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Abstract

Gliomas, the most frequent primitive CNS tumors, have been suggested to originate from astrocytes or from neural progenitors/stem

cells. However, the precise identity of the cells at the origin of gliomas remains a matter of debate because no pre-neoplastic state has

been yet identified. TGF , an EGF family member, is frequently over-expressed in the early stages of glioma progression. Weα
previously demonstrated that prolonged exposure of astrocytes to TGF  is sufficient to trigger their reversion to a neuralα
progenitor-like state. To determine whether TGF  de-differentiating effects are associated with cancerous transforming effects, weα
grafted intra-cerebrally de-differentiated astrocytes. We show that these cells had the same cytogenomic profile as astrocytes,

survived and did not give birth to tumors. When astrocytes de-differentiated with TGF  were submitted to oncogenic stressin vivo α
using gamma irradiation, they acquired cancerous properties: they were immortalized, showed cytogenomic abnormalities, and

formed high-grade glioma-like tumors after brain grafting. In contrast, irradiation did not modify the lifespan of astrocytes cultivated

in serum-free medium. Addition of TGF  after irradiation did not promote their transformation but decreased their lifespan. Theseα
results demonstrate that reversion of mature astrocytes to an embryonic state without genomic manipulation is sufficient to sensitize

them to oncogenic stress.
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Cells ; drug effects ; metabolism ; radiation effects ; Stress, Physiological ; physiology ; radiation effects ; Transforming Growth Factor alpha ; metabolism ; pharmacology
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Gliomas are highly heterogeneous primitive tumors of the central nervous system and result in poor outcome despite new alkylating

and anti-angiogenic treatments. The variability in clinical evolution of patients bearing tumors of similar histopathological appearances

and the invasive nature of the tumors impair the development of curative treatments.

The cell at the origin of glioma remains a matter of speculation since no pre-neoplastic state has been identified . Morphological and1 

immunohistological similarities of glioma cells to macroglial cells of the CNS have led to the initial proposal that they derive from

astrocytes or oligodendrocytes. Conversely, the coexistence within the same tumor of cells of different phenotypes, and the isolation of

tumor stem cells from gliomas , favor neural progenitors or neural stem cells as the cell of origin of gliomas. The frequent development2 3 

of gliomas in the vicinity of the sub-ventricular zone, which contains adult neural stem cells, as well as the migratory properties of these

cells , further support this hypothesis. Nevertheless, experimental development of gliomas in juvenile transgenic mice shows that4 

cancerous transformation can be achieved with retroviral introduction of oncogenes in both progenitor/stem cells expressing nestin and

differentiated cells expressing GFAP, a common astrocyte marker, although the transformation occurs with higher efficacy in immature

cells . A possible reconciliation between these opposite sets of data may be that gliomas result not only from alterations in the regulation5 

of cell proliferation and survival, but also from alterations in the differentiation state of mature cells as proposed for other cancers . We6 
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previously showed that prolonged exposure of differentiated astrocytes to Transforming Growth Factor (TGF ), a member of theα
Epidermal Growth factor (EGF) family , results in their progressive and functional reversion, first to neural progenitor-like cells akin to7 

radial glia, and then to cells that exhibit properties of neural stem cells . TGF  and its receptor erbB1 (or epidermal growth factor8 α
receptor, EGFR) are involved in the control of both gliogenesis and glioma development. They constitute the signaling module most

frequently deregulated in gliomas. TGF  over-expression is found in about 80  of gliomas, and is observed from the initial steps of theirα %
development , whereas the over-expression of erbB1 appears in 20 40  of gliomas in later phases . Over-expression of TGF  and/or9 – % 10 α
its receptor are, by themselves, insufficient to achieve cancerous transformation of astrocytes in transgenic mice , .11 12 

In the context of regenerative medicine, the ability to revert somatic cells to an embryonic state without nucleic acid delivery of

reprogramming factors , and with a single modification of their environment is of great interest. This interest is reinforced by the13 14 8 

recent report that a subset of reactive astrocytes isolated from the brains of stab wound-injured mice may reacquire, at least , neuralin vitro 

stem cell properties , and by the known over-expression of TGF  by reactive astrocytes (reviewed in ). In light of the deregulation of15 α 9 

TGF  expression in the early stages of glioma development, it is important to determine whether reversion of astrocytes to a neuralα
progenitor state predisposes the cells to cancerous transformation. To evaluate this possibility, we used a classical mutagenic treatment,

irradiation, to determine whether astrocytes de-differentiated into progenitor-like cells are more sensitive to cancerous transformation than

their mature counterparts. Our results show that mature astrocytes, having regressed to a neural progenitor-like stage in response to a single

change in their extra-cellular environment, can be the cell of origin of gliomas.

