of simulated fast onset activity based on a scenario obtained from the knowledge acquired 

about the model behavior as a function of parameters. 

3.1. Frequency, energy and bandwidth of chirp-like signatures observed in 

real depth-EEG signals at seizure onset 

A magnified view on the transition from pre-ictal activity to seizure onset activity is pro-

vided in figure 4 which shows the raw (unfiltered) depth-EEG signal (figure 4-a) along with 

the signal filtered the in frequency band of interest (60-150 Hz, figure 4-b). As depicted in the 

time-frequency (T-F) representation given in figure 4-c, it can be observed that the fast onset 

activity has very specific features. First, this activity occupies a relatively narrow band of the 

T-F plane indicating that it stays quasi-sinusoidal over 7 to 8 seconds. Second, the dominant 

frequency gradually decreases from about 100-110 Hz down to 60-70 Hz (chirp-like). Third, 

as shown by figure 4-d, the signal energy gradually increases as the frequency decreases. Al-
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though some variability can be observed from patient to patient, it is noteworthy that the fea-

tures described hereabove are quite representative of the signatures encountered at the onset 

of neocortical seizures.  

3.2. Resonance characteristics and strength of excitatory/inhibitory 

connections 

As detailed in section  2.2.2, according to stability and resonance behaviors of the model, 

we classified the functioning modes of the model into three main regions: unstable, stable and 

resonance regions. In the unstable region, there exists at least one root that takes a positive 

real value. In the resonance region, a resonance frequency is observed on the eigenspectrum 

of the output signal. In the stable region, the eigenspectrum is a monotonically-decreasing 

function of the frequency. 

In this section, we report the results about the effects of the strength of connections (i.e., 

) among pyramidal and soma-projecting interneuron sub-populations on the 

stability and on the functioning modes of the model. In the first part ( 3.2.1) of this section, the 

strength of glutamatergic ( ) and GABAergic ( ) connections is studied sepa-

rately. In the second part ( 3.2.2), we provide the results about the variation of the four connec-

tivity parameters all together. 

PP PI IP IIC C C C, , ,

PP PIC C, IP IIC C,

3.2.1. Distinct influence of excitatory and inhibitory connections 

As a general observation, we noticed that the ratio between  and  plays an impor-

tant role and determines, at least in part, the stability status of the model. Indeed, as shown in 

figure 5, the increase of this ratio changes the behavior of the model from stable state (dark 

grey area) into resonant state (color-coded area) or unstable state (light grey area). 

PIC PPC



17 

Figure 5-a, 5-b and 5-c illustrate the effects of the strength of glutamatergic connections 

(i.e., ) on the functioning modes of the model when the strength of GABAergic con-

nections is kept constant (here,  and ). More particularly, they provide the 

evolution of some features (5-a: resonance frequency, 5-b: total energy and 5-c: bandwidth) of 

the model output signal in the ( ) plan. For more clarity, we give some descriptions 

about the contents of figure 5-a in figure 5-g.  

PP PIC C,

280IPC = 400IIC =

PP PIC C,

Inside the resonance region, the increase of  or the decrease of  (see violet arrows 

in figure 5-g) increased the resonance frequency and the associated energy (towards darker 

red color). Conversely, it reduced the bandwidth of the output signal (towards blue color). 

PIC PPC

As shown by equation (12), the two parameters  and  in excitatory connections 

multiply by parameter 

PPC PIC

A  which represents the amplitude of average EPSPs on pyramidal cells 

and on interneurons. Therefore, figure 5 not only indicates the effect of  and  on reso-

nance characteristics of the model, but also can be used to study the effect of the amplitude of 

average EPSPs on the resonance behavior of the model at a given  and  value. 

PIC PPC

PIC PPC

To do so, the features of the output signal (frequency, energy and bandwidth) can be exam-

ined along a straight line which connects a given desired  and  value to the origin of 

 and  axes. Along this line the  ratio remains unchanged (“iso-  ra-

tio”) while the absolute values of the two parameters vary. This variation can be interpreted as 

the effect of the EPSP amplitude on the model output at a given  and  parameters. 

Some examples of these lines with different  ratios have been illustrated in figure 5-

g. It can be inferred from these lines that the EPSP amplitude may increase the resonance fre-

quency as well as the signal energy.  

PIC PPC

PIC PPC PI PPC C/ PI PPC C/

PIC PPC

PI PPC C/

Figure 5-d, 5-e and 5-f illustrate the effects of the strength of GABAergic connections (i.e., 

IP IIC C, ) on resonance behavior of the model for fixed strengths of glutamatergic connections 
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(here,  and ). Some descriptions about the contents of figure 5-d are given 

in figure 5-h. As in the previous case (i.e., the  ratio), it could be noticed that the 

240PPC = 450PIC =

PI PPC C/

IP IIC C/  ratio was an effective parameter that also determined, in part, the stability of the 

model and subsequently the output signal. When this ratio increased, the system moved from 

stable to unstable state, possibly through resonance state.  

