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Abstract

Chronic hepatitis C virus (HCV) infection is associated with altered lipid metabolism and hepatocellular steatosis. Virusinduced

steatosis is a cytopathic effect of HCV replication. The goal of this study was to examine the mechanisms underlying HCV-induced

lipid metabolic defects in a transgenic mouse model expressing the full HCV protein repertoire at levels corresponding to the human

infection. In this model, expression of the HCV full-length open reading frame was associated with hepatocellular steatosis and

reduced plasma triglyceride levels. Triglyceride secretion was impaired while lipogenesis was activated. Increased lipogenic enzyme

transcription resulted from activation at the maturation step and nuclear translocation of sterol regulatory element binding protein

1c (SREBP1c). No ER-stress marker was expressed at significantly higher levels in HCV transgenic mice than in their wild-type

counterparts, suggesting that SREBP1c proteolytic cleavage was independent of ER stress. In conclusion, transgenic mice expressing

the HCV full-length polyprotein at low, physiological levels, have decreased plasma triglyceride levels and develop hepatocellular

steatosis in the same way as HCV-infected patients. In these mice, triglyceride synthesis is induced by direct SREBP1cde novo 

activation by one or several HCV proteins through induction of the lipogenic pathway, independently of ER stress, while triglyceride

secretion is simultaneously reduced.
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Chronic hepatitis C virus (HCV) infection affects approximately 170 million individuals worldwide and is associated with chronic

liver inflammation and fibrosis. Approximately 20  of patients develop cirrhosis, with a subsequent risk of lethal complications such as%
end-stage liver disease and hepatocellular carcinoma ( ). Chronic HCV infection is now the leading indication for liver transplantation in1 

industrialized countries. Chronic hepatitis C is curable in about 50  of cases with a combination of pegylated interferon-  and ribavirin (% α 1 

). New drugs, and particularly specific inhibitors of HCV functions, are in preclinical and clinical development ( ).2 

Chronic HCV infection is also associated with altered lipid metabolism, resulting in low serum cholesterol, triglyceride and

betalipoprotein levels ( , ). These abnormalities generally resolve after viral eradication ( , ). Hepatocellular steatosis, i.e. excessive3 4 3 5 

triglyceride accumulation within lipid droplets in the hepatocyte cytoplasm, is frequent in chronic hepatitis C ( ). Steatosis may be due to6 

metabolic disorders in patients with overweight, diabetes, dyslipidemia, and/or chronic alcohol consumption (metabolic steatosis).

Steatosis may also be directly related to virus replication (virus-induced steatosis), and both forms may be present together. Metabolic

steatosis behaves in a similar way as in HCV non infected patients with non alcoholic fatty liver disease or alcoholic liver disease, and

appears to influence the outcome of chronic liver disease and undermine the effectiveness of antiviral therapy ( , ). Virus-induced7 8 

steatosis is a cytopathic effect of HCV replication, but the precise underlying mechanisms are controversial. The influence of

virus-induced steatosis on the outcome of liver disease and the response to therapy is unclear. Although HCV-induced steatosis is mostly

seen in patients with HCV genotype 3a infection, in whom it correlates directly with the level of viral replication, cases have been reported

with other genotypes ( , ). The reasons for these genotype differences are unclear. The level of virus expression required for excessive9 10 

triglyceride accumulation in hepatocytes might be lower in genotype 3 HCV infection.

Viral interaction with host lipid metabolism appears to be essential for the HCV cell cycle. Indeed, HCV replication occurs in

association with endoplasmic reticulum (ER)-derived membranes and lipid droplets, and HCV core and nonstructural 5A (NS5A) protein

addressing to lipid storage organelles plays an important role ( ). We recently showed that HCV core protein alters lipid droplet11 –14 

morphology ( ). Whether or not these effects play a role in hepatocellular steatosis is unclear. However, HCV protein expression has15 
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been shown to induce steatosis in transgenic mice. In particular, we have previously shown that expression of the full HCV protein

repertoire at physiological levels triggers hepatocellular steatosis in C57BL6 mice ( ). HCV protein expression thus appears sufficient to16 

induce hepatocellular steatosis, without the need for viral replication. HCV protein expression might: i) induce triglyceridede novo 

synthesis; ii) reduce cellular triglyceride excretion; iii) alter triglyceride oxidation; and/or (iv) increase triglyceride uptake from serum.

