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ABSTRACT

In this paper, we show that several well-known nonlinear surface reg-

istration algorithms can be put in an ICP-like framework, and thus

boil down to the successive estimation of point-to-point correspon-

dences and of a transformation between the two surfaces. We pro-

pose to enrich the ICP-like criterion with additional constraints and

show that it is possible to minimise it in the same way as the original

formulation, with only minor modifications in the update formulas

and the same convergence properties. These constraints help the al-

gorithm to converge to a more realistic solution and can be encoded

in an affinity term between the points of the surfaces to register. This

term is able to encode both a priori knowledge and higher order ge-

ometrical information in a unified manner. We illustrate the high

added value of this new term on synthetic and real data.

Index Terms— registration, mesh, surface, geometrical invari-

ants, optimisation

1. INTRODUCTION

Nonlinear registration is a key tool in medical image analysis for the

understanding of anatomy in normal and pathological conditions. It

allows the quantitative comparison of structures in different subjects

and more generally the fusion of inter-subject data for further statis-

tical analysis. Surfaces represented by point clouds or meshes are

especially convenient to represent a subject’s anatomy. In particular,

they allow to isolate a specific structure or organ from the rest of the

body (eg after segmentation from MRI data), and thus to help answer

given research questions in a very specific manner. A convenient

way to perform nonlinear registration of surfaces is to formulate it

as a minimisation problem. Such an approach poses some specific

problems, most notably the difficulty 1) to devise a criterion allowing

to obtain an adequate solution (eg with a good compromise between

regularity and closeness to the data); 2) to minimise such a criterion

efficiently (eg with a simple scheme and proofs of convergence).

In this paper, our contributions are twofold. First, we show that

several well-known nonlinear registration algorithms can actually be

put in an ICP-like framework, that consists in the successive esti-

mation of the point-to-point correspondences and the transformation

between the surfaces. Such a framework yields a simple scheme

with iterative update formulas for both unknowns that converges to a

minimum of a well-grounded criterion (Section 2). Second, we show

that it is possible to enrich this criterion with additional constraints,

to make it robust using a threshold function, and to minimise it effi-

ciently with only minor modifications in the update formulas and the

same convergence properties as the original algorithm (Section 3).

These constraints help the algorithm to converge to a more realis-

tic solution and can be encoded in an affinity term in the ICP-like

general criterion. This affinity term is computed between the points

of the two surfaces to register and comes in addition to the proximity

term between their spatial coordinates. It is able to encode both a pri-

ori knowledge (eg labels of gyri/sulci for cortical registration) (Sec-

tion 4.2) and higher order geometrical information (eg consistency

between the curvatures of points to be matched) (Section 4.1) and

thus handles both types of constraints in a unified manner. Finally,

we evaluate the added value of this new affinity term on synthetic

and real data in Section 5.

2. NON RIGID REGISTRATION AS AN ICP ALGORITHM

Numerous algorithms have been proposed for nonlinear registration

of 3D surfaces [1]. Many such methods have been largely inspired

by the ICP algorithm [2] whose key idea is to consider the regis-

tration problem as the interleaved estimation of point-to-point cor-

respondences and (rigid-body) transformation between the two sur-

faces. In case of the ICP algorithm, this dual view is extremely useful

as it allows 1) the formulation of the problem as a minimisation of

a well-defined criterion; 2) the optimisation of this criterion via iter-

ative and tractable minimisations over the correspondences and the

transformation in turn; 3) a proof of convergence towards a (at least

local) minimum of this criterion. In fact, these key properties can

be kept for nonlinear problems using the same dual view by defining

the optimal transformation between two surfaces X and Y as:

T̃ = arg min
A,T

X

xi∈X

X

yj∈Y

Ai,j ||yj − T (xi)||
2 + αL(T ) (1)

+γ
X

i

X

j

Ai,j log(Ai,j) with ∀i ,
X

j

Ai,j = 1 and ∀(i, j) , Ai,j ≥ 0

and where:

• T is the transformation best superposing the two sets of points

(and that can be rigid, affine, elastic, etc).

• A is a card(X) × card(Y ) matrix. The greater Ai,j , the

more likely the point xi ∈ X to be the correspondent of the

point yj ∈ Y . A can be viewed as a hidden variable of the

registration problem and will be called the match matrix.

• L is a regulariser allowing to penalise discontinuities of T
over the space with α > 0 weighing its influence.