While an increase in IIC  decreased the resonance frequency, an increase in IPC  increased 

the resonance frequency (see violet arrows in figure 5-h). Similarly, these parameters showed 

opposite influences on resonance energy and resonance bandwidth. Straight lines (“iso-

IP IIC C/  ratio” depicted in figure 5-h) indicated that the resonance frequency, energy and 

bandwidth did not change much with the amplitude of average IPSPs. These straight lines 

also indicated that a minimum value of the IPSP amplitude is required for the resonance re-

gion to be formed between the stable and unstable region. 

Indeed, results revealed some necessary conditions for which high-frequency oscillations in 

the high-gamma band range are generated in the model. As indicated in figure 5-d and 5-h, 

first we found that an interconnection (with a minimum value of strength) among basket cells 

(i.e., IIC ) was necessary for generation of gamma activity. Second, results showed that the 

connection from basket to pyramidal cells (i.e., IPC ) should also be active and should also 

have a certain strength for the high-frequency activity to be distributed over the entire py-

ramidal-basket network. 

3.2.2. Joint influence of excitatory and inhibitory connections 

The previous section provided the results about the model behavior when the strengths of 

inhibitory and excitatory connections varied separately. This section reports the results about 

the joint influence of connectivity parameters ( ) taken together. PP PI IP IIC C C C, , ,
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Results are summarized in figure 6 which provides a series of four 3D plots in which the 

resonance frequency is shown as a function of  for four PP PI IIC C C, , IPC  values.  

First, regarding the influence of IIC , results showed that the resonance regions in the 2D 

planes (i.e.,  planes) expand and rotate anticlockwise when PP PIC C, IIC  increases. This rota-

tion causes the resonance frequency to reduce with IIC  at a given pair of  and  values. 

Nevertheless, this reduction with 

PPC PIC

IIC  does not necessarily mean that, in the model, the lower-

ing of IIC  values necessarily leads to the appearance of the maximum reachable resonance 

frequency. Indeed, for a fixed IPC  value, the reduction of IIC  may lead to a reduction of the 

resonance region or even to its disappearance. In other words, since the parameter space for 

fixed IPC  value is 3-dimensional, the expansion and rotation of the resonance region implies 

that if IIC  increases, one may still find another pair of  and  values for which the 

resonance frequency is as high - or even higher - than before. 

PPC PIC

Results also showed that a saturation of the maximum reachable frequency when  in-

creases. This effect can be seen in figure 6-a showing that the dark red region (maximum 

reachable frequency) depends on the value of . This result indicates that i) a certain degree 

of interconnection within interneurons is necessary in order to generate high-frequency oscil-

lations but ii) augmenting too much the strength of such connections may have an opposite ef-

fect, i.e., reducing the frequency. As discussed in section  4, this result shows that a subtle bal-

ance between gains of the feedback loops present in the model seems to be necessary to get 

the maximum resonance frequency. 

IIC

IIC

Second, regarding the influence of IPC , results revealed that this parameter had opposite ef-

fects on resonance characteristics, compared to IIC . Its increase rotates the 2D resonance re-

gions clockwise, leading to an increase of the resonance frequency at a given  and PP PIC C,

IIC . Interestingly, its decrease (to some extent) results in an unchanged value of the resonance 
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frequency if the strength of excitatory connections  and  connections decrease and in-

crease, respectively. In the other hand, increase of 

PPC PIC

IPC  shrinks the resonance region, and may 

even prevent it to appear. 

3.3. Influence of the amplitude of EPSPs and IPSPs 

In section  3.2, we described results obtained from the variation of connectivity parameters 

(interpreted in neural mass models as “average numbers of synaptic contacts” or “connection 

strengths”). In this section, we study the influence of two other important parameters in the 

model: average EPSP and IPSP amplitudes (parameters  and ).  A G

These parameters were found to impact the resonance characteristics of the model, as illus-

trated in figure 7-a to 7-c which provide the features of the output signal (frequency, energy 

and bandwidth) as functions of parameters A  and . Figure 7-a depicted that the most strik-

ing effect was obtained for variation of 

G

A  (AMPA-related PSPs) whereas parameter G  

(GABAA,fast–related PSPs) did not change the frequency of oscillations. Results showed that 

the decrease of A  from a high value to a lower one led to the decrease the resonance fre-

quency. However, as already noticed, the sole modification of parameters controlling gluta-

matergic synaptic transmission (either via the connection strength or via the EPSP amplitude) 

is not sufficient for accurately reproducing fast onset activities. Indeed, as observed in real 

data (figure 4), the decrease in frequency should be accompanied with an increase of signal 

energy. In addition, this nonstationarity should occur at “constant bandwidth” of the signal. 