Materials and methods
Animals

C57Bl6/J and Nude mice (Charles River, France) were housed in an air-conditioned room with free access to water and food.

NOD/SCID mice (Charles River, France) were maintained in microisolator cages in pathogen-free conditions.

Cell culture and irradiation

Cultures of mouse astrocytes were prepared from cortices of 1-to-2-day-old C57Bl6/J mice as previously described . Briefly,16 

cultures were established in defined MEM:F12 medium containing 10  fetal calf serum (Biowest, Nuaill , France). Medium was changed% é
every 3 days following washes with ice-cold phosphate-buffered saline (PBS, pH 7.4). When confluence was reached (8 10 DIV), cultures–
were shaken overnight (250 r.p.m.), trypsinised and seeded on poly-L-ornithine-coated glass slides (50,000 cell/cm ). The cells were2 

further cultured for 4 6 days with washes with ice-cold PBS preceding each medium renewal, until an 80 90  confluent cell layer had– – %
formed. The cultures were then transferred to serum-free medium for 3 days, prior being cultivated for 7 days in defined medium

supplemented or unsupplemented with TGF  (50ng/ml, AbCys, France). GFAP-immunoreactive astrocytes accounted for 91 96  of theα – %
cells in all cultures types. The remaining 4 9  of cells were CD11b receptor-immunoreactive microglia. TGF  levels present in these– % α
astrocyte culture lysates were determined using an anti-human TGF  sandwich ELISA (R&D systems, France) following the manufacturerα
s instructions. Assays of erbB1 levels and activation were performed as previously described with the following antibodies: anti-erbB1’ 8 

sc-03-G from Santa-Cruz (TEBU, France) for immuno-precipitation, anti-erbB1 and anti-phosphotyrosine antibody 4G10 from

UpstateBiotechnologies (Lake Placid, NY) for immuno-blotting. Expression of TACE, the enzyme that controls TGF  release from theα
cells , was verified using Western blot analysis with an anti-TACE antibody from Santa-Cruz (1:250, sc-6416, TEBU, France), as17 

previously described .18 

Astrocytes cultivated with or without TGF  were irradiated with 5 Gy of -radiation using a Cs irradiator (IBL 637, Institut Curie,α γ 137 

Paris, France) at a dose rate of 1.57 Gy/min ( ). Controls corresponded to sham-irradiated cultures. The cells were maintained at 37Fig. 1a °
C throughout the experime ntal procedure, except during irradiation, which was performed at 20 C in ambient a ir. Two hours after°
irradiation, the cells were washed with ice-cold PBS, and further cultured in their original medium with changes of media every 3 days. In

addition, astrocytes cultivated with or without TGF  were treated with 1 M Tyrphostin AG1478 (La Jolla, CA) between minus 2, andα μ
plus 2 hours of the irradiation time-point. AG1478 is a specific inhibitor of erbB1 tyrosine kinase activity , known to inhibit TGF19 α
effects on astrocytes , .8 20 

Changes in morphology or growth pattern were verified by visual inspection prior each medium renewal. After 40 DIV, medium was

switched to a 1:1 mixture of DMEM and F12 nutrient (Invitrogen, France), containing 0.6  glucose, 2 mM glutamine, 13 mM sodium%
bicarbonate, 5 mM N-2-hydroxyethylpiperazine-N -2-ethanesulfonic acid (HEPES) buffer, 5 IU/ml penicillin and 5 g/ml streptomycin,′ μ
and B27, N-2 and G5 supplements (10 l/ml each, Invitrogen) (NS34 medium, ). This medium was renewed once per week. Experimentsμ 8 

were repeated three times in an independent manner.