• γ
P

i

P

j Ai,j log(Ai,j) is a barrier function allowing to con-

trol the fuzziness of A (the higher γ, the greater the fuzzi-

ness). In practice, this term convexifies the criterion.



The key remark is that this criterion can be minimised by suc-

cessive optimisation over A with T fixed and over T with A fixed:

Step 0: Initialise T̃

Step 1: Ã = arg minA

P

xi∈X

P

yi∈Y Ai,j ||yj − T̃ (xi)||
2

+γ
P

i

P

j Ai,j log(Ai,j) with
P

j Aij = 1

Step 2: T̃ = arg minT

P

xi∈X

P

yi∈Y Ãi,j ||yi − T (xi)||
2 + αL(T )

Step 3: if T̃ has changed go to Step 1 else exit

This iterative scheme is simple and ensures a monotonical decrease

of the criterion (for any transformation T and regulariser L) and

thus a convergence towards a (at least) local minimum. Note that the

fuzziness of A and the regularity of T can be adapted throughout the

iterations by varying (typically decreasing) the parameters α and γ.

The main challenge is then to define proper T and L to make

Steps 1 and 2 tractable. Below we list several algorithms fitting in

this general ICP-like formulation and detail their choices to do so:

⊲ The original ICP algorithm [2] where T is a rigid-body trans-

formation, L is the null function and γ is equal to zero. Step 1 is

solved setting Ai,j to one if and only yj is the closest point of T (xi)
in Y and zero else (typically using a kd-tree). Solving Step 2 then

consists in finding the transformation that best superposes the corre-

spondences established during Step 1 in the least squares sense.

⊲ The TPS-RPM algorithm [3] where T and L encode smooth-

ing Thin Plate Splines and γ is typically set to decrease from infinity

(maximal fuzziness) to zero (no fuzziness i.e. A is binary) through-

out the iterations. Steps 1 and 2 have a simple closed-form solution

but Step 2 requires the inversion of a matrix of size proportional to

card(X)×card(Y ) which limits the application of this approach to

small data sets (typically of size lower than about 1000 points).

⊲ The locally affine algorithm [4] where T is decomposed into

several local affine transformations. Thus, an affine transformation

Tk is assigned to each point xk of the mesh X and spatial coherency

is ensured by a regularisation on the Tks over the space:

L(T = (Tk)k=1,...,card(X)) =
X

(k1,k2)∈C2

||Tk1 − Tk2||
2
F

where ||.||F is the Frobenius norm and C2 the set containing the

indices of points of X that are neighbours. The parameter γ is set

to zero (thus Step 1 is solved in the same way as the original ICP).

Step 2 is solved by the successive minimisation over the Tks in turn,

using a Markovian interpretation. This implementation allows a fast

registration on huge data (about 3 min for a surface of 100K points).

3. A NEW TERM IN THE CRITERION

3.1. A priori affinity function

The computation of A is essentially based on the spatial proximity

between the points T (xi) and yj , which is a bad indicator of whether

xi and yj should be matched or not, especially at the beginning of

the iterative scheme, when the two surfaces are likely to be far from

each other. Some previous efforts have been made to include richer

information in the matching process in addition to the spatial prox-

imity term ||yj −T (xi)||,eg based on the similarity of the normals at

points T (xi) and yj [5]. Unfortunately, such approaches make Step

2 intractable because, in essence, when T is non-rigid, the normal at

T (xi) does not only depend on T and on the normal at xi, but also on

the neighbours of T (xi). We suggest an alternative approach, where

we propose to add an affinity term between the points to be matched,

that is independent of 1) the spatial proximity between the points of

the two surfaces and 2) the unknown transformation T . Actually,

this affinity term gives a very general and convenient framework to

include heterogeneous sources of a priori knowledge in the registra-

tion process. It is equally able to encode simple ideas such as ”two

points with similar curvatures are more likely to be matched than

others” as well as knowledge of the labels of structures in the objects

to be matched (eg gyri/sulci in cortical registration). The key prop-

erty of this affinity term is that it allows both steps of the algorithm

to remain tractable, while limiting the influence of local minima and

speeding up the overall iterative scheme. The resulting algorithm

shares similar convergence properties with the original one.

Thus, in order to encode the affinity between points of X and Y ,

we introduce an affinity cost function c : X × Y → IR+ such that

the more similar (in a sense to be defined) x and y, the closer to zero

c(x, y). Then we rewrite the general criterion 1 as:

T̃ = arg min
A,T

X

xi∈X

X

yj∈Y

Ai,j

ˆ

||yj − T (xi)||
2 + βc(xi, yj)

˜

+αL(T ) + γ
X

i

X

j

Ai,j log(Ai,j) with ∀i,
X

j

Ai,j = 1 (2)

where β is a positive parameter weighting the influence of c.