This constraint was quite strong and considerably limited the number of scenarios leading 

to accurate reproduction of observed signals. In particular, we found that the amplitude of 

both GABAergic and Glutamatergic PSPs ( A  and ) should be simultaneously modified in 

the model in order to reproduce a fast onset activity with aforementioned characteristics.  

G
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Inspection of figure 7-a to 7-c revealed that “correct” scenarios should correspond to a class 

of pathways in the ( A , G ) plane denoted by the semitransparent white arrow between the two 

semitransparent circles reported on the figure and characterized by the joint decrease of A  and 

. Indeed, it could be observed that the first circle was located in high EPSP amplitude / high 

IPSP amplitude area of the (

G

A , G ) plane while the second one was located in low EPSP am-

plitude / low IPSP amplitude.  

It could also be noticed that these pathways were, more or less, aligned with the edge be-

tween resonance and unstable regions, with a slight trend to enter the unstable region in order 

to gradually increase the energy of the output signal. Consequently, results show that a bal-

ance establishes between inhibitory and excitatory mechanisms and avoids an abrupt transi-

tion from the resonance region to unstable region to occur. Finally, modifying the A  and G  

parameters along pathways at the vicinity of the edge between resonance and unstable regions 

also guaranties that i) the frequency of the output signal is high, ii) its bandwidth stays nar-

row, and iii) its energy gradually increases. 

3.4. Simulation of a “realistic” fast onset activity  

From the theoretical results described in the previous section, the simulation of a fast onset 

that fulfills the frequency/energy/bandwidth constraints is straightforward. This simulated ac-

tivity can be obtained from a scenario according to which parameters A  and  gradually di-

minish as a function of time over a time interval of a few seconds. As shown in figure 8, we 

could verify that the progressive decrease of average EPSP and IPSP amplitudes led in the 

model to required features on the output signal (decreasing frequency, increasing energy and 

narrow bandwidth). In addition, an interesting feature of the model is to predict the output 

(firing rate) of the sub-population of pyramidal cells during the fast onset activity. Results 

showed that mean firing rate of these neurons increased with time, as illustrated in figure 8-d. 

G
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4. Discussion 

A salient feature of the epileptogenic brain tissue is its capacity to generate sustained high-

frequency oscillations (Bartolomei et al., 2008; Fisher et al., 1992; Schiff et al., 2000; Traub, 

2003; Wendling et al., 2003), conversely to the normal brain tissue. Therefore, finding the 

underlying mechanisms leading to this pathological activity is a critical issue in epileptology 

as it could lead to novel diagnostic and therapeutic procedures. Various types of modifications 

in the structure of brain circuits may lead to generation of this fast onset activity, occurring at 

the level of synaptic (Gnatkovsky et al., 2008) or non-synaptic couplings (Traub et al., 2001). 

In this paper we determined some necessary conditions for which high-frequency oscillations 

(high-gamma band) are generated in a physiologically-plausible neural mass model of the 

cerebral cortex. These conditions relate a) to the model structure (sub-populations specifically 

involved), b) to the role of feedback loops and connection strengths, and c) to the amplitude 

of excitatory/inhibitory PSPs. Main findings (a-c) are discussed hereafter. They are followed 

by some comments about the limitations of the model (d). 

a) “Minimal” model structure for generating high-frequency oscillations 

The proposed population model includes three sub-populations (pyramidal cells and two 

types of interneurons) interconnected via glutamatergic (AMPA currents) or GABAergic 

(GABA currents with slow and fast kinetics) synapses. It could be used to reproduce both 

pathological and normal (background EEG) activity, similarly to those presented in 

(Wendling et al., 2002; Wendling et al., 2005). In this model, it was found that the active par-

ticipation of the sub-population of interneurons mediating slow inhibition (type : neuroglia-

form cells) prevents the generation of sustained high-frequency oscillations (gamma band and 

beyond) as observed at the beginning of actual cortical seizures. Therefore, we assumed that 

the fast activity is produced in a “reduced model” that just includes two subpopulations: main 

cells (excitatory pyramidal neurons) and interneurons mediating fast inhibition only (type I : 

I'
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basket/chandelier cells). This assumption is in accordance with experimental studies indicat-

ing that i) bicuculline acts primarily as a blocker of GABAA,slow receptors (Kapur et al., 1997), 

ii) bicuculline perfusion leads to the appearance of fast onset activity (Uva et al., 2005), and 

iii) such fast activity was correlated with fast IPSPs in superficial pyramidal neurons 

(Gnatkovsky et al., 2008). Interestingly, it was also shown that inhibitory processes are not 

uniformly altered in an experimental model of focal epilepsy (Cossart et al., 2001). More spe-

cifically, GABAergic inhibition was found to be increased at the level of somata (where it is 

faster) but reduced in the dendrites (where it is slower) of pyramidal neurons.  

b) Role of feedback loops and influence of connection strengths  

Tsai et al. (Tsai et al., 2008) recently reported results about the influence of two feedback 

configurations (positive-plus-negative and negative-only) in various nonlinear oscillators, in-

cluding theoretical systems like Van der Pol’s and biological systems like those implied in 

circadian rhythms. They showed that a tunable frequency with near-constant amplitude can be 

more easily obtained in systems with both positive and negative feedback. In systems charac-

terized by negative feedback only, they demonstrated that only a limited set of parameters 

lead to oscillatory behavior and that adjustment of the frequency is much more difficult to ob-

tain.  