Proliferation and survival assays

Seventy days post-irradiation, cultures were trypsinised and counted. Cell viability was determined by Trypan Blue exclusion. To

construct growth curves, cultures were submitted to serial passages when reaching 70 90  confluence.– %
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Array CGH

The samples were homogenized, and genomic DNA was extracted according to Qiagen protocols with modifications. Restriction of

DNA, quality control of restricted DNA by microanalysis, pooling, and clean-up, were performed following instructions from Agilent. The

samples were hybridized in single versus a standard DNA (male or female, Promega) with Mouse Genome CGH 4x44K Agilent micro

arrays (G4426B). The scanning and image analysis were performed with Agilent technology using default settings. Raw data .txt files

from the Agilent Feature Extraction software 9.5 were then imported for analysis into CGH Analytics 3.4.40. Aberrations were obtained

with the ADM2 algorithm and filtering options of a minimum of 5 probes and abs (log 2 ratio) >0.25. Sexual chromosomes were excluded

from the analysis because male and female mice were indifferently used to establish the astrocyte cultures.

The microarray data analyzed in this paper have been submitted to the Array Express data repository at the European Bioinformatics

Institute ( ) under the accession number E-TABM-706.http://www.ebi.ac.uk/arrayexpress/ 

Anchorage-independent Growth assays

The cells (10,000) were uniformly suspended in 1.5 ml NS34 containing 66  methylcellulose medium (M3434; Stem Cell%
Technologies, France). The suspension was plated in 35 mm dishes. The plates were incubated at 37 C in a 5  CO humidified° % 2 

atmosphere after microscopic evaluation to ascertain that no cellular clusters have been seeded. The cells were cultured for 7 days prior to

the evaluation of colony formation.

Subcutaneous and intracerebral grafting

Cell suspensions in PBS were prepared prior to grafting from cultures treated with trypsin. Bilateral subcutaneous injections of either

5.10 or 5.10 -cells/200 l were performed into the flanks of 6-week-old NOD/SCID mice (n 10). Mice were screened twice weekly for6 5 μ =
tumor formation. Mice were sacrificed under anesthesia one month post-graft. The tumors were excised and fixed by immersion in

paraformaldehyde for 24 hours prior to being embedded into paraffin. Stereotaxic injections of 5.10 cells/5 l into the striatum of5 μ
6-week-old Nude mice (n 8) were performed using the following stereotaxic coordinates (antero-posterior  0 from the bregma, lateral = = =
2.5 mm right, ventral  3.8 mm deep from the dura . Body-weights were monitored once a week, and mice were sacrificed 18 25 days= 21 –
post-graft with a transcardial paraformaldehyde perfusion as previously described . Tissues were frozen in a 30  sucrose cryoprotective22 %
medium after a 24 hr incubation period.

Immunolabelling

Ten m-thick sections were prepared from paraffin-embedded subcutaneous tumors. Cryostat sections (20 m thickness) of the brainsμ μ
were cut in the frontal plane. Immunohistochemistry was performed on free-floating sections. Immunocytochemical and

immunohistochemical procedures were performed as previously described using the following primary antibodies: polyclonal rabbit or23 

monoclonal anti-GFAP (1:500, Dako or 1:500 ICN, France), polyclonal rabbit anti-BLBP antibody (1:1000), monoclonal anti-nestin

(1:200, Chemicon, France), polyclonal rabbit anti-NG2 (1:2000, Tebu, France), polyclonal rabbit anti-TGF  (1:200, RGG-8040, Peninsulaα
Laboratories, San Carlos, CA). Immunofluorescent labelings were viewed using an Axioplan 2 fluorescence microscope, and images were

captured using the ApoTome (Zeiss), AxioCam MRm digital camera and AxioVision 4.2 software. Other immunolabelings images were

acquired on a Digital still camera (DXM 1200, Nikon, USA) using the Lucia software (Laboratory Imaging, Ltd). The images were

prepared for printing using Adobe Photoshop software (Adobe Systems, San Jose, CA).