As the function c does not depend on T , adding the affinity

cost function c only affects Step 1 of the algorithm which becomes:

Ã = arg minA

P

xi∈X

P

yj∈Y Ai,j

ˆ

||yj − T (xi)||
2 + βc(xi, yj)

˜

+γ
P

i

P

j Ai,j log(Ai,j) with ∀i,
P

j Ai,j = 1.

This step is solved by:

for all (i, j); Ai,j = exp(−(||yj − T (xi)||
2 + βc(xi, yj))/γ)

normalise each row of A

3.2. Fast and robust implementation

This algorithm to solve Step 1 has the same time and space complex-

ity as in the TPS-RPM algorithm, that is O(card(X)×card(Y )). To

reduce this complexity, we propose to modify the original criterion

by introducing a threshold function ρδ : x 7−→ x if x < δ and δ else

(with δ > 0). The criterion then becomes:

T̃ = arg min
A,T

X

xi∈X

X

yj∈Y

Ai,jρδ(||yj − T (xi)||
2 + βc(xi, yj))

+αL(T ) + γ
X

i

X

j

Ai,j log(Ai,j) with ∀i,
X

j

Ai,j = 1 (3)

This function ρδ allows to consider as outliers the points of X
for which there do not exist points of Y such that ||yj − T (xi)||

2 +
β × c(xi, yj) < δ. It allows to make A sparse (which reduces

the space complexity) and to use a kd-tree (which reduces the time

complexity to O(card(X)× log(card(Y )))). This way, the overall

minimisation scheme becomes both more robust and more efficient:
Step 1:

initialise A to the null matrix

for all xi ∈ X;

S = {yj ∈ Y such that ||yj − T̃ (xi)||
2 < δ} (using a kd-tree)

• if ∃ yj ∈ S such that ||yj − T̃ (xi)||
2 + βc(xi, yj) ≤ δ

⊲ if γ 6= 0 (A is fuzzy)

for all yj ∈ S such that ||yj − T̃ (xi)||
2 + βc(xi, yj) ≤ δ

Ãi,j = exp(−(||yj − T̃ (xi)||
2 + βc(xi, yj))/γ)

normalise the ithrow of A
⊲ else (asymptotical case where A is binary)

Ãi,j = 1 for yj = arg miny∈S ||y − T̃ (xi)||
2 + βc(xi, y)

• else consider xi as an outlier

Step 2:

T̃ = arg minT

P

xi∈X

P

yj∈Y Ãi,j ||yj − T (xi)||
2 + αL(T )

Step 3: if T̃ has changed go to Step 1 else exit



One can see that the ith line of A is left equal to zero in case

xi is an outlier, which allows A to be sparse. This seems to break

the constraint
P

j Ai,j = 1. Actually, it can be shown that this

simpler scheme gives the same solution as the complete and more

involved one that consists in, for each outlier xi, and each yj , setting

Ãi,j = 1/ card(Y ) in Step 1 and replacing ||yj − T (xi)|| by δ in

Step 2. Moreover, note that to reduce the complexity further, one

can either i) consider only the Ai,js with the highest values ∀i or ii)

approximate
P

xi∈X

P

yj∈Y Ãi,j ||yj−T (xi)||
2 by

P

xi∈X ||yG
i −

T (xi)||
2 with yG

i =
P

j Ãi,jyj ∀i during Step 2.

3.3. Implementation details

3.3.1. Choice for β, α, γ, δ

The parameter β weighs the influence of the affinity term wrt the spa-

tial proximity term. Intuitively, if β → ∞, only the prior knowledge

will be used to build matrix A. Reciprocally, if β → 0, the criterion

becomes the one defined by Eq 1. In practice, we first give β a high

value to guide the registration by the a priori affinity function when

the surfaces are distant to each other and then to reduce this value

throughout the iterations to reduce its influence (and in particular

potential ambiguities/errors in the computation of affinities). Quite

similar interpretations on how the other parameters influence the so-

lution can be made concerning α (regularisation), γ (fuzziness) and

δ (robustness). Thus we typically initialise these parameters with

high values and reduce them throughout the iterations.

3.3.2. Initialisation

As the original ICP, this nonlinear registration algorithm needs a

proper initialisation (Step 0) to converge to an appropriate solution.