In the schematic diagram of the minimal model shown in figure 2-b, it can be easily veri-

fied the activity of pyramidal cells is determined by i) two positive feedback loops (  

and , where → denotes a positive interaction and where  denotes a negative 

interaction) and ii) one negative feedback loop ( ). It can also be verified that the 

model structure can be changed from a positive-plus-negative feedback version (when  

and 

P P→

P I I P→

P I P→

PPC

IIC  are both different from zero) into a negative feedback-only version (when  

and ).  

0PPC =

0IIC =



24 

Interestingly, we think that the results we obtained in these two versions of the reduced 

model (figure 2-b) are in line with Tsai’s. Indeed, as depicted in figures 5-a and 5-d, for the 

“positive-plus-negative feedback” design (for instance,  in figure 5-a and 

in figure 5-d), the resonance region is broad and the frequency can be tuned in a rela-

tively wide range while still preserving a near-constant amplitude. Conversely, in the “nega-

tive-only feedback” design (see the planes obtained for  and for low 

200PPC =

500IIC =

0PPC = IIC values in fig-

ure 6), the resonance region becomes very narrow. In this case, tuning the frequency over a 

wide range of values is also harder to achieve. 

Moreover, results showed that mutual inhibition was necessary for generating high-

frequency oscillations. Indeed, a high degree of connections within interneurons (i.e. IIC  is 

even higher than within principal cells) was required to obtain significant energy in the 

gamma band. This finding is in line with previous experimental studies suggesting a possible 

substrate for fast activity is the presence of reciprocal interactions between inhibitory and ex-

citatory networks, with a central role played by the synchronous activation of networks of in-

terconnected interneurons (Gnatkovsky et al., 2008). See also (Bartos et al., 2007) for review. 

 It is also in line with computational studies using detailed cellular models (Traub et al., 

1996) which showed that a gamma oscillation can arise in networks of interneurons where 

some mutual GABAA-mediated synaptic inhibition and some source of excitatory input are 

present. However, in our model, both the mutual inhibition and the feedback from inhibitory 

to excitatory sub-population are necessary for appearance of gamma rhythm.  

Indeed, a subtle adjustment of gains in positive and negative feedback loops was necessary 

for generation of high-frequency oscillations. Results showed that either a very weak or a 

very strong connection within fast-interneurons may disrupt the balance between positive and 

negative feedback loops. More formally, the IIC  value must lie in a certain range such that 

2 IIGgc C  and 1 PIAac C  gain values are, more or less, in the same order of magnitude. In addi-



25 

tion, it was required that outgoing GABAergic projections from interneuron sub-population to 

interneuron and pyramidal sub-populations must also be set to proper values. Indeed, results 

showed that the IP IIC C/  ratio was also a crucial parameter for leading the model to the reso-

nance region and thus, for getting high-frequency oscillations.  

The above description is valid for both interneuron and pyramidal sub-populations. By du-

ality, this means that 1 PPAac C  and 2 IPGgc C  should have the same order of magnitude for the 

model to generate a high-frequency output signal. In addition, results showed the  ra-

tio was also a crucial parameter that can take the model to the resonance region. 

PI PPC C/

It is noteworthy that this resonance region is located at the border between stable and un-

stable regions. Interestingly, “normal” (i.e., non ictal) ongoing brain activity is classically as-

sociated with “stable” dynamics whereas “ictal” activity is associated with “unstable” dynam-

ics (Lopes da Silva et al., 2003). Therefore, it can be speculated that the fast onset activity 

occurs when involved brain systems move from stability towards instability during the transi-

tion to seizure. 