Sterol regulatory element binding proteins (SREBP) belong to the basic helix-loop-helix-leucine zipper family (bHLH/LZ) of

transcription factors. They are synthesized as precursor proteins bound to the ER. The SREBP1c isoform is predominant in the liver and

preferentially enhances the transcription of genes involved in fatty acid synthesis. Foreign protein synthesis inside host cells creates non

specific stress that triggers the unfolded protein response (UPR). During the UPR, SREBP1c is matured by two successive cleavage steps

and its transcription factor domain relocates to the nucleus, where it upregulates numerous genes involved in lipid synthesis and

maturation. However, the effect of HCV proteins on these processes is largely unknown.

The goal of this study was to examine the mechanisms underlying HCV-induced lipid metabolic defects in a transgenic mouse model

expressing the full HCV protein repertoire at levels corresponding to the human infection.

Experimental Procedures
Animals

Animal housing was conducted in accordance with the Direction des Services V t rinaires, Minist re de l Agriculture of France, withé é è ’
the European Communities Council Directive (86/609/EEC) and with the Federation of European Laboratory Animal Science Associations

(FELASA) for the health monitoring recommandations. Eight- to nine-month-old C57BL6 male mice transgenic for the HCV full-length

open reading frame (FL-N/35 lineage) ( ) were used in this study. Age-matched wild-type male littermates were used as controls. The16 

animals were housed in a temperature-controlled environment with a 12h light/dark cycle and had free access to water and a regular diet

(D04 from SAFE, Augy, France: 6.1  carbohydrate, 3.1  fat and 15.8  protein). All procedures conformed to official French guidelines% % %
for the care and use of experimental animals. After sacrifice by CO intoxication, liver tissue fragments were either immediately2 

snap-frozen in liquid nitrogen and stored at 80 C for analysis, or fixed overnight (approximately 16 h) in neutral buffered formalin before− °
transfer to 70  ethanol and embedding in paraffin. Sections 4 5 m thick were deparaffinized and stained with hematoxylin and eosin% – μ
(H&E) for histological analysis.

Assessment of hepatic triglyceride and apolipoprotein content

Frozen tissue sections were stained with Oil-Red-O dye to identify neutral lipids. As previously described ( ), serum triglycerides17 

and apolipoprotein B (apoB) were quantified immediately before and 4 h after intraperitoneal injection of 30 mg of Triton WR 1339

(Tyloxapol, Sigma, Saint-Louis, Missouri) in 24h-fasted mice by using the Trinder Enzymatic method for triglycerides (Biotrol, Earth

City, Missouri) and Kit 357 for apoB (Sigma).

Assessment of microsomal triglyceride transfer protein activity

Microsomal triglyceride transfer protein (MTP) activity was measured with a fluorometric assay (MTP kit, Roar Biomedical, New

York, New York) that detects MTP-mediated transfer of neutral lipids in cell lysates or tissue homogenates, following the manufacturer s’
instructions. Liver samples were homogenized with a douncer in 15 mM Tris pH 7.4, 40 mM NaCl, 1 mM EDTA, plus protease inhibitors.

MTP assay was performed by incubating 100 g of liver protein homogenate (MTP source) with donor and acceptor solutions for 4 h at 37μ
C. MTP activity was determined by measuring fluorescence at 465 nm (excitation) and 538 nm (emission).°

Total RNA isolation and RT-qPCR

Total RNA was isolated from mouse livers as previously described ( ) and 1 g of RNA was reverse-transcribed with the18 μ

Superscript II enzyme (Invitrogen, Carlsbad, California). Real-time quantitative PCR was performed with 25 ng of cDNA and 250 nM ™

sense and antisense primers (Eurogentec, Seraing, Belgium) in a final reaction volume of 25 l, using the qPCR Core Kit (Eurogentec) andμ
the MyiQ real-time PCR detection system (Bio-Rad, Hercules, California). Specific primers were designed with Primer Express software (