Results
Irradiation immortalizes astrocytes de-differentiated into progenitor-like cells

Astrocytes maintained for a week in serum-free medium exhibit a flat, polygonal morphology ( ), while TGF -treatedFig. 1b α
astrocytes acquire, after 7 days of treatment, a bipolar morphology ( ). Irradiation did not modify the morphology or the life span ofFig. 1c 

astrocytes cultured in serum-free medium. These cultures died within 3 weeks post-irradiation, as did their sister sham-irradiated

counterparts ( ). In contrast, TGF -treated cultures survived beyond 3 weeks regardless of whether they had been irradiated (Fig. 1d α Fig. 1e

).

Non-irradiated TGF -treated astrocytes presented the previously described radial glia-like bipolar morphology , with a thin layer ofα 8 

cytoplasm surrounding a fusiform nucleus, and two long thin processes extending in opposite directions ( ). This morphology wasFig. 1c 

maintained throughout the survival time of the cultures. On the contrary, irradiated TGF -treated astrocytes exhibited progressiveα
morphological changes. Forty days post-irradiation, irradiated TGF -treated cultures contained densely packed bipolar cells ( ) thatα Fig. 1e 

coexisted with giant stellar-shaped cells ( ) and small rounded cells that covered large areas of the culture dish. Development ofFig. 1f 

large masses of round, bright cells at the top of the cellular layer was observed in irradiated TGF -treated astrocyte cultures maintained forα
3 months after irradiation in TGF -supplemented defined medium. Masses were collected from three independent cultures, andα
subsequently dissociated and further cultured. The cells kept growing in suspension, forming cellular spheres that occasionally attached to
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the culture flask ( ). Eventually, all irradiated TGF -treated cultures were composed, for the most part, of cells that formed floatingFig. 1g α
spheres. In addition to these morphological changes, irradiated TGF -treated cells exhibited a higher growth rate than sham-irradiatedα
sister cultures (compare ). Unlike their sham-irradiated counterparts, irradiated TGF -treated cells could be trypsinised andFig. 1e with 1c α
successfully re-seeded ( ). These data show that irradiation immortalized astrocytes reverted to progenitor-like cells upon TGFFig. 1h α
action.

Both ligand-independent and TGF -dependent erbB1 activations have been shown to underlie the radioresistance of tumoral epithelialα
cells through enhanced survival and DNA repair . ErbB1 expression has been previously characterized and shown to be functional24 –27 

in our mouse cortical astrocyte cultures ( , and . These cells express TGF , as detected by ELISA at a concentration of 5 pg TGFFig. 2a 20 α
/ g protein in our astrocyte cultures, and as observed using immunocytochemistry ( ). They also express TACE, theα μ Fig. 2c 

metalloprotease required for TGF  release, as seen by immunoblotting ( ). To evaluate whether irradiation survival of astrocytesα Fig. 2b 

depended on the mobilization of the endogenous TGF -erbB1 pair, we repeated the irradiation procedure on cultures treated or untreatedα
with TGF  and supplemented with 1 M AG1478, a specific inhibitor of erbB1 tyrosine kinase activity , for 4 hours that included theα μ 19 

irradiation time-point. Longer erbB1 inhibition was not attempted, as we previously observed that TGF -treated astrocytes underwentα
apoptosis upon prolonged growth factor signaling inhibition .20 

Blockade of erbB1 signaling had no effect on the survival of control or TGF -treated astrocytes up to 40 days post-irradiation, theα
longest time point surveyed. To verify whether TGF  promoted DNA double-strand break repair or survival, we added the growth factorα
to control cultures within 30 minutes after their irradiation. Surprisingly, all cells died within 6 days, demonstrating that TGF  potentiatesα
irradiation-triggered cellular stress.