It should also be emphasized that the connection strength parameter is interpreted, in the 

model, as an average number of synaptic contacts. One salient property of epileptic chirp-like 

signatures is that they generally last for 5 to 10 seconds (Schiff et al., 2000; Timofeev and 

Steriade, 2004). However, from the physiology viewpoint, the dramatic decrease of frequency 

observed during this time interval can hardly be explained by a change in the number of syn-

aptic contacts. This argument led us to explore the influence of PSP amplitudes ( A  and G ) 

that are also parameters involved in the gains of positive and negative loops ( 2 IIGg , c C

1 PIAac C , 1 PPAac C  and 2 IPGgc C ), as described in the next paragraph. 

c) Influence of EPSP/IPSP average amplitudes 

We studied the conditions, on EPSP and fast IPSP amplitudes ( A  and G ), for reproducing 

actual features of fast onset activities. Our study revealed that the number of scenarios leading 
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to accurate reproduction of observed features was rather limited. Results showed that A  and 

 should both decrease in such a manner that the balance between abovementioned positive 

and negative feedbacks was maintained (i.e., keeping the model between stable and unstable 

regions). However, as described in section 3.3, in order to increase the energy of the chirp 

signal, pathways should have a slight deflection from the resonance region toward the unsta-

ble region. Therefore, the model shows that, as time is going on and as frequency decreases, 

both the excitatory and inhibitory synaptic processes seem to gradually weaken. Regarding 

the decrease of the average amplitude of IPSPs, our simulation results might corroborate some 

experimental findings showing that GABAA receptors in epileptic tissue exhibit a relatively 

fast rundown (Palma et al., 2002; Palma et al., 2007). This rundown is precisely defined has 

the gradual decrease of GABAergic responses upon repetitive stimulation of GABAA recep-

tors probably caused by phosphorylation mechanisms (Palma et al., 2004; Palma et al., 2005). 

Ultimately, the system moves towards instability. In the complete model shown in figure 1-a, 

this bifurcation comes with a transition between the fast onset activity and a slower high-

amplitude, low-frequency activity (i.e., rhythmic spikes and bursts), often referred to as 

“clonic activity”. However, we did not study this phenomenon in depth, as it is beyond the 

scope of this paper.  

G

d) Limitations of this study 

It should be mentioned that the “reduced model” structure on which we focused in this 

study corresponds to a pathological brain circuitry occurring transiently at a precise time be-

tween pre-ictal and ictal activity. The blockade of GABAA,slow inhibition (B = 0) is a necessary 

condition to get the reduced model (figure 2) from the whole model (figure 1). The blockade 

of GABAA receptors is known to be a classical experimental procedure to induce epileptic ac-

tivity. The reduction of fast IPSP amplitude during the fast onset activity have been recently 

justified experimentally based on combined intracellular/extracellular recordings in the guinea 
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pig isolated brain preparation (Gnatkovsky et al., 2008). However, we could not find an ex-

perimental analysis showing the reduction of the frequency of fast onset activity requires also 

reduction of EPSP amplitude. 

Another issue in the proposed model is related to the number of excitatory and inhibitory 

synaptic contacts among sub-populations. In general, considering the high number of pyrami-

dal cells in the cortex and the vast expansion of their dendritic trees,  should take a higher 

value than the value of 

PPC

IIC  or I IC ′ ′ . Usually, for slow GABAergic synapses, the  ra-

tio is set to a value around 4 to 5 (Bojak and Liley, 2005; Molaee-Ardekani et al., 2007; Ren-

nie et al., 2000). Considering that basket cells establish a lot of interconnections with other 

basket cells, the  ratio for fast GABAergic synapses may decrease a little bit (the ex-

act value is unknown). Nevertheless, in the reduced model, we found out that basically,  

parameter should be less than 

PP I IC C ′ ′/

PP IIC C/

PPC

IIC  parameter in order to generate fast onset activity. This dis-

crepancy may be explained by two factors, at least. First, studied electrophysiological signals 

were recorded from an abnormal cortex (dysplasia). Therefore, alterations at the level of con-

nectivity are likely to occur depending on the underlying pathology. In order to clarify this 

point, a detailed analysis of chirp-like signatures with respect to histo-pathological findings is 

desirable although always difficult to carry out on human resections. Second, according to in-

tracellular recordings, it was shown that pyramidal cells are almost silent during fast onset ac-

tivity (Gnatkovsky et al., 2008; Penttonen et al., 1998). At the beginning of this activity, in-

terneurons mediate fast IPSPs on pyramidal cells that are more likely in a hyperpolarized 

state. Then, the gradual decrease of IPSP amplitudes leads to a depolarization of pyramidal 

cells. In terms of neural mass modeling, this phenomenon should be equivalent to a gradual 

increase in the mean firing rate of pyramidal sub-population. This is precisely what we ob-

served in the proposed model (figure 8-d). 
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It could also be hypothesized that only a fraction of pyramidal cells is silent during fast on-

set activity and thus, that the number of “active” connections is less than the number of “ac-

tual” connections. In such a case, fast interneurons may receive their excitatory signals from 

the remaining pyramidal cells (those that are not silent) during fast onset activity or even from 

excitatory GABAergic depolarizing potentials (Fujiwara-Tsukamoto et al., 2004). As a result, 

in this pathological case, the indicated excitatory sub-population in the studied reduced model 

may account for the sole fraction of “active” principal pyramidal cells. This provides an ar-

gument for reduced  value although it cannot be explicitly shown since cells are not ex-

plicitly represented at this level of modeling. This can be seen as a limitation since it is still 

difficult to closely relate the effect of parameter changes in this type of models with underly-

ing pathophysiological changes occurring neural networks at cellular or sub-cellular level. 