). The expression level of each studied gene was normalized to that of 18S ribosomal RNA by using the comparative C method.Table 1 T 

XBP1 RT-PCR splicing assay

To analyze XBP1 mRNA splicing, 200 ng of cDNA was amplified with a pair of primers specific for the mouse XBP1 gene (sense: 5′
-GGCCTTGTGGTTGAGAACCAGGAG-3 ; antisense: 5 -GAATGCCCAAAAGGATATCAGACTC-3 ). The PCR conditions are′ ′ ′
described in the Ron lab website ( ). PCR products were separated byhttp://saturn.med.nyu.edu/research/mp/ronlab/protocols.html 

electrophoresis on 2.5  agarose gels and visualized by ethidium bromide staining.%

Preparation of cytoplasmic, microsomal and nuclear extracts and immunoblot analysis
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Nuclear and cytoplasmic extracts were prepared from livers of wild-type and transgenic mice by using the NE-PER Nuclear and

Cytoplasmic Extraction Reagent kit (Pierce Biotechnology, Rockford, Illinois), following the manufacturer s instructions. For microsomal’
extracts, mouse liver was homogenized in sucrose buffer (0.25 M sucrose, 10 mM Hepes, and 3 mM MgCl supplemented with protease2 

inhibitors, phenylmethylsulfonyl fluoride (1 mM), benzamidine (1 mM), DTT (1 mM), leupeptin (2 g/ml), and aprotinin (2 g/ml)). Theμ μ
homogenate was centrifuged (500 for 5 min at 4 C), and the supernatant was centrifuged again at 100,000 for 45 min at 4 C to obtaing ° g °
microsomes.

The protein concentration was measured in the extracts by means of the Bradford method (Bio-Rad) with bovine serum albumin as

standard. Proteins (20 70 g) were separated by SDS-PAGE and transferred to nitrocellulose membranes (GE Healthcare, Chalfont St– μ
Giles, United Kingdom). The following primary antibodies were used: mouse monoclonal antibodies against SREBP1 clone 2A4 (Thermo

Fisher Scientific, Waltham, Massachusetts), activating transcription factor 6 (ATF6) (Imgenex, San Diego, California), and X-box binding

protein 1 (XBP1) (Prosci Inc., Poway, California); rat polyclonal antibodies against immunoglobulin heavy chain-binding protein

(BiP)/glucose-regulated protein 78 (GRP78); and rabbit polyclonal antibodies against phosphoprotein kinase-like endoplasmic reticulum

kinase (PERK) (Santa Cruz Biotechnology, Santa Cruz, California), and phospho-(Ser51)-eukaryotic initiation factor 2  (eIF2 ), totalα α
Akt/protein kinase B (PKB) and eIF2  (Cell Signaling Technology, Beverly, Massachusetts). The membranes were incubated with theα
corresponding secondary antibodies coupled to peroxidase. Protein was quantified with the ECL Plus or Advance detection kit (GE

Healthcare). A polyclonal mouse lamin A/C antibody (BD Biosciences, Franklin Lakes, New Jersey), calnexin and -actin were used asβ
loading controls for nuclear extracts, microsomal fractions and total lysates, respectively.

Statistical analysis

Results are expressed as means  standard error of the mean. The Fisher-Yates Terry or Mann-Whitney non parametric rank tests were±
used, as appropriate. Quantitative results are presented as box plots (median and 95th percentiles).

RESULTS
Expression of the HCV full-length open reading frame is associated with hepatocellular steatosis and reduced plasma triglyceride
concentrations in transgenic mice

Steatosis was scored after hematoxylin-eosin and Oil-red-O staining of liver tissues. Steatosis was considered absent, mild, moderate

and severe when respectively 0 , <30 , 30 60  and >60  of hepatocytes were positively stained. Although C57Bl6 mice have a natural% % – % %
propensity to develop liver steatosis ( ), moderate to severe hepatocellular steatosis was more frequent in transgenic mice than in19 

controls (78  vs 29 , p<0.01; ). In addition, plasma triglyceride levels were moderately but significantly lower in transgenic% % Figure 1 

mice than in controls (0.77 0.04 vs 0.86 0.04 g/L, p<0.01; , left).± ± Figure 2A 

Triglyceride secretion is impaired in mice transgenic for the HCV full-length open reading frame

