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Abstract. 

For more than three decades, beat-to-beat detection of electrical atrial activity has been subject of 

interest in the biomedical field. Several detection schemes and algorithms have been proposed, 

however, this problem has not been satisfactory solved and remains as the main error source for 

accurate automatic detection and classification of supraventricular arrhythmias, mainly in ambulatory 

applications and in coronary care units. Some detection methods have been proposed, but none of them 

have been quantitatively tested or compared, due in part to the lack of a database with annotated P-

waves. In this work, a classification stage is proposed as a new decision strategy to improve a P-wave 

detector previously developed in our laboratory. A quantitative evaluation of the original detector, the 

proposed classification stage and two other classical P-wave detectors is performed by means of the 

calculation of their receiver operating characteristics (ROC) curves. Results show the increased 

performance provided by the new classification stage with respect to the originally developed 

algorithm and two classical P-wave detection methods. 
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Introduction 

Although the detection of the ventricular activity, reflected in the electrocardiogram as the QRS 

complex, has been widely refined during the last decades, the development of a robust method for beat-

to-beat atrial activity detection is still one of the most challenging subjects in biomedical engineering. 

Several detection schemes and algorithms have been proposed, however, this problem has not been 

satisfactory solved and remains as the main error source for accurate automatic detection and 

classification of cardiac arrhythmias [1]. The problem becomes more complex when a low signal-to-

noise ratio (SNR) is measured, which often occurs in situations where accurate detection is needed, 

such as in care units, during ambulatory recordings or implantable devices. Some of the most important 

complications involved in atrial activity detection are [1,2]: 

 Low amplitude of the P-wave, which can also present important morphological variations. 

 Lack of exclusive characteristics of the atrial electrical activity representation in the time or 

frequency domains. The bandwidth of the P-wave overlaps with the bandwidths of the QRS and 

T-wave, and has less energy. 

 Abnormal atrial activations can occur simultaneously with the QRS or the T-wave, so a direct 

cancellation of ventricular complexes, attempting to improve the SNR, can cause the 

cancellation of atrial activity. 

Due to the lack of an annotated P-wave database, previously proposed methods have been poorly 

evaluated, only by qualitative means, without providing any performance comparison with other 

methods.  

In this paper, a general review of current approaches for P-wave detection is presented, including a 

detection scheme previously developed in our laboratory [3]. The presentation and evaluation of an 

enhancement for this detection scheme, based on an appended bivariate classification stage, is the main 
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purpose of this work. Basic theory of multivariate classification is also presented, leading to the 

proposed additional classification stage for P-wave detection. 

Previous Atrial activity detection methods 

Classical methods for atrial activity detection can be grouped as follows: i) Localized search, ii) 

Ventricular activity cancellation, iii) Direct detection methods, and iv) EECG-based methods.  

Localized search methods 

These are simple algorithms based on a localized search. In general, atrial activity detection is 

performed by identifying its associated QRS complex and searching backwards into a previously 

defined search window, normally taken from a fixed amount of samples before the detected QRS. 

Different combinations of algorithms have been presented in each step. Fixed-width [3,4] or variable-

width [5] search windows, linear transformations for P-wave detection [3], time-frequency applications 

[5,6] or feature extraction and evaluation [4] have been proposed. Localized search methods for P-

wave detection present acceptable performances under low-noise conditions and during sinus rhythm. 

The main problem of this type of algorithms is their dependency on the relative location of P-waves 

with respect to the QRS, making them unable to detect atrial activity in case of atrioventricular (AV) 

dissociation, or QRS miss-detections. Also these methods often generate false alarms when an artifact 

is detected as a QRS complex. 

Ventricular activity cancellation 

Ventricular activity cancellation methods have been widely used for P-wave detection from ECG 

signals. They involve a first stage of QRS cancellation, used to increase the SNR for a second stage of 

final event detection. Their usefulness has been centered on their ability to perform atrial activity 

detection in presence of AV dissociation. In general, these methods require the detection and 

cancellation of the QRS complex and T-wave, the application of some nonlinear transformation to the 

resultant signal in order to enhance atrial activity over the residual noise, and thresholding. 