A classical method for this purpose is the alignment of the two sur-

faces based on their principal axes and centres of mass. This is usu-

ally inadequate, as these quantities are the output of a least squares

minimisation over all the points of the meshes, and thus likely to be

very different in case of very dissimilar surfaces. For instance, this

can be the case when X is a subset of Y (or the contrary). The use of

the affinity cost function allows to alleviate this problem as follows.

We keep the pairs (x, y) with a high affinity (that is, c(x, y) has a

value lower than a predefined threshold value τ ) and we use these

selected pairs to compute an affine transformation and initialise the

nonlinear registration via a RANSAC procedure [6] (with the ad-

ditional constraint of one-to-one matches between the two surfaces,

which prevents the optimal solution from being a degenerate matrix).

4. THE A PRIORI AFFINITY FUNCTION C

The a priori affinity functions c can either be based on local geomet-

rical features (Section 4.1) or on predefined labels (Section 4.2).

4.1. Local geometry based affinity function

This approach is based on i) extracting distinctive keypoints on both

surfaces X and Y , ii) building a local surface descriptor for each

keypoint and iii) building a cost function c for each pair of points

(x, y) (that can either be keypoints or non-keypoints). Both key-

points and local surface descriptors are chosen to be as invariant as

possible to the unknown nonlinear transformation T , and thus so is

the resulting cost function c, as specified earlier.

i) Detecting keypoints. The crest lines are curves on the surface along

which the surface bends sharply. They constitute strong and robust

anatomical features and thus are formed by relevant interest points.

We simply define these lines as minimum spanning sub-graphs of a

neighbour graph (in which each edge connecting two points is given

a weight depending on the curvature at these points) [7].

ii) Choosing an adequate descriptor. Most classical local surface

descriptors have been devised for pose estimation and are only in-

variant to isometries [8, 9]. To the best of our knowledge, there

exists no efficient descriptor invariant to any nonlinear or even affine

transformation. The shape index [10] is a local shape descriptor in-

variant to similarities and is easy to compute as it only depends on

the principal curvatures. Thus it constitutes a useful local descriptor:

s(x) = 2
π

arctan( k1(x)+k2(x)
k1(x)−k2(x)

)

where k1(x) and k2(x) are the min and max curvature values at x.

iii) Computing the affinity between points. The affinity measure

c(x, y) between two keypoints x and y is based on the compari-

son of their descriptors s(x) and s(y). However, it is necessary

to include non keypoints to build c. Thus, we choose to design c
as c(x, y) = min(|s(x) − s(y)|L1

, l) if x and y are keypoints and

c(x, y) = l else. The l variable is very important because it deter-

mines the ability of a keypoint to be matched to a non keypoint. This

way, during Step 1, for a keypoint xi, if there exists no keypoint y
of Y such that c(x, y) ≤ l, only the spatial proximity term will be

used to build line i of matrix A. In practice, we empirically choose

to set l = cmax/2, where cmax is the maximum value that can take

|s(x) − s(y)|L1
when x and y are keypoints.

4.2. Labelisation based affinity function

Another approach consists in affecting labels to points of X and Y
(eg brain sulci/gyri). This way, the affinity function consists in es-

tablishing a set of n disjoint labels and designing c as c(x, y) = 0 if

x and y have the same label and c(x, y) = p else.

5. EXPERIMENTS & RESULTS

In the following, we use a locally affine model for the transformation

[4] (because of its ability to perform efficiently on large data sets)

and we evaluate the impact of using (γ, β 6= 0) and not using (γ, β =
0) the fuzziness and affinity terms on the accuracy and robustness of

the algorithm. When using these two terms, γ and β are updated

every 10 iterations of the overall scheme (Section 3.2), and so are

α and δ. The update formulas are: α for the additive component of

the affine transformation: αt
init = 200 is divided by 1.1 until αt

reaches 0.5; α for the multiplicative component : αm
init = 700; β :

βinit = 25 is divided by 1.4 until β reaches 0.001; δ: δinit = 400
is divided by 1.2 until δ reaches 25; γ: γinit = 20 is divided by

1.2 until γ reaches 0.05. Moreover, we consider as more reliable the

matches coming from keypoints or labelled points, and thus we give

them more importance in the estimation of T in Step 2.