Triglycerides are secreted from liver cells as very-low-density lipoprotein (VLDL) particles. Hepatic VLDL secretion was assessed in

fasted mice by measuring the increase in plasma triglyceride and apoB levels after lipoprotein lipase inhibition by Triton WR 1339. As

shown in , Triton treatment substantially increased the plasma triglyceride level. Plasma triglyceride levels were about 30Figure 2A %
lower in transgenic mice than in controls (7.7 0.4 10.0 0.5 g/L, p<0.002), pointing to defective VLDL secretion ( ). This was± vs ± Figure 2A 

confirmed by the significantly lower plasma level of apoB (a protein mainly present in VLDL and LDL) in transgenic mice than in

controls after Triton treatment (2.5 0.2 3.7 0.3 g/L, p<0.001; ).± vs ± Figure 2A 

MTP plays a key role in cotranslocational lipidation of apoB as it enters the ER lumen (thus preventing apoB degradation) and

participates in the conversion of a precursor particle to VLDL by the addition of bulk triglycerides. As shown in , MTP activityFigure 2B 

was significantly lower in crude liver extracts from transgenic mice than from controls (p<0.05), confirming the impaired triglyceride

excretion.

Lipogenesis is activated in mice transgenic for the HCV full-length open reading frame

In order to determine whether the lipogenic pathway is activated in HCV transgenic mice, hepatic transcriptional levels of genes

coding for various enzymes involved in lipogenesis were compared with values in non transgenic controls. These genes included ATP

citrate-lyase (ACL), which produces acetyl-CoA, the substrate of fatty acid synthase (FAS); acetyl-CoA carboxylase (ACC) and FAS,

which catalyze fatty acid synthesis; malic enzyme (ME), which generates nicotinamide adenine dinucleotide phosphate (NADPH), a

cofactor of FAS; and hepatic stearoyl-CoA desaturase 1 (SCD1), a protein involved in fatty acid processing. Transcript levels of all these

enzymes were higher in transgenic mice than in controls, as measured by RTqPCR ( ). The difference was statisticallyFigure 3A 

significant for , and (fold increase compared to the mean values in non transgenic animals: 2.2 0.6, p 0.01; 2.9 0.7, pACL FAS SCD1 ± = ± =
0.02; and 2.0 0.4, p 0.02, respectively), while a trend was observed for and . FAS protein expression, quantified by western± = ACC ME 

blotting of mouse liver extracts, was significantly higher in the liver of transgenic mice than in controls ( ). Together, theseFigure 3B 

results suggest that the lipogenic pathway is activated in the liver of transgenic mice expressing the HCV full-length open reading frame.
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SREBP1c is activated in mice transgenic for the HCV full-length open reading frame

Lipogenic enzymes are transcriptionally regulated by insulin and glucose through two transcription factors in the liver, namely

SREBP1c and carbohydrate response element-binding protein (ChREBP). The SREBP1c precursor resides in the hepatocyte ER. Its

activation involves two proteolytic cleavage steps which generate the mature form of the protein. The mature SREBP1c protein then

migrates to the nucleus, where it activates the transcription of major genes involved in fatty acid synthesis. Nuclear and microsomal

protein fractions were purified from liver extracts of transgenic and non transgenic animals, and SREBP1c levels were assessed by western

blotting. Lamin A/C and calnexin served as loading controls for the nuclei and microsomes, respectively. As shown in ,figure 4A 

microsomal fractions from transgenic and non transgenic animals contained similar amounts of SREBP1c precursor. In contrast, mature

cleaved SREBP1c was substantially more abundant in nuclear extracts from transgenic animals than from controls ( ), suggestingfigure 4A 

that increased lipogenic enzyme transcription in HCV transgenic mice results from activation and nuclear translocation of SREBP1c. The

expression of ChREBP, a transcription factor involved in the activation of glycolytic and lipogenic genes, was not modulated by the HCV

transgene ( ).Figure 4A 

As shown in , the level of SREBP1c mRNA was slightly but not significantly higher in the liver of transgenic mice than inFigure 4B 

controls (fold increase compared to the mean control value: 1.3 0.2 1.0 0.1, p 0.39), suggesting that SREBP1c activation by HCV± vs ± =
proteins occurs at the maturation step rather than through gene activation. Similarly, the expression of ChREBP transcripts was not

modulated by the HCV transgene ( ).Figure 4B 

ER stress is not induced in mice transgenic for the HCV full-length open reading frame