Cancellation of the ventricular activity can be done directly or adaptively. 

A classic algorithm for direct ventricular activity cancellation, based on the length transformation (LT), 

was introduced by Gritzali et al [7].  Atrial activity detection based in direct QRS cancellation methods 

has, as major drawback, its inability to detect overlapped P-waves on QRS complexes or T-waves. 

An adaptive cancellation method was introduced by Thakor  and Yi-Sheng [2]. Although its 

limitations in presence of sudden QRS morphology variations and miss detections of QRS complexes, 

this method provides cancellation of ventricular components without significantly distorting possible 

overlapped P-waves. Another adaptive method for ventricular activity cancellation has been recently 

proposed by Sornmo [4]. It is based in the substraction of an adaptive QRS-T template from the 

observed ECG signals after QRS detection and the application of a spatio-temporal alignment 

technique, which allows to reduce the amount of residual error due to the detection jitter and small 

morphological changements in the QRS-T, like those produced by a change in the electrical axis of the 

heart. However, this method remains very sensitive to the presence of pathological beats. 
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EECG-based detectors 

One way to increase the SNR for atrial activity detection is to adapt the sensor to measure an 

appropriate representation of the activity of interest. The esophageal electrocardiogram (EECG) was 

introduced in this sense. This signal is acquired by means of a semi-invasive technique in which a 

small bipolar “pill-electrode”, located in the esophagus, is used to obtain an amplified representation of 

the electrical atrial activity (A-wave) with respect to a reduced ventricular activity (V-wave) [8]. 

Detection of the A-wave is based on similar techniques as the QRS detection due to its morphological 

similarities. However, the morphology of EECG waves is very dependent on an appropriate location of 

the sensor, which can not be easily fixed in the appropriate place throughout the signal acquisition 

process. 

Initial proposed detection scheme  

A general structure for atrial activity detection was developed in our laboratory to improve the 

performance of current detection schemes. In this structure, multiple preprocessors having different 

sensors as input, feed a global fusion decision level for final event detection. An extended description 

of this general data fusion structure can be seen elsewhere [9,10].  

Each preprocessor is in charge of all signal processing stages that can produce a valid statistic for 

atrial activity detection, from a given set of sensors. A preprocessor is composed of three levels: The 

first having a ventricular activity detection and cancellation based on an adaptive filter, the second uses 

another adaptive filter for QRS residual suppression, and the third produces a fiduciary mark of P-wave 

detection. Figure 1 shows a block diagram of the preprocessor. 
 

Figure 1. 
 

The length transformation, with parameters set to QRS detection, is used as the ventricular 

enhancement algorithm (D1) applied to SV,i. A threshold-based event detector (Tsi1) is applied to the 

resulting transformation (S1) to derive QRS detection impulses (i1). The ventricular cancellation 

algorithm (AF1) is an implementation of the QRS-T cancellation adaptive filter proposed by Thakor and 

Yi-Sheng, which uses i1 as a reference signal to filter SA+V,i, deriving an error signal (err1) containing P-

waves and cancellation residual noise. 

A low pass FIR filter (F1) was designed to enhance the P-wave and partially attenuate the high-

frequency residue of QRS and T cancellation. The filtered signal is then squared. The resulting signal 

(S2) is merged by means of another adaptive filter in which an index of the undesired ventricular 

activity (S1) is used as reference. This level is conceived to eliminate remaining ventricular activity in 

S2, taking into account the correlated information between S1 and S2. The resulting error signal (T2,i) is 

processed by a band-pass filter (F2). Threshold-based detection is then applied to obtain a local 

detection (ui), used as input to the final data fusion stage. 

Even if results reported in [9,10] were better than all the other algorithms tested, the number of false 

alarms, mainly on ECG channels with very low SNR and pathological beats, was still high due to the 

QRS residual and artifact energy. In order to reduce this false alarm rate, the threshold-based detection 
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module implemented originally for level 3 of each preprocessor was changed for a classification stage. 

