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Abstract. We show that a simple probabilistic modelling of the regis-
tration problem for surfaces allows to solve it by using standard clus-
tering techniques. In this framework, point-to-point correspondences are
hypothesized between the two free-form surfaces, and we show how to
specify priors and to enforce global constraints on these matches with
only minor changes to the optimisation algorithm. The purpose of these
two modifications is to increase its capture range and to obtain more
realistic geometrical transformations between the surfaces. We conclude
with some validation experiments and results on synthetic and real data.

1 Introduction

In medical image analysis, nonlinear registration is a key tool to study the nor-
mal and abnormal anatomy of body structures. It allows to spatially normalise
different subjects in a common template, to build the average anatomy in a pop-
ulation and to assess the variance about this average, and ultimately to perform
group studies via statistical analyses. Many methods have been dedicated to
deal with grey level volumes directly, while others have been devised to tackle
surfaces representing anatomical structures (e.g. after segmentation from MRI
or CT) [1]. The last approach allows a more focused analysis of structures of
interest, and is the topic of our paper. In Section 2 we show that a simple proba-
bilistic modelling of the registration problem allows to solve it by using standard
clustering techniques. In this framework, point-to-point correspondences are hy-
pothesized between the two free-form surfaces, and we show how to specify priors
(Section 3) and to enforce global constraints (Section 4) on these matches with
only minor changes to the optimisation algorithm. This extends our previous
work on the same problem [2]. The purpose of these two modifications is to in-
crease its capture range and to obtain more realistic geometrical transformations
between the surfaces. We conclude with some validation experiments and results
on synthetic and real data (Section 5).

2 Surface Registration as a Clustering Problem

The problem of interest in this paper is to find the transformation T best super-
posing two free-form surfaces X and Y (represented by point clouds or meshes).



A convenient probabilistic viewpoint on this classical problem is to consider
the surface Y as a noised version of T (X). If we note Y = (yj)j=1... card(Y )

and X = (xk)k=1... card(X), and if we hypothesize an isotropic Gaussian noise,
a simple way to formulate this viewpoint is to assume that each sample yj has
been drawn independently from any one of card(X) possible 3-variate normal
distributions with means T (xk) and covariance matrices σ2I (with σ unknown).

This way, the registration problem becomes a clustering problem, whose chal-
lenge is i) to find the label of each point yj , i.e. the one out of card(X) possible
distributions from which yj has been drawn, and ii) to estimate the parameters
of these card(X) distributions. The connection between registration and cluster-
ing becomes clear when one realises that i) actually amounts to match each point
yj in Y with a point xk in X , while ii) simply consists in computing T given
these matches. This viewpoint is extremely fruitful, as it allows one to refer to
classical clustering techniques and especially the maximum likelihood principle
to solve the registration problem. Two different paradigms have been especially
followed in this context [3]. Let us introduce some notations first:

∀k ∈ 1... card(X), pk(.; T ) = N (T (xk), σ2I)
∀j ∈ 1... card(Y ), ∀k ∈ 1... card(X), zjk = 1 if yj comes from pk(.; T ), 0 else

In the Classification ML (CML) approach, one tries to find the indicator
variables zjk and the parameter T so as to maximise the criterion CL [4]:

CL =
∏

yj∈Y

∏

xk∈X

[pk(yj ; T )]
zjk (1)

The problem is typically solved by the Classification EM (CEM) algorithm [5],
which can be shown to find an at least local maximum of the criterion CL and
proceeds as follows, in an iterative way, starting from an initial value T̃ :

EC-step: ∀j, z̃jk = 1 if k maximises pk(yj ; T̃ ), 0 else

M-step: T̃ = argminT

∑

jk z̃jk||yj − T (xk)||2

In other words, the Expectation-Classification (EC) step consists in match-
ing each point yj of Y with the closest point in T̃ (X), while the Maximisation
(M) step consists in computing the transformation best superposing these pairs
of matched points. In case T is a rigid-body transformation, this is nothing else
than the popular ICP algorithm [6].