Eukaryotic cells respond to the stress due to ER accumulation of misfolded, unfolded or foreign proteins, including viral proteins, by

activating a signalling pathway known as the UPR that induces temporary translational inhibition followed by upregulation of ER

chaperones. ATF6, inositol-requiring element 1 (IRE1) and PERK are ER-resident transmembrane proteins bound to GRP78 (BiP). In

UPR conditions they are released from GRP78 and activated. As HCV proteins are synthesized on ER membranes and remain closely

associated with ER-derived membranous webs, we examined whether HCV protein expression could trigger an unfolded protein response

in HCV transgenic mice.

We first measured GRP78 mRNA levels. As shown in , no significant difference was found between transgenic and nonFigure 5A 

transgenic mice. IRE1 release from GRP78 activates IRE1 RNase activity and initiates mRNA splicing of XBP1, thus generating a spliced

mRNA encoding a transcription factor that activates UPR target genes. We screened total RNA extracts from transgenic and non

transgenic livers for spliced XBP1 mRNA by means of RT-PCR and observed no modulation of XBP1 splicing by the HCV transgene (

).Figure 5B 

PERK release from GRP78 induces PERK autophosphorylation and activation. Activated PERK (P-PERK) in turn phosphorylates

eIF2 , thereby reducing mRNA translation initiation. We measured phosphorylated PERK and eIF2  by western blotting with specificα α
antibodies, normalizing the results to the respective total amounts of the two proteins. As shown in , respectively, weFigures 5C and 5D 

found no difference in the levels of phosphorylated PERK and eIF2  between transgenic and non transgenic animals.α

Protein disulfide isomerase (PDI) is another chaperone involved in the ER-associated degradation (ERAD) pathway. ER

degradation-enhancing mannosidase-like proteins (EDEM) target UPR-inducing proteins and trigger their degradation. As shown in Figure

, quantitative RT-PCR revealed no significant differences in EDEM or PDI mRNA levels between HCV transgenic and non transgenic5E 

mice. C/EBP homologous protein (CHOP), also known as growth arrest- and DNA damage-inducible gene 153 (GADD153), is a

component of the ER stress-mediated apoptosis pathway. TRB3 is induced by ER stress downstream of CHOP and was recently identified

as a potential pro-apoptotic protein that can modulate the Akt/PKB-dependent signaling pathway. As shown in , CHOP andFigure 5F 

TRB3 expression levels did not differ between HCV transgenic and non transgenic mice, although there was a trend towards higher

expression of CHOP transcripts in transgenic mice (p<0.06).

Thus, none of the ER-stress markers tested here was expressed at significantly higher levels in HCV transgenic mice than in their

wild-type counterparts. This suggests that SREBP1c proteolytic cleavage in transgenic mice expressing the HCV full-length open reading

frame is independent of ER stress.

DISCUSSION

The mechanisms by which chronic HCV infection perturbs lipid metabolism are poorly understood. Intracellular virion production

appears to use metabolic pathways involved in lipid metabolism ( ). Chronically HCV-infected patients often have low plasma11 –15 

cholesterol, triglyceride and betalipoprotein levels ( , ). In addition, virus-induced steatosis appears to be a direct cytopathic lesion3 20 
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induced preferentially but not exclusively by genotype 3a HCV ( , ). A direct role of HCV is supported by the disappearance of these21 22 

abnormalities when the infection is cured by antiviral therapy, and by their reappearance after HCV reinfection of the donor liver in

HCV-infected transplant recipients ( ). The precise role of HCV protein expression in these phenomena is unclear.23 –25 