The new implementation of level 3 (Figure 2) is based on a bivariate classification scheme, which 

consists to construct a description vector of dimension 2, each time a P-wave is suspected, and to 

classify it as a real P-wave, QRS residual, or noise. The method is detailed below. 

 

Figure 2. 

 

The multivariate classification stage. 

At the output of the level 2 of each preprocessor, the final P-wave detection can be viewed as the 

classification of P-wave candidates into one of the following hypothesis: we observe only background 

noise (H0), we observe background noise and high energy QRS residuals (H1), or we observe a P-wave 

embedded in possible QRS residuals and background noise (H2). We can state this classification 

problem as follows: 
H0 :   yi(t) = ni (t)
H1 :   yi(t) = Ai (t) + ni (t)
H2 :   yi(t) = Pi (t − τ i,j ) + Ai(t) + ni (t)

 

where yi(t) represents the transformation T2,i of the ith observed sensor, ni(t) is a stationary gaussian 

noise, Ai(t) is an impulsive noise, and Pi(t-τi,j) is the jth P-wave manifested on time τi,j . Each element w 

from the set of all detected events Ω, is associated with one of the l = 0...k hypothesis, by means of a 

decision ∂l which is based on an observation vector of p different descriptive variables 

Xw = (xq ,q = 1,...,p ). Classification for a given Xw can be performed, using the Bayes approach, by 

selecting the decision ∂* that minimizes the risk of bad classification: 

R∂ * (l) = Xw ∈ℜ
p / Cl /l' P(Hl' ) fl' (Xw )

l'=0
l'≠ l

k

∑ < Cm /l ' P(Hl' ) fl' (Xw ),∀m = 0,..,k,m ≠ l
l' =0
l' ≠m

k

∑
 

 
 

 
 

 

 
 

 
 

 (1) 

where Cl,/l’ is the cost of choosing hypothesis Hl when Hl’ is true, P(Hl’) is the a priori probability of 

hypothesis l’ and fl is the theoretical probability distribution function of variable Xw. To apply the 

presented multivariate classification stage at the output of each preprocessor, an estimation of the costs 

and a priori probabilities of each hypothesis has to be made, appropriate descriptive variables have to 

be found, and the gathered data should fit some known probability distribution function. 

In the case of three hypothesis (k=2) and equal costs of errorCl,l' = 1   ∀l ≠ l' , equation 1 becomes: 

R∂ * (l) = Xw ∈ℜ
p / P(Hl ) fl (Xw) > P(Hm) fm (Xw ),   ∀m = 0, k;  m ≠ l{ }  (2). 

Detecting a P-wave is equivalent to choose hypothesis H2 in the classification stage. A proper 

classification rule for P-wave detection can be directly derived from equation 2. Detection of a P-wave 

will only occur when both of the following inequalities are satisfied: 
f2 (Xw )
f0 (Xw) 

>
P(H0 )
P(H2 )

= s1   and (3a) 
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f2 (Xw)
 f1 (Xw)

>
P(H1)
P(H2 )

= s2  (3b) 

The left-hand side of each inequality is the likelihood ratio of the corresponding hypothesis. Instead of 

trying to estimate the a-priori probabilities of each hypothesis, the right side of equations 3a and 3b can 

be considered as detection thresholds. Thus, the implementation of the classification rules depends on 

two thresholds, requiring a troublesome work for a proper estimation of its values. In order to avoid 

these problems, a sub-optimal classification rule has been constructed, depending only on one 

threshold. 

Being both sides of the inequalities 3a and 3b always positive, each time they are satisfied, the 

following inequality will also be satisfied (although this is not reciprocal): 

f2 (Xw )2

 f0 (Xw) f1 (Xw)
>
P(H0 )P(H1 )
P(H2 )2  

(4) 

Even though equation 4 is a sub-optimal simplification of the detection rule presented in equations 3a 

and 3b that can produce some miss classifications (or false alarms), this new indicator has as advantage 

that it only depends on one comparison that can be implemented as a single threshold-based detection, 

leading to an easier detector evaluation and implementation. 