Taken together, these results indicate that radioresistance of astrocytes, irrespective of whether they have been previously treated with

TGF , is independent from the erbB1-signalling pathway.α

Tumoral transformation of irradiated TGF treated astrocytesα–

In contrast with nuclei of sham-irradiated cells that possessed regular contours, nuclei of irradiated TGF -treated cells exhibited atypiaα
with irregular contours and segmentation (not shown). This observation raised the possibility that irradiation not only resulted in the

immortalization of astrocytes de-differentiated into progenitor-like cells by TGF , but also in their cancerous transformation. To evaluateα
this hypothesis, we first assayed their ability to grow in an anchorage-independent manner, a common landmark of cells  cancerous’
transformation . Cells were seeded in culture medium containing 60  methylcellulose, and the formation of colonies was monitored.28 %
Numerous large colonies were observed in cultures of irradiated TGF treated astrocytes ( ), whereas only rare and small coloniesα– Fig. 3a 

<50 m in diameter were formed by sham-irradiated TGF -treated cultures ( , insert), as expected for neural progenitors . Toμ α Fig. 3a 29 

assess tumorigenicity, we performed heterotopic and homotopic grafts. We first performed subcutaneous injections of irradiatedin vivo 

TGF treated cells, growing either anchored to the culture flask or as floating spheres, into the flanks of 6-week-old NOD-SCID mice.α–
Within 2 weeks, tumors became visible in all animals at the sites of injection. After the death of two mice, all the remaining animals were

sacrificed 4 weeks post-injection. Dissection showed that all animals had developed tumors that ranged in size from 10 25 mm ( ).– Fig. 3b 

Most of the tumors had developed beyond the subcutaneous space, and some grew within the peritoneal cavity. Histological analysis

showed that the tumors were formed of bundles of spindle-shaped cells, and contained areas of pseudopalissading necrosis ( ). TheyFig. 3c 

were highly destructive of the host tissues, as illustrated for the dermis ( ), the cartilages ( ), and the muscles ( ). TheirFig. 3c Fig. 3d Fig. 3e 

histological aspect evoked either a glioblastoma or a gliosarcoma. No difference was noted between tumors generated from anchored or

floating cells (not shown). Immunohistological detection of Ki67 ( ) revealed a 33  index of proliferation.Fig. 3f %

Homotopic grafts were achieved using stereotaxic injections of irradiated TGF treated cells growing in the form of floating spheresα–
into the striatum of 6-week-old Nude mice. Striatal grafts of neural stem-like cells and progenitor-like cells derived from TGF -treatedα
astrocytes were used as controls. Recipients of grafts of neural-stem like cells and progenitor-like cells survived up to 6 weeks

post-grafting without displaying any clinical sign. Upon histological examination, cellular grafts were found under the form of small and

well-delineated cellular aggregates that remained localized along the injection track ( ). In contrast, mice grafted with irradiatedFig. 4a 

TGF -treated cells displayed reductions in their body weight, and behavioral alterations from around 2 weeks post-graft. All animals wereα
sacrificed at 3 4 weeks post-graft and had developed tumors. Histological analysis showed vast bundles of spindle-shaped cells within the–
striatum, forming a densely packed cellular tumor ( ), and patches of spindle-shaped cells could be observed throughout theFig. 4b d –
ipsi-lateral brain, from the thalamus ( ) to the olfactory bulb (not shown). Immunochemical analysis was used to determine whetherFig. 4b 

the grafted cells maintained a similar molecular expression profile as . We previously reported that astrocytesin vivo in vitro 

de-differentiated into progenitor-like cells express markers of neural stem cells or progenitor cells (BLBP, nestin), and half of them

express the astroglial marker GFAP . In addition, we observed here that neither control nor TGF treated astrocytes express NG2, a8 α–
glycoprotein recently identified in oligodendrocyte precursors (data not shown). Most irradiated TGF treated cells maintained GFAP30 α–
expression ( ). GFAP-immunoreactive cells were observed within the core of the CNS tumors ( and ) although thein vitro Fig. 5a Fig. 5b 6a 

pattern of GFAP-immunostaining showed the presence of reactive astrocytes around the tumor mass ( ). Only a fraction of theFig. 5b 
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irradiated TGF treated astrocytes retained expression of BLBP and nestin ( ), and patches of BLBP- andα– in vitro Fig. 5c and e 

nestin-immunoreactive cells were observed within the centre of the tumors ( ). Interestingly, we found that a subset ofFig. 5d and f 

irradiated TGF treated cells had acquired NG2 expression in vitro ( ), and some NG2-immunoreactive cells were observed withinα– Fig. 5g 

the brain tumor core ( ). Finally, no GFAP-immunoreactive tumor cells were observed in subcutaneous tumors (Fig. 5h Supplementary Fig.