The transgenic mice used here, which expresses the HCV full-length open reading frame, are a particularly relevant model for

studying HCV protein-induced abnormalities, as all HCV proteins are produced at the same time at physiological levels, without virus

production ( , ). We have previously reported that two lineages of transgenic mice expressing the HCV full-length open reading16 26 –28 

frame develop more frequent and more severe hepatocellular steatosis than their non transgenic littermates ( ). In the present study,16 

chronic expression of the entire panel of HCV proteins in mice receiving a normal diet was associated with lower plasma triglyceride

levels and with mediovesicular steatosis preferentially located in the central vein area, exactly as in human HCV infection ( , ).29 30 

Several mutually non exclusive mechanisms could theoretically explain these observations. HCV protein expression could i) induce de

triglyceride synthesis; ii) reduce cellular triglyceride secretion; iii) alter triglyceride degradation; and/or iv) increase triglyceridenovo 

uptake from serum. Here we tested the first two hypotheses in transgenic mice expressing the HCV full-length open reading frame. Taken

together, our results suggest that HCV protein expression induces triglyceride secretion independently of ER stress, and that itde novo 

also reduces triglyceride secretion in this model.

Triglyceride synthesis from acetyl-CoA is a complex multistep process that includes lipogenesis, desaturation, elongation and

esterification. These steps are catalyzed by different enzymes, expression of which was higher in the transgenic mice expressing the HCV

full-length open reading frame than in non transgenic controls ( ). These findings suggest that triglyceride synthesisFigure 3A de novo 

induced by lipogenic pathway activation could at least partly explain the intracytoplasmic triglyceride accumulation observed in

hepatocytes expressing HCV proteins. FAS also plays a central role in triglyceride synthesis. The increased FAS expression observed here

in vivo, at both the mRNA and protein levels, is in keeping with recent results obtained with cellular models. Indeed, FAS has been shown

to be upregulated in Huh-7 cells after transient expression of HCV core protein, after transfection with a full-length genome genotype 1b

HCV replicon, and during infection by genotype 2a JFH1 virus ( , ). In addition, a Tet-regulated HeLa cell model stably expressing31 32 

the HCV core protein has been developed (Li K, Lemon SM, unpublished). Core expression in this model was associated with

microvesicular steatosis. Importantly, core protein expression did not increase lipid uptake in HeLa cells, which do not express MTP.

FAS expression is mainly regulated at the transcriptional level by SREBP1. FAS-SREBP1 pathway alteration has been shown to be

associated with steatosis ( ). We observed more mature SREBP1c in the nucleus of HCV transgenic mice than in non transgenicin vivo 33 

controls, possibly explaining the enhanced FAS mRNA expression in the transgenic mice. This is in keeping with the recent report that

SREBP1c proteolytic cleavage is induced by JFH1 infection in Huh-7 cells ( ). Likewise, a recent study comparing liver biopsy34 

specimens from HCV-infected and uninfected patients showed no difference in hepatic SREBP1c mRNA levels, but SREBP1c protein

levels were not studied ( ). A role of HCV core, NS2 and NS4B proteins in SREBP1c proteolytic cleavage has been suggested, based on35 

transient over-expression of sequences derived from different HCV genotypes ( , , ). However, the viral protein(s) responsible for34 36 37 

SREBP1c activation remain to be identified. Finally, contrary to SREBP1c, ChREBP, another potent regulator of FAS expression at the

transcriptional level ( ), was not involved in lipogenic pathway activation in our HCV transgenic mice.38 

SREBP-1c is a potent negative regulator of MTP expression ( ). HCV protein activation of SREBP1c could thus down-regulate39 

MTP activity, thereby explaining the decreased MTP activity that we observed in transgenic mice expressing the HCV full-length open

reading frame. Reduced MTP activity could in turn be responsible for the defective VLDL secretion which, in combination with increased

triglyceride synthesis, participates in hepatocyte triglyceride accumulation. It is noteworthy in this respect that reduced plasma MTP

activity has also been reported in HCV-infected patients ( ). Transgenic mice overexpressing HCV core protein also show reduced MTP40 

activity ( ), but MTP mRNA levels and activity are also reduced in the HCV subgenomic replicon model, which lacks HCV core protein17 