 

Appropriate descriptive variables  

A study of the properties of the transformed signal of each pre-processor (T2,i) lead us to the following 

remarks: 

 Mean peak amplitudes of T2,i  in presence of H0, H1 and H2 is different, being higher near H2. 

 Mean curvature of peaks associated with H2 is lower than in other cases. 

Polynomial fitting, centered at each transformation's peak, or P-wave candidate, could derive 

representative features of these quantities from the transformed signal, under each hypothesis. Let 

Pw(k) = a0 + a1k + a2k
2 ,    k = τ w − 10,..., τ w − 10  (5) 

be this polynomial where τw is the time instant of the detected peak w (Figure 2). The bivariate 

descriptive variable Xw = (x1 , x2 )
T  is derived from the polynomial where x1 is an estimation of the peak 

amplitude Pw(τw)= a0, and x2 is an indication of the curvature of peak w (i.e. a2). It is important to 

emphasize that the derivation of these parameters does not depend on any threshold definition, as they 

are taken directly from each peak of the studied transformation, where the presence of a P-wave is 

suspected. 

 

Selection of the probability distribution function 

The 2-D distribution function of Xw = (x1 , x2 )
T , was determined for each hypothesis H0, H1 and H2, 

applying the two-dimensional Kolmogorov-Smirnof (KS) test on some well known joint probability 

density functions. The KS tests were performed on two records (100 and 108) from the MIT-BIH 

database, in which P-waves were previously annotated. Testing sets were constructed with maximum 

peak values and coefficient a2 for 300 randomly selected events in each evaluated record. The 

normality assumption could not be rejected in all the tests performed, having probabilities above 0.5 for 
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H2 and above 0.3 for H0 and H1. Values of Xw  used for the KS test were also used to estimate the two 

first statistical moments for each hypothesis, needed for the detector implementation.  

Figure 3 shows the scatter plot of record 108, showing the clusters associated with each hypothesis.  

 

Figure 3. 

 

Assuming that Xw=( aOw, a2,w) follows a Normal joint probability density function : 

fl (X) =
1

2π (N +M) / 2Cl
1/ 2 e

−
1
2
(X −ml )T Cl−1(X−ml )

 

 
  

 

 
  
 

(6) 

 

where N=M=1, ml is the mean vector and Cl  is the covariance matrix estimated for hypothesis l, the 

logarithm of the detection rule presented in equation 4 becomes: 

log
C0  C1

C2
2

 

 
  

 

 
  + 2( X − m2 )T C2

−1(X −m2 ) − (X − ml )
T Cl

−1(X −ml )
l= 0

1

∑ > 2 log
P(H0 ) P(H1 )
P(H2 )2

 

 
 

 

 
  

(7) 

 

Detection of a P-wave is acknowledged if the following condition is satisfied: 

log
C0  C1

C2
2

 

 
  

 

 
  + 2( X − m2 )T C2

−1(X −m2 ) − (X − ml )
T Cl

−1(X −ml )
l= 0

1

∑ > s  
(8) 

 

where s is the threshold used to accept or reject the hypothesis H2.  

The presented detection rule is applied in level 3 of each preprocessor. A review of the whole P-wave 

detection procedure is presented in table 1. 

Results. 

Performances were evaluated by means of traditional Receiver Operational Characteristics curves 

(ROC), by plotting the number of false alarms (Nfa) versus the probability of detection (Pd). The 

evaluation of the detector using the original classification rule, presented in equations 3a and 3b, was 

also performed by estimating the surfaces for the probability of detection and number of false alarms 

generated by all combinations of the two thresholds within a predefined range. From these surfaces, a 

third surface was generated, to obtain an index of the probability of detection error. An optimal trace, 

consisting on the list of threshold pairs (s1, s2) that minimizes the probability of error, was found by 

applying a steepest descent algorithm. Corresponding values of probability of detection and number of 

false alarms, for each threshold pair in the list, were used to produce a ROC curve that is a function of 

the two thresholds. This curve, which will be called "optimal" for simplicity, is compared with the one 

produced by the simplified decision rule in order to measure its differences. 