PPC

To end with, we would like to mention that our model does not account for “non synaptic” 

couplings between cells although these were shown to have a potentially-important role in the 

generation of high-frequency oscillations (Traub, 2003; Traub et al., 2001). With appropri-

ately adjusted synaptic time constants (i.e., chosen within a “physiological” range), we no-

ticed that neural mass models can generate quite high-frequency output signals, as also re-

ported in (Rennie et al., 2000). This specific point needs to be clarified in a further study. In 

particular, it would be useful to establish some relationships between “macroscopic” (popula-

tion) parameters governing fast dynamics of neural masses and “microscopic” components 

represented in detailed models, as gap junctions.  
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APPENDIX A: Literature review about the cellular organization of 
cerebral cortex 

Neocortical neurons are arranged in layers (layers I–VI) that connect to either cortical or 

sub-cortical regions. As an approximation, a neocortical column of about 0.3 mm in diameter 

contains roughly 7,500 neurons. Most neocortical neurons (70–80%) are excitatory pyramidal 

neurons which have relatively stereotyped anatomical, physiological and molecular proper-

ties. The remaining 20–30% of neocortical neurons are interneurons, mostly inhibitory, which 

have diverse morphological, physiological, molecular and synaptic characteristics, as recently 

described in (Markram et al., 2004). 

A.1. Connections from and onto pyramidal cells 

A.1.1. Pyramidal cells to pyramidal cells connections 

Pyramidal cells constitute the largest broad class of neurons in cortex (60–90% depending 

on region and layer). They permit most of the cortico-cortical and extra-cortical projections, 

as well as a substantial proportion of the local excitatory connections within neocortical cir-

cuits (DeFelipe and Farinas, 1992). Neocortical pyramidal cells are extensively intercon-

nected (Czeiger and White, 1993; Elhanany and White, 1990; Johnson and Burkhalter, 1996; 

Keller and Asanuma, 1993; Kisvarday et al., 1986; Kisvarday and Eysel, 1992; Somogyi et 

al., 1998). Numerically, therefore, connections between pyramidal cells, including close 

neighbors, cells in different layers and cells in different regions, are a dominant feature of the 

cortical circuit (Thomson and Deuchars, 1997).  

A.1.2. Pyramidal cells to interneurons connections 
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To date, a universally-accepted taxonomy of cortical interneurons does not exist (Buzsaki 

et al., 2004). GABAergic interneurons are crucial for normal brain function (Wang et al., 

1999). They represent around 20% of the total number of neurons in the neocortex and re-

ceive excitatory input from pyramidal cells mainly on AMPA receptors. As reported in 

(Bartos et al., 2007), unitary excitatory postsynaptic potentials (EPSPs) have a rapid time 

course. It has also been estimated that the density of AMPA receptors on interneurons is four 

times higher than at neighboring synapses on principal neurons (Bartos et al., 2007). 

A.1.3. Interneurons to pyramidal cells 

A.1.3.1. Basket and chandelier cells to pyramidal cells 

GABAergic synapses cover almost the entire membrane surface of pyramidal neurons 

(Freund and Katona, 2007). In (Pearce, 1993), it has been shown that monosynaptic GABAA 

fast-mediated IPSCs can be recorded in pyramidal neurons. GABAA,fast current enters at or 

near the cell body and decays rapidly (3-8 ms). These rapidly decaying IPSCs mediated by 

somatic and proximal dendritic synapses are likely arising from basket and chandelier cells 

(Bacci et al., 2003; Freund and Buzsaki, 1996). It is noteworthy that the axon initial segments 

receive synaptic inputs selectively the axo-axonic chandelier cells (Somogyi, 1977). About 

50% of all inhibitory interneurons are basket cells. It is now commonly admitted that basket 

cells mostly target the somata and proximal dendrites of pyramidal neurons and interneurons. 

Recent reports (Bartos et al., 2007) showed that inhibitory synapses between basket cells 

could synchronize action potential activity within the basket cell network. Conversely inhibi-

tory synapses between basket cells and principal neurons could distribute this synchronized 

activity to the principal neuron population. In addition, many studies have emphasized the 

role of basket cells in the generation of fast oscillations observed in local field potentials. In 
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particular, gamma activity is associated with alternating current sources and sinks in the 

perisomatic region. This finding is consistent with the involvement of basket cells which pre-

cisely innervate this sub-cellular domain (Bartos et al., 2007). 