). Conversely, no cells expressing the neuronal marker synaptophysin were observed in CNS tumors ( ) while1b Supplementary Fig. 1d 

numerous synaptophysin-immunoreactive cells were observed within the subcutaneous tumors ( ). These dataSupplementary Fig. 1c 

indicate that the environment influences the molecular markers of the tumor cells, without affecting their tumorigenicity.

Taken together, these results demonstrate that irradiation triggered cancerous transformation of astrocytes if they had regressed to a

progenitor-like status upon TGF  action.α

Cytogenomic abnormalities of transformed TGF -treated astrocytesα

Analysis of the karyotypes at 2 months post-irradiation revealed a hyperploidy in 50  of irradiated TGF -treated astrocytes (data not% α
shown). A high-resolution oligonucleotide CGH array was used to characterize the cytogenomic alterations of these cells and in vitro in

, compared with their non-irradiated sister cells. This analysis was performed on the cells used for subcutaneous grafting, i.e., at 9vivo 

months post-irradiation. The detailed results of the analysis are provided in . The profile of gains and losses forsupplementary Table 1 

astrocytes maintained in serum-free medium were highly similar to those for TGF -treated astrocytes. Both cell types exhibitedα
polymorphisms compared with the control DNA sample provided by the manufacturer, most notably in chromosome 4qD1 ( , Fig. 6a 

). A search for genomic imbalances appearing de novo in transformation was performed through the comparison ofsupplementary Table 1 

array CGH patterns of the samples. The profiles of irradiated TGF -treated astrocytes growing either in the form of adherent ( ) orα Fig. 6a 

floating cells (not shown) were very similar ( ), and differed from non-irradiated cultures most prominently through gains inTable 1 

chromosomes 6qA-E, 7qA-F, 11qB-E and 15qA-F ( and ). Irradiated TGF -treated astrocytes that grew as floating cellsFig. 6a Table 1 α
lacked the chromosome 15 and 7qF1-F4 alterations identified in irradiated TGF -treated astrocytes growing as adherent cells.α

The array CGH profiles of the different subcutaneous tumors derived from irradiated TGF -treated astrocytes were overallα
comparable, and similar to the profile of their cells of origin. One marked exception was the segmental chromosomal copy number

alteration (CNA) on chromosome 15; absent in irradiated TGF -treated astrocytes growing as floating cells, it was acquired in all tumorsα
derived from these cells (n 3). In addition, one tumor derived from irradiated TGF -treated astrocytes growing as floating cells lacked= α
CNAs on chromosome 7, whereas 2 other tumors exhibited CNAs only on chromosome 7qA1-B3 ( ). The profiles of tumorsTable 1 

generated from TGF -treated astrocytes growing as adherent cells exhibited a remarkable degree of similarity ( ). The most notableα Table 1 

variation was seen in the 7qF1-F5 CNAs, present in irradiated TGF -treated astrocytes growing as adherent cells and in all but one tumorα
generated from these cells (n 5).=

These results show that irradiation-induced cancerous transformation of TGF -treated astrocytes was accompanied by the acquisitionα
of several CNAs, among which those located on chromosomes 6, 7 and 11 were conserved among all irradiated cells , and allin vitro 

tumors . Interestingly, gains in chromosome 6 and 11 segments encompassed the loci of the TGF  gene and the erbB2in vivo α
proto-oncogene, an orphan receptor of the erbB1 family, respectively. No segmental alterations were observed in gene loci encoding other

members of the EGF and erbB families, erbB1 included. Additional molecular and pharmacologic studies are required to determine which

molecular pathways are instrumental in radiation-induced neoplastic transformation of these cells, and in the maintenance of their

tumorigenicity.

Discussion

Our results demonstrate that, unlike mature astrocytes, those that revert to neural progenitor-like cells upon TGF  action can beα
submitted to cancerous transformation.