In the ML approach, the indicator values zjk are no longer considered as
unknown quantities to estimate, but rather as hidden/unobservable variables of
the problem. This is actually a drastic and fundamental change of viewpoint,
as the focus is no longer on assigning each yj to one of the distributions pk

but rather on estimating the parameters of the Gaussian mixture made of these
distributions. If we involve priors πjk on the indicator variables (∀j, k, 0 < πjk <
1, and ∀j,

∑

k πjk = 1), the likelihood then simply writes [7]:

L =
∏

yj∈Y

∑

xk∈X

πjkpk(yj ; T ) (2)



In essence, the prior πjk conveys the probability that the point yj comes
from the distribution pk without knowing anything else. The criterion L can
be maximised by using the popular EM algorithm, which converges to an at
least local maximum of the likelihood [8]. If we consider the priors πjk as known
beforehand and if we introduce the notation γjk as the posterior probability of
the hidden indicator variable zjk to be equal to 1, the EM algorithm writes:

E-step: γ̃jk =
πjk exp[−||yj−T̃ (xk)||2/(2σ2)]

∑

i
πji exp[−||yj−T̃ (xi)||2/(2σ2)]

M-step: T̃ = argminT

∑

jk γ̃jk||yj − T (xk)||2

To our knowledge, Granger & Pennec [9] were the first to formulate the
problem this way, and they proposed the so-called EM-ICP as a simplified ver-
sion of the previous algorithm for rigid-body registration, where the priors πjk

were considered as uniform. They noted that the parameter σ, which is not esti-
mated in this framework, acts as a scale parameter, and that it can be given an
initial value and decreased throughout the iterations for improved performances.

Interpretation & Extensions: Intuitively, the EM approach is a fuzzy version
of the CEM. It appears clearly from the iterative formulas of both algorithms
that the classification likelihood is an “all-or-nothing” version of the likelihood,
leading to a “bumpier” and harder-to-maximise criterion, something that is well
known by those who are familiar with the ICP algorithm. Note that the ML
formulation and the EM algorithm lead to the same iterative formulas that
would have resulted from the addition of a barrier function on the indicator
variables in the ICP criterion [10]. This formalism is not limited to rigid-body
transformations, and can be easily used for any T , the challenge being to choose
T such that the M-step remains tractable. In particular, the ML estimation
can be easily turned into a MAP problem with only slight modifications to the
optimisation scheme, as shown by Green [11]. This allows to view T as a random
variable, on which priors (acting as regularisers on T ) can be easily specified.
Different choices have been proposed for T and associated priors in this context,
such as the thin plate splines [10] or locally affine transformations [12]. If p(T )
is a prior of the form p(T ) ∝ exp(−αR(T )) then the optimal transformation
can be found using the MAP principle (also termed penalised ML) and the EM
algorithm with only a slight modification to the M-step (addition of αR(T )).

3 Setting Priors on Matches

3.1 Why Using Priors on Matches?

Most works in this context have been focused on designing transformations and
related priors allowing to i) compute realistic deformations between the two sur-
faces and ii) keep the M-step tractable. Much little has been done to enforce
similar constraints on the matches (E-step). Dropping the priors πjk, as done
in the ICP of Besl & McKay or the EM-ICP of Granger & Pennec amounts to
say that the posteriors γjk are only estimated using the spatial distance between
the points yj and T (xk) (E-step). This is unsatisfactory, for two reasons. First,
this distance is highly conditioned by the previous estimation of T , which in



turn depends on the previous estimation of γjk and so on. This chicken-and-egg
problem limits the capture range of the algorithm, which is likely to converge
to a bad solution if no good initial T is given. Second, in medical imaging it is
difficult to design a physical model T capturing the expected deformation be-
tween two structures. Thus the global maximiser of the ML criterion is likely not
to be realistic. By specifying relevant priors πjk, we provide a way to partially
alleviate these two limitations. First, it allows to introduce additional informa-
tion on matches independent of the transformation and thus to compute reliable
posteriors even for a bad initial estimate of T . Second, it allows to modify the
criterion in a way that its global maximiser is a more realistic transformation.

3.2 Building Priors on Matches

In this section we show how to design the priors πjk to encode very hetero-
geneous types of a priori knowledge on the matches, such as “two points with
similar curvatures are more likely to be matched than others” as well as knowl-
edge of the labels of structures in the objects to be matched (e.g. gyri/sulci
in cortical registration). In practice, we choose to design π = (πjk) such that
πjk ∝ exp(−βc(yj , xk)) where c : X × Y → IR+ conveys the cost of matching
points yj and xk, independently of T . The parameter β > 0 weighs the influence
of πjk over ||yj − T (xk)|| during the E-step. Depending on the information to
encode (continuous value or label), we propose two approaches to build c.