A.1.3.2. Neuroglialform cells to pyramidal cells 

Neuroglialform cells (NGFCs) generate slow GABAA postsynaptic responses on pyramidal 

cells in the neocortex, as reported in (Simon et al., 2005). Other studies have also shown 

GABAB-mediated inhibition in postsynaptic pyramidal cells after a single action potential in 

NGFCs in the neocortex (Tamas et al., 2003). GABAB receptors are often located perisynapti-

cally, and their activation after NGFC activation suggests spillover from the synapse after a 

single action potential (Krook-Magnuson and Huntsman, 2007). 

A.2. Connections among interneurons 

A.2.1. Basket cells to basket cells 

Connections from basket to basket cells have been identified in many studies. The time 

course of the GABA-mediated inhibitory postsynaptic currents (IPSCs) in neocortical fast-

spiking interneurons (BC-BC) was observed to be faster than the kinetics of IPSCs in princi-

pal neurons of the same circuit (Bartos et al., 2002; Galarreta and Hestrin, 2002). These 

IPSCs were shown to rise almost instantaneously and decay with a time constant of ~2-3 ms 

at near-physiological temperature (Bartos et al., 2007). 

A.2.2. Neurogliaform cells to basket cells 
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Neurogliaform cells establish electrical synapses not only with each other but also with 

other interneuron types in the neocortex (Price et al., 2005; Simon et al., 2005; Zsiros and 

Maccaferri, 2005). Most interneurons trigger fast inhibitory postsynaptic potentials (IPSPs) in 

their postsynaptic target cells mediated by GABAA receptors (Buhl et al., 1994; Gupta et al., 

2000; Tamas et al., 2003). By contrast, neurogliaform cells are the only known type of in-

terneuron capable of eliciting slow, long-lasting IPSPs through a combined activation of 

GABAA and GABAB receptors (Tamas et al., 2003). To date, this effect of neurogliaform 

cells has been demonstrated only on postsynaptic pyramidal cells (Tamas et al., 2003). 

A.2.3. Neurogliaform cells to neurogliaform cells 

This type of connection is described in (Simon et al., 2005) where slow IPSPs combined 

with homologous and heterologous electrical coupling are reported in human tissue. In the rat, 

single action potentials in neurogliaform cells where shown to elicit GABAA,slow receptor-

mediated and GABAB receptor-mediated component in responses of neurogliaform interneu-

rons (Simon et al., 2005). These cells are also highly electrically coupled in the neocortex 

(Juhasz et al., 2009). 
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Average amplitude (mV) 
 

Time constant 

Average PSP 
Background 

activity 
Fast 

activity Parameter Min; Max 
(ms) 

Value 
in the 
model 

(s) 

trise; tdecay 
(ms) 

Excitatory 
(AMPA) A = 5 A = 18 1/a 4.5; 7.5 1/180 5.5; 17.3 

Inhibitory        
(GABAA,slow) B = 50 B = 0 1/b 30; 70 1/33 30; 95 

Inhibitory        
(GABAA,fast) 

G = 20 G = 30 1/g 3; 8 1/220 4.5; 14.3 

Inhibitory        
(GABAB) D = 3 D = 0 1/d 200; 400 1/3.3 303; 953 

 

Table 1: Order of magnitude for the values of the amplitudes A, B, G and D and rate constants a, b, g and d used 

in the h(t) functions of the model describing the average post-synaptic potentials at the input of the different sub-

populations of neurons represented in the model. Corresponding time constant values are also provided along 

with rise and decay times (see text for definition). Besides, free parameters of the sigmoid functions were set as 

follows: , ,  and (P: pyramidal cell sub-

population, I, I’: interneuron subpopulations). 

15P I IQ Q s−= =, '
max max 10 56P I Ir r mV −= =, ' . 1P mVθ = 6I I mVθ =, '
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Figure 1: (a) Structure of the computational model proposed to simulate the activity of the cerebral cortex. The 

model accounts for 3 sub-populations of neurons: i) pyramidal cells, ii) soma- and proximal-dendrite-targeting 

cells (type I: basket cells and chandelier cells mediating GABAA,fast currents), and iii) dendrite-targeting cells 

(type I´: neurogliaform cells mediating GABAA,slow and GABAB currents). Collateral excitations among pyrami-

dal cells and excitatory input on interneurons are represented, in the model, by AMPA-receptor mediated cur-

rents. (b) A typical signal produced by this model and representing a background EEG activity. Parameters val-

ues listed in table 1 (background activity) were used for obtaining this signal. (c) Normalized power spectrum 

density of the illustrated EEG signal. 
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Figure 2: (a) Structure of the reduced model responsible for the fast onset activity. The model accounts for two 

sub-populations of neurons: i) pyramidal cells mediating AMPA currents, and ii) basket cells and chandelier 

cells mediating GABAA,fast currents. (b) Simplified diagram of the model showing positive (excitatory) and nega-

tive (inhibitory) interactions among sub-populations and feedback loops (c) Detailed schematic diagram of the 

model including wave-to-pulse functions, pulse-to-wave functions and strengths of connections. (d) A high-

frequency oscillatory activity produced by the model. Parameters values listed in table 1 (fast activity) were used 

to obtain this activity. (e) Normalized power spectrum density of the fast oscillatory activity. 
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Figure 3: (a) A depth-EEG signal recorded in a patient undergoing pre-surgical evaluation of drug-resistant par-

tial neocortical epilepsy. This signal was recorded from neocortex in the inferior parietal lobule. (b) Time-

frequency representation (spectrogram) showing the evolution, in time, of the spectral content of the signal dur-

ing transition from pre-ictal to ictal activity. The seizure onset is characterized by the appearance of high-

frequency oscillations taking the form of chip-like signature (white arrow). This type of signature is often en-

countered at the onset of neocortical seizures. 
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Figure 4: Real data. Magnified view on the fast activity observed at seizure onset. (a) Raw (unfiltered) depth-

EEG signal. (b) Same signal filtered the in frequency band of interest (60-150 Hz). (c) Time-frequency represen-

tation (spectrogram) showing the main signal features: over 7 to 8 seconds, the occupied frequency band stays 

relatively narrow, the dominant frequency gradually decreases from about 100-110 Hz down to 60-70 Hz. (d) the 

signal energy gradually increases as the frequency decreases. 
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Figure 5: (a-c) Effects of the strength of glutamatergic connections (i.e., ) on a) resonance frequency, 

b) total energy and c) bandwidth of the output signal when the strength of GABAergic connections is kept con-

stant (here 

PP PIC C,

IP IIC C,  equal to 280 and 400, respectively). (d-f) Effects of the strength of GABAergic connections 

(i.e., IP IIC C, ) on resonance behavior of the model for fixed strength of glutamatergic connections (here, 

). (g) Superposition of iso- lines on the resonance frequency map relating to 

glutamatergic connections. The effect of EPSP amplitude for a given  ratio can be studied along an 

iso-line corresponding to the given  ratio. Black arrow shows the direction of EPSP amplitude reduc-

tion. In addition, the influence of absolute values of glutamatergic connections on the increase of resonance fre-

quency is shown by violet arrows. (h) The same as (g) but for GABAergic connections and IPSP amplitude. 

240 450PP PIC C= =, PI PPC C/

PI PPC C/

PI PPC C/

Dark and light grey regions indicate stable and unstable regions, respectively. Color coded region is the reso-

nance region. 
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Figure 6: Joint influence of glutamatergic and GABAergic connections (i.e.,  parameters) on 

the resonance frequency of the output signal. Each 3D plot corresponds to a set of  parameters at a 

fixed 

PP PI IP IIC C C C, , ,

PP PI IIC C C, ,

IPC  value indicated on the top of each figure. As before, stable and unstable regions are shown by dark 

and light grey, respectively. Resonance regions in the 2D planes (i.e.  planes) expand and rotate anti-

clockwise when 

PP PIC C−

IIC  increases. This movement decreases the resonance frequency as a function of IIC . When 

too much pronounced, the decrease or increase in IIC  value leads to disappearance of the resonance region or 

limits the maximum reachable resonance frequency, respectively.  IPC  has opposite effects on resonance charac-

teristics of the output signal, compared to IIC . 
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Figure 7: Effect of EPSPs and IPSPs amplitudes (i.e. A, G) on a) frequency, b) energy and c) bandwidth of out-

put signal in the model. The dark (resp. light) grey region corresponds to the stable (resp. unstable) region. The 

color-coded map corresponding to the resonance frequency (a) show alignment with respect to the G axis direc-

tion indicating that resonance frequency is more sensitive to A than G. Color-coded maps corresponding to en-

ergy (b) and bandwidth (c) show a fan-beam pattern aligned with the border between resonance and unstable re-

gions. These patterns of resonance frequency, energy and bandwidth reveal that correct scenarios to reproduce 

fast onset activities should correspond to a class of pathways denoted by the arrow between the two semitrans-

parent circles. Pathways should have a slight trend to enter the unstable region in order to increase the energy of 

the signal. In this figure,  are set to 240, 450, 280 and 400, respectively. PP PI IP IIC C C C, , ,
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Figure 8: Simulated fast onset activity. (a) A 6 s time course of the simulated signal in the model reproducing the 

features of the actual fast onset activity shown in figure 4. The scenario to generate this activity decreases G and 

A parameters from 38 to 14.5 and from 30 to 14.2, respectively. The pathway always remains in the vicinity of 

resonance-unstable edge. (b) Time-frequency representation of the signal which indicates a chirp starting at 

about 110 Hz and ending at about 70 Hz. As quantified in (c), the energy of signal increases when the frequency 

decreases. (d) The model predicts that the firing rate on the pyramidal sub-population increases during the chirp.  

Simulated activity was obtained for CII = 400, CIP = 280, CPI = 450 and CPP = 240. Other parameters are pro-

vided in table 1. 