5.1. Experiments on synthetic data

Generation of ground truth data. We first segment a structure

X (typically, a pair of lateral ventricles or caudate nuclei, giving

surfaces of about 10,000 points, itksnap.org) from a 3T T1-

weighted brain MRI of a healthy subject. Then Y is generated from

X by applying a random thin plate spline transformation. To simu-

late such a transformation, we select a set of 8 landmarks on X and

randomly move them independently in a sphere of radius 20 mm

around their initial position. Then, we add a uniform Gaussian noise

of std 0.5 mm on each point of the deformed surface and remove

groups of adjacent vertices to generate holes. This way we gener-

ate ground truth pairs of 10 ventricles and 10 caudate nuclei. Note

that we deliberately choose to apply a transformation coming from a

model different from that assumed by our algorithm.

Evaluation. We evaluate the registration error by computing the

mean distance between homologous points after registration. The

results are reported in Table 1 and an example is displayed in Figure



1. On both anatomical structures, the added value of using fuzziness

alone (γ 6= 0, β = 0) is about 35% and of using both fuzziness and

affinity (γ, β 6= 0) is about 52% compared to using none (γ, β = 0).

γ, β = 0 γ 6= 0, β = 0 γ, β 6= 0
caudate nuclei 1.64 ± 1.32 1.12 ± 0.86 0.78 ± 0.63

ventricles 2.45 ± 1.40 1.46 ± 1.05 1.17 ± 0.93

Table 1. Experiments on synthetic data (stats). Mean and std

(mm) of the registration error for the 10 ventricles and 10 caudate

nuclei by varying the fuzziness and affinity parameters.

Fig. 1. Experiments on synthetic data. From left to right: 1) origi-

nal (green) and deformed (red) ventricles; 2) mapping of registration

error with γ, β = 0 (no fuzziness, no affinity); 3) γ 6= 0, β = 0,

(fuzziness, no affinity); 4) γ, β 6= 0 (fuzziness, affinity).

5.2. Results on real data

In the following, we always use the fuzziness term (γ 6= 0). In a first

experiment, we evaluate qualitatively the added value of the affinity

term i) to map asymmetries [11] of caudate nuclei (whose asym-

metries have been related to attention-deficit disorders in children)

(Fig 2) and ii) on the registration of the horns of lateral ventricles

(Fig 3). We observe that the impact of using the affinity term is es-

pecially prominent in areas where crest lines have been detected. In

a second experiment, we segment the brain from T1-weighted MRI

data of two healthy subjects (300,000 points, brainvisa.info),

and we extract four sulcal fundus beds automatically (using our algo-

rithm for crest lines) and label them manually for each subject. Then

we register the two surfaces i) without using any a priori knowledge

(β = 0) and ii) using only 3 out of the 4 sulcal fundus beds to com-

pute the affinity function (β 6= 0) (Sec 4.2). The error on the fourth

sulcus is used as a quality metric of the registration. It is evaluated to

be 7 mm in the first case (β = 0) and 3 mm in the second (β 6= 0).

This suggests the usefulness of the affinity term (Fig 4).

Fig. 2. Experiments on real data (caudate nuclei). From left to

right: 1) crest lines; 2) asymmetry map without using the affinity

term (β = 0); 3) added value of using the affinity term (β 6= 0).

6. CONCLUSION & PERSPECTIVES

We introduced an a priori affinity term in an ICP-like criterion for

nonlinear registration of surfaces. We then derived a robust and

Fig. 3. Experiments on real data (inferior and posterior horn of

the ventricles). From left to right: initial view of the two surfaces,

registration without (β = 0) and with (β 6= 0) the affinity term.

Note that the badly segmented third ventricle in one of the surfaces

(green) does not influence negatively the registration result.

Fig. 4. Experiments on real data (brain). The four sulci are

the central (red), lateral (blue), superior frontal (green) and inferior

frontal (yellow) sulci. From left to right: 1) brain 1 (top) and brain

2 (bottom); 2) brain 2 (with sulci shown in transparency) towards

brain 1 without using the affinity term; 3) brain 2 towards brain 1

using the constraints on three of the sulci via the affinity term. The

fourth - inferior frontal (yellow) - sulcus is better registered using

the three others as a constraint.

convergent scheme to minimise this criterion and showed the added

value of the new term for registration of various brain structures.

The overall algorithm is modular, and other implementation choices

could be tested. In particular, the affinity term could be built us-

ing other descriptors (with the goal to achieve invariance to affine or

more general nonlinear transformations rather than just similarities)

or based on probabilistic atlases when available (eg for gyri or sulci)

and could be extended to all points instead of only salient points.

Moreover, it could be interesting to preserve the line structure of

salient lines during the matching process of their points (Step 1).
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