Using descriptors: c can be computed via the comparison between continuous
values (or vectors) d(x) describing the surface around the considered points. To
account for potential inaccuracies on d(.), we define the measure as: cd(yj , xk) =
0 if ||d(yj)−d(xk)|| < τ ; = penalty > 0 else. To the best of our knowledge, there
exists no descriptor invariant to any nonlinear transformation. However, one can
use some descriptors invariant to more constrained transformations (Fig. 1, left):

– the shape index sh(x) [13] that describes the local shape irrespective of the
scale and that is invariant to similarities

– the curvedness cu(x) [13] that specifies the amount of curvature and that is
invariant to rigid-body transformations

– the (normalised) total geodesic distance tgd(x) [14] that is invariant to isome-
tries in the shape space (including non-elastic deformations).

Using labels: c can be computed via the comparison between labels on points
(cortical sulci/gyri). We define: c(yj , xk) = 0 if points j and k have compatible
labels; = penalty > 0 else. In practice, we extract the crest lines from both
meshes as they constitute salient features. Each point is given a label depending
on whether it belongs to a crest line or not. Then, we define ccrest(yj , xk) = 0 if
yj and xk have the same label and c(yj , xk) = penalty else.

Mixing the two approaches: In practice, we choose to mix the previous
four sources of information to build the function c: c(yj, xk) = a1c

sh(yj , xk) +
a2c

cu(yj , xk)+a3c
tgd(yj , xk)+a4ccrest(yj , xk) with a1 +a2 +a3 +a4 = 1. Param-

eters ai allow to weigh the different terms. Their values is application-dependent
and will not be studied in this paper, in which we set them to 0.25.



Fig. 1. Left: Mapping of descriptor values: From left to right: curvedness, shape index
and total geodesic distance on two lateral ventricles. Homologous anatomical landmarks
yield qualitatively the same descriptor values. Right: point-based matching (top) vs
line-based matching performed by our algorithm (bottom).

3.3 Efficient Implementation

In practice, we do not consider all points during the computation of γjk (E-step).
For that, we consider pk(.; T ) as a truncated Gaussian pdf with cut-off distance
δ. This allows to reduce the computational burden (by the use of a kd-tree) and
increase robustness. It can be shown that our algorithm still converges to an at
least local maximum of the new (truncated) criterion. The E-Step becomes:
initialise γ = (γjk) to the null matrix
∀xk ∈ X

S = {yj ∈ Y such that ||yj − T̃ (xk)||2 < δ} (using a kd-tree)
∀yj ∈ S

γjk = exp(−(||yj − T̃ (xk)||2/(2σ2) + βc(yj , xk)))
∀j, ∀k, γ̃jk = γjk/

∑

l γjl (normalisation)
Moreover, we choose to initialise α (regularisation weight), σ (scale parame-

ter) and β (prior weight) with high values and reduce them throughout iterations.

4 Enforcing Global Constraints on Matches

In the formalism presented so far, the matches in the E-step are performed on
an individual basis without any global constraint such as one-to-one matches for
instance. Another desirable global constraint is that some geometrical relation-
ships between points in Y should be preserved between their correspondences
in X . Thus if we consider each crest line in Y as a set of ordered points, then
their correspondences must i) lie on the same crest line in X and ii) be ordered
in the same way (up to the orientation of the line) (Fig. 1 right). To enforce
these two constraints, let us introduce some notations first. Let L and M be the
sets of crest lines of Y and X , each crest line being defined as a set of ordered
points. Let u = (ulm) be a block matrix whose lines (resp. columns) correspond
to the concatenated crest lines of Y (resp. X). Then ulm

jk is the indicator variable

ulm
jk = 1 iff yj in crest line l corresponds to the point xk in crest line m. The two

constraints i) and ii) are specified as follows: the submatrix ulm is either null
(the line l does not match with the line m) or contains one 1 per line, with the 1s
drawing a “staircase” going to the left or to the right, all “steps” of the staircase
having potentially different widths and different heights. Then we propose to
maximise the following criterion over T and u having this staircase structure:



L−CL =





∏

yj∈Y \L

∑

xk∈X\M

πjkpk(yj |T ) ×
∏

l∈L

∏

yj∈l

∑

xk∈m

[pk(yj |T )]u
lm
jk



×p(T ) (3)