TGF  has been reported to induce cancerous transformation of cultured fibroblasts , renal epithelial cells , and mammaryα 31 32 

epithelial cells . Transgenic mice over-expressing TGF  develop, late in their life, malignant tumors in the liver and the mammary33 α
glands , . However, sustained activation of the erbB1 signaling module is insufficient to trigger astrocyte neoplasia, unless7 34 –36 

astrocytes bear mutations in other oncogenes or tumor suppressor genes. For instance, primary cultures of astrocytes derived from /P53 − −
or /  mice, are immortal but not tumorigenic, but may progress to malignant transformation upon treatment with EGF, theP16/P19 − −
structural and functional analogue of TGF  , , . In agreement with these results, we observed no sign of tumoral transformation ofα 12 37 38 

astrocytes either or after intra-cerebral grafts ( ), despite several months of continuous exposure to TGF . Inin vitro 8 in vivo Fig. 4a α
addition, we observed that TGF -treated astrocytes are able to engage into a neuronal differentiation pathway (data not shown) asα in vivo 

they do . Finally, the genomic profiles of astrocytes maintained in serum-free medium are the same as those of astrocytes treatedin vitro 8 

with TGF .α
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Our results show that astrocytes survive irradiation regardless of their exposure to TGF . Several studies demonstrated theα
participation of erbB1 activation in the cellular defense system against ionizing radiation, and clinical results indicate that erbB1 inhibition

sensitizes different solid human tumors, including gliomas, to radiation , . ErbB1 activation may be achieved within minutes via39 40 

radiation-induced reactive oxygen/nitrogen species that induce phosphorylation of erbB1 , and within 2 hours via increased41 –43 

proteolytic cleavage of the TGF  precursor , resulting in the mobilization of intra-cellular pathways that promote cell survival and DNAα 26 

repair , . Although we ascertained that the astrocytes used in the present study express all the molecular components required for a44 45 

functional endogenous TGF -erbB1 signaling module, their radioresistance appears independent from erbB1 activity. Indeed, survival ofα
irradiation is unaltered by the blockade of erbB1 tyrosine kinase activity within 4 hours of irradiation.

Although astrocytes resisted radiation, they demonstrated limited growth potential and entered into a senescence-like state 2 3 weeks–
post-irradiation, like their sham-irradiated counterparts. Addition of TGF  to control astrocytes after their irradiation did not promote theirα
survival or cancerous transformation, but, on the contrary, induced their death. In contrast, irradiation of astrocytes reverted to

progenitor-like cells upon TGF  action resulted in their immortalization and cancerous transformation. Sham-irradiated TGF -treatedα α
cultures survived much longer in their original dish than untreated astrocytes, as previously reported , but they did not sustain successive8 

passages, indicating that TGF  treatment is insufficient to trigger astrocyte immortalization.α

Cancerous transformation was ascertained by the cells  ability to form colonies in methylcellulose medium, their karyotype anomalies,’
and, most importantly, by the formation of subcutaneous tumors in NOD-SCID mice and high-grade glioma-like tumors in Nude mouse

CNS. In both graft paradigms, the histological aspect of the tumors evoked either a glioblastoma or a gliosarcoma. Immunological

characterization of the transformed cells and in brain grafts revealed, overall, a very immature phenotype, except for GFAPin vitro 

expression that was, at least , observed in most cells. Only a fraction of the cancerously transformed cells retained neuralin vitro 

progenitor markers like BLBP and nestin, which were expressed in the vast majority of non-irradiated TGF -treated astrocytes . Inα 8 

contrast, some had acquired the expression of NG2, a proteoglycan frequently associated with cancerous cells in glioma , and involved46 

in chemoresistance and cell motility . The high similarity of the genomic profiles of different subcutaneous tumors and the profile of47 48 

their cells of origin, associated with their rapid development within 2 3 weeks in both graft paradigms, shows that the cells  tumorigenicity– ’
is independent of secondary alterations selected . In addition, the lack of genomic anomalies in TGF -treated astrocytes prior toin vivo α
their irradiation shows that TGF  does not predispose the cells to cancerous transformation through the acquisition of an aneuploid state, aα
phenomenon recently shown to occur in a transient manner during normal differentiation of neural stem cells of the mouse sub-ventricular

zone .49 

Conclusion

Our results show that regression of astrocytes to a progenitor-like stage sensitizes the cells to oncogenic events. Immediate exposure of

irradiated-astrocytes to TGF  kills them instead of