Figures 4a and 4b show P-wave detection results for records 100 and108 of the MIT-BIH database. 

They present ROC curves for the original detector, for the simplified classification rule, for the optimal 

classification rule, and for the algorithms proposed by Thakor [2] and Gritzali [7]. 
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The algorithm proposed by Gritzali always provides the lowest performance. The curve presented by 

the algorithm proposed by Thakor is always close to the curve of the original detector, which can 

provide a reduced Nfa in signals presenting noise and QRS morphological variations (like in record 

108) at the price of a reduced Pd for very high Nfas. 

Minimal differences can be observed between the optimal and simplified version of the classification 

stage. Both classification rules provide the best performance for Nfas < 103. The difference in 

performance gain, provided by the classification stage, between both evaluated records may be 

associated to the reduced P-wave energy present in record 100 and the stability of the QRS morphology 

throughout this record, which permits a relatively good cancellation of the ventricular activity. These 

characteristics of record 100 also explain the reduced performance gain between the original detector 

and the detector of Thakor (see figure 4), whereas in record 108, a higher performance gain can be 

measured between these detectors. 

Two points are marked over the ROC curves of the optimal and simplified detection rules. The 

pentagon represents the (Pd, Nfa) couple corresponding to the theoretical threshold, calculated by 

resolving the right-hand side of equation 7, and thus providing the minimal probability of error. The 

estimation of the probabilities of each hypothesis, to calculate this theoretical threshold, was made 

using available P-wave and QRS annotations. The diamond represents the (Pd, Nfa) couple which 

provides the minimal probability of error, obtained experimentally. It is important to notice the 

closeness of both marks, indicating that an appropriate threshold definition for the application of the 

proposed detector can be obtained if the values of the probabilities of each hypothesis can be estimated. 

 

Figure 4. 

Discussion 

In this work, a bivariate classification stage was designed to replace the threshold-based decision rule 

used in our initial P-wave detection algorithm. This classification stage leads to a reduced number of 

false alarms and improved robustness, when compared with our original detector and two other 

detectors presented in the literature. Two different implementations of this classification scheme, based 

on a Bayes approach, were presented and quantitatively evaluated: an "optimal" implementation, 

derived directly from the theory, and a simplified version, which is easier to implement. Although 

some miss classifications can be obtained from the application of the simplified decision rule, the 

results present no significant differences between both rules.   

The application of the proposed classification scheme requires the previous estimation of the two first 

statistical moments associated with each hypothesis. An optimal value for s, which minimizes the 

probability of error, can be also estimated from the a priori probabilities of occurrence of events in 

each hypothesis P(H0), P(H1) and P(H2). Although this kind of estimation can be difficult to implement 

in real applications, the ability to offer a possible way to estimate an appropriate operational threshold 

is one of the important advantages of the proposed detector over most detection schemes, in which 

threshold estimation can become a complex problem. 



 9 

The classification stage proposed in this paper, both in its "optimal" or simplified versions, leads to an 

improved detection performance, by reducing the probability of false alarm, up to an order of 10 (see 

figures 4a and 4b) with respect to the original algorithm and the one proposed by Thakor. However, the 

development of a robust algorithm for atrial activity detection, to be used in clinical applications, is still 

a major need, and in the authors' opinion, could not be based only on ECG signals. Results of this work 

make us think that a possible way to overcome the problems associated with atrial activity detection 

should be based on data fusion techniques, which can properly integrate information from different 

sources and sensors, as reported in [10]. 

 

References 
 

[1] J. Jenkins, "Automated Electrocardiography and Arrhythmia Monitoring," Prog. Card. Dis. vol. 25. no. 5, pp. 