This criterion is an hybrid between the classification likelihood and the like-
lihood approaches. Introducing u only modifies the E-step of the algorithm, in
which u and γ can be estimated independently. The algorithm becomes:

E-Step: compute γ̃ as before
∀l, compute ũlm respecting the staircase structure

and maximising
∏

yj∈l

∑

xk∈m[pk(yj |T̃ )ũlm
jk ]

M-Step: T̃ = argminT

∑

yj∈Y \L,xk∈X\M γ̃jk||yj − T (xk)||2

+
∑

l∈L

∑

yj∈l,xk∈m ũlm
jk ||yj − T (xk)||2 + αR(T )

To our knowledge, an exhaustive search is the only way to maximise the
proposed criterion over u. Instead, we propose to design an heuristic algorithm
to do so, that extends the one proposed by Subsol [15] and consists of two steps:
i) finding the crest line m ∈ M that corresponds to each l ∈ L and ii) starting
from different initial potential matches and assigning iteratively each point yj ∈ l
to a point xk ∈ m by keeping the staircase structure of the submatrix ulm.

5 Experiments & Results

In the following we choose to adopt a locally affine regularisation [12] (with only
the translational part) because of its ability to perform efficiently (∼ 7min) on
large datasets (∼ 50K points).

5.1 Experiments on Synthetic Data

Generation of ground truth data. We first segment a structure X (typically,
a pair of lateral ventricles or caudate nuclei, giving surfaces of about 10K points,
itksnap.org) from a 3T T1-weighted brain MRI of a healthy subject. Then Y
is generated from X by applying a random thin plate spline transformation [2].
Then, we add a uniform Gaussian noise of std 0.5 mm on each point of the
deformed surface and remove groups of adjacent vertices to generate holes. This
way we generate ground truth pairs of 100 ventricles and 100 caudate nuclei.
Evaluation. We evaluate the error by computing the mean distance between
homologous points after registration using different strategies. The results are
reported in Tab. 1 and an example is displayed in Fig. 2. They show the strong
added value of using priors. The error is further reduced when using constraints,
which ensure that the ordering of the points on the lines is kept unchanged, and
thus help the algorithm to obtain anatomically coherent matches elsewhere.

5.2 Experiments on Real Data

In a first experiment, we choose X and Y as two different lateral ventricles and
manually extract a set of 8 anatomical landmarks common to X and Y . We then



no prior/no constraint prior/no constraint prior/constraint

ventricle 2.19 ± 0.82 1.43 ± 0.91 1.39 ± 0.93

caudate nuclei 1.54 ± 0.43 1.04 ± 0.57 0.98 ± 0.56

Table 1. Experiments on synthetic data (stats). Mean and std (mm) of the reg-
istration error for the 100 ventricles and 100 caudate nuclei by varying the parameters.

Fig. 2. Experiments on synthetic data. From left to right: Experiments on two
different structures: ventricles and caudate nuclei. a) and d) original and deformed; b)
and e) mapping of registration error (mm) without using prior/constraint; c) and f)
mapping of registration error using prior/constraint.

apply a random affine transformation A to Y , register A(Y ) to X with and with-
out using priors/constraints, and evaluate the registration error on landmarks.
We perform this experiment 100 times (but we display only 10 on Fig. 3 for better
clarity). We observe a mean error of 1.73 ± 1.24mm with the priors/constraints
and 2.55 ± 2.46mm without (Fig. 3, left). In a second experiment, we segment
the brain from T1-weighted MRI data of two healthy subjects (300,000 points,
brainvisa.info), and we extract four sulcal fundus beds (using our algorithm
for crest lines) and label them manually for each subject. Then we register the
two surfaces with and without using priors/constraints. The distance between
the homologous sulci after registration is used as a quality metric. It is evaluated
to be 3.3mm in the first case and 6.8mm in the second (Fig. 3, right).

6 Conclusion and Perspectives

We proposed techniques to set priors and enforce some global geometrical con-
straints on matches for ML-based nonlinear registration of surfaces. The priors
on matches give a flexible way to devise structure-specific registration algorithms.
They ideally complement the global, generic, prior on the transformation and
thus help to obtain a result coherent with the application of interest. In addition,
they provide a convenient framework to include additional knowledge (segmen-
tation, landmarks, etc.) provided by experts when available. In the future, com-
parisons with other recent methods, especially landmark-free approaches [16]
and others that do not resort to point-to-point correspondences [17] will be led.
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