( ).41 

Before concluding that triglyceride synthesis mediated by enhanced FAS expression results from direct SREBP1c activationde novo 

by HCV protein(s), it was important to eliminate a potential role of viral protein-induced ER stress. The unfolded protein response is

triggered by the accumulation of unfolded, misfolded or foreign proteins within the ER. Thus, HCV protein expression and accumulation

in transgenic hepatocytes could trigger ER stress, triggering non specific SREBP1c cleavage and activation. We therefore studied the three

principal ER stress pathways, driven by PERK, ATF6 and IRE1, under the control of GRP78 (or BiP). None was found to be activated in

transgenic hepatocytes: GRP78 expression, PERK and eiF2  phosphorylation, and XBP-1 mRNA splicing were similar in HCV transgenicα
and non transgenic livers. These findings appear to conflict with previous reports. Indeed, ectopic expression of HCV envelope

glycoproteins E1 and E2 has been reported to increase GRP78 expression ( ). However, in these experiments, a large proportion of E142 

and E2 proteins were trapped in the ER as aggregates, a phenomenon that does not occur during natural infection. Likewise, GRP78

expression has been reported to be induced in the replicon system, a replicative model based on Huh-7 cells. However, GRP78 induction

was three times higher than in the same cells expressing HCV nonstructural proteins in the absence of replication, and HCV replication

contributed to stimulating ER chaperone expression ( ). Finally, the E2 envelope glycoprotein has been reported to bind PERK as a43 
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pseudosubstrate, to inhibit its autophosphorylation, and to sequester it from its substrate eIF2 , potentially masking downstream ER stressα
events ( ). However, high E2 expression was required for this inhibition to occur. In addition, The FL-N/35 lineage is characterized by44 

its very low level of HCV protein expression. Indeed, we were only able to demonstrate transgene expression within the mouse liver by

using very sensitive immunochemical methods ( ). Therefore, our findings conclusively show that HCV protein expression stimulates26 

triglyceride synthesis independently of non specific ER stress activation.

In conclusion, transgenic mice expressing the HCV full-length polyprotein at low, physiological levels, have decreased plasma

triglyceride levels and develop hepatocellular steatosis in the same way as HCV-infected patients. In these transgenic mice, de novo 

triglyceride synthesis is induced by direct SREBP1c activation by one or several HCV proteins through induction of the lipogenic

pathway, independently of ER stress, while triglyceride secretion is simultaneously reduced. The HCV protein(s) responsible for these

perturbations of lipid metabolism remain to be identified, along with the underlying molecular mechanisms.
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Fig. 1
Histological sections of paraffin-embedded livers from wild-type (A) and HCV transgenic mice (B and C). Hematoxylin-eosin staining of(A) 

non transgenic liver. Hematoxylin-eosin staining of transgenic liver showing microvesicular steatosis characterized by small vacuoles in(B) 

the cytoplasm of hepatocytes surrounding the central vein area. Oil-red-O staining of transgenic liver showing the presence of neutral(C) 

lipids (red dots) within the hepatocyte cytoplasm.

Fig. 2
Hepatic secretion of VLDL, based on plasma triglyceride levels in fasted wild-type males (WT) and HCV transgenic age-matched male(A) 

littermates (HCV-tg) at baseline (left) and after lipoprotein lipase inhibition by Triton WR 1339 (middle); and plasma levels of apoB after

Triton WR 1339 treatment (right). Microsomal transfer protein (MTP) activity in crude liver extracts from WT and HCV-tg mice.(B) 

Box-and-whisker graphs are used; the line in the middle is the median, the box extends from the 25th to the 75th percentile, and the whiskers

extend to the lowest and highest values. Values in WT and HCV-tg mice were compared with the Mann and Whitney test.
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Fig. 3
Gene expression of ATP citrate-lyase (ACL), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), malic enzyme (ME) and hepatic(A) 

stearoyl-CoA desaturase 1 (SCD1), assessed by RT-qPCR in the livers of wild-type mice (WT) and HCV transgenic (HCV-tg) littermates (all

males, 8 to 9 months old). The results were normalized to the mean expression level in WT liver. Fatty acid synthase (FAS) protein(B) 

expression, assessed by western blotting. The left-hand panel shows a representative blot. Variations between samples were normalized on the

basis of GAPDH expression. The results were normalized to the mean expression level in WT liver. Box-and-whisker graphs are used. Values

in WT and HCV-tg mice were compared with the Mann and Whitney test.
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Fig. 4
Western blot analysis showing cleaved SREBP1c and nuclear ChREBP expression in wild-type mice (WT) and HCV transgenic(A) 

littermates (HCV-tg); liver cell nuclear extracts are shown at the top, and liver cell microsome extracts at the bottom. Lamin A/C and actin,

respectively, were used as references. SREBP1c and ChREBP mRNA levels assessed by RT-qPCR in the liver of WT and HCV-tg mice.(B) 

The results were normalized to the mean expression level in WT liver. Box-and-whisker graphs are used. Values in WT and HCV-tg mice

were compared with the Mann and Whitney test.
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Fig. 5
GRP78 mRNA levels assessed by RT-qPCR in the liver of wild-type mice (WT) and HCV transgenic littermates (HCV-tg). The results(A) 

were normalized to the mean expression level in WT liver. Box-and-whisker graphs are used. Values in WT and HCV-tg mice were compared

with the Mann and Whitney test. Unspliced and spliced XBP1 mRNA transcripts in liver RNA extracts from WT and HCV-tg mice, as(B) 

assessed by RNA size discrimination on agarose gel. A positive control ( ) showing spliced XBP1 was migrated in parallel. Respective+ (C) 

amounts of the phosphorylated form of PERK, as assessed by western blot, in WT and HCV-tg mice. Left: representative western blot; right:

box-and-whisker graphs. Values in WT and HCV-tg mice were compared with the Mann and Whitney test. Respective amounts of the(D) 

phosphorylated form of eIF2 , as assessed by western blot, in WT and HCV-tg mice. Left: representative western blot; right, box-and-whiskerα
graphs. Values in WT and HCV-tg mice were compared with the Mann and Whitney test. EDEM and PDI mRNA levels assessed by(E) 

RT-qPCR in the liver of WT and HCV-tg mice. The results were normalized to the mean expression level in WT liver. Box-and-whisker

graphs are used. Values in WT and HCV-tg mice were compared with the Mann and Whitney test. CHOP and TRB3 mRNA levels(F) 

assessed by RT-qPCR in the liver of WT and HCV-tg mice. The results were normalized to the mean expression level in WT liver.

Box-and-whisker graphs are used. Values in WT and HCV-tg mice were compared with the Mann and Whitney test.
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Table 1
Sequences of the primers used for quantitative real-time PCR.

SREBP-1c 5 -ggagccatggattgcacatt-3′ ′
5 -ggcccgggaagtcactgt-3′ ′

ChREBP 5 -gtccgatatctccgacacactctt-3′ ′
5 -cattgccaacataagcgtcttctg-3′ ′

FAS 5 -tgctcccagctgcaggc-3′ ′
5 -gcccggtagctctgggtgta-3′ ′

SCD1 5 -acctgcctcttcgggatttt-3′ ′
5 -gtcggcgtgtgtttctgaga-3′ ′

ME 5 -gggcatccctgtgggtaaa-3′ ′
5 -gaaggcgtcatactcagggc-3′ ′

ACL 5 -ctccaaactgtaccgccca-3′ ′
5 -ggagtgtcctggtagcgcag-3′ ′

ACC 5 -tgggcacagaccgtggtag-3′ ′
5 -gtcttaaatgcagagtctgggaa-3′ ′

GRP78 5 -gaaaggatggttaatgatgctgag-3′ ′
5 -gtcttcaatgtccgcatcctg-3′ ′

TRB3 5 -ctctgaggctccaggacaag-3′ ′
5 -ggctcaggctcatctctcac-3′ ′

EDEM 5 -ggatcccctatccctcgggt-3′ ′
5 -gttgctccgcaagttccag-3′ ′

CHOP 5 -catacaccaccacacctgaaag-3′ ′
5 -ccgtttcctagttcttccttgc-3′ ′

PDI 5 -aacgggagaagccattgta-3′ ′
5 -aggtgtcatccgtcagctct-3′ ′