367-408, 1983. 

[2]  N. Thakor, Z. Yi-Sheng. "Applications of Adaptive Filtering to ECG Analysis: Noise Cancellation and 

Arrhythmia Detection," IEEE Trans. Biom. Eng, vol. 38, no. 8, pp. 785-794, 1991. 

[3]  Freeman K, Singh A. P Wave detection of ambulatory ECG. In: Proc. Ann. Int. Conf. IEEE/EMBS. vol. 13. 

1991, pp. 647-648. 

[4] Reddy S, Elko P, Chistenson D, Rowlandson GI. Detection of P waves in resting ECG: A Preliminary Study. 

In: Computers in Cardiology 1992. Los Alamitos: IEEE Computer Society Press, Sept 1992, pp. 87-90. 

[5] Fokapu O, Girard JP. A New Approach for P Wave Detection Using Analytic Signal. In: Proc. Ann. Int. Conf. 

IEEE/EMBS. 1993, pp. 400-401. 

[6] Li C, Zheng C, Tai C. Detection of ECG Characteristic Points Using Wavelet Transform. IEEE Trans. Biom. 

Eng. vol 42, no 1, pp. 21-28, 1995. 

[7]  F. Gritzali, G. Frangakis, G. Papakonstantinou. "Detection of the P and T waves in an ECG". Computers and 

Biomedical Research ; vol 22, pp. 83-9, 1989. 

[8 ] R. Arzbaecher, “A pill electrode for the study of cardiac arrhythmia,” Med Instrum, vol. 12, pp. 277-81, 1978. 

[9] A. Hernández, G. Carrault, F. Mora, G. Passariello, M.I. Hernández, J. Schleich. "Quantitative Comparison of 

Atrial Activity Detection Approaches".  In: Computers in Cardiology 1997. Los Alamitos: IEEE Computer 

Society Press, 1997, pp. 481-484.s 

[10] A. Hernández, G. Carrault, F. Mora, G. Passariello, J. Schleich. "Multisensor Fusion for Atrial and 

Ventricular Activity Detection in Coronary Care Monitoring". Paper accepted IEEE Trans. Biom. Eng. Special 

Issue on Data Fusion. 



 10 

 

 

 

 

AF1
S1 i1

+SV,i

AF2 +
S2

T2,i

ui

SA+V,i

D1 Tsi |  |2
D2

F1

F2

Level 1 Level 2 Level 3

T1,i

 
Figure 1. Preprocessor  implementation. 
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Figure 2. Multivariate classification stage for the new level 3. The gray line marked with H2 is an 

example of polynomial fitting on a candidate P-wave (see text for details). 
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Figure 3. Scatter plot of peak value (a0) and coefficient a2 for 300 P-wave candidates taken randomly 

from register 108 of the MIT-BIH DB, falling into the three defined hypothesis (o- H0, x- H1, Δ- H2). 
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Table 1. Detector implementation. 

 

1. Application of preprocessor i, i=1…N, N>0 as described in section 3. 

2. For each candidate P-wave detected at the output of each preprocessor (T2,i): 

 A quadratic polynomial is fitted in the LMS sense. 

 A vector X=(a0,a2)T of descriptive variables is constructed from polynomial coefficients. 

 The following detection rule is applied: 

f2 (Xw )2

 f0 (Xw) f1 (Xw)
>
P(H0 )P(H1 )
P(H2 )2  

 using previously estimated values for the two first statistical moments of each hypothesis, to 

generate the local P-wave detection for preprocessor i (ui). 

3. If more than one preprocessor has being used (N>1), all local detections ui are used by a global 

data fusion module, in order to produce the final P-wave detection. 
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Figure 4a. ROC curve for record 108:  

The diamond represents the 

experimental optimal threshold and 

the star represents the theoretical 

threshold. 
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Figure 4b. ROC curve for record 100: 

The diamond represents the 

experimental optimal threshold and 

the star represents the theoretical 

threshold. 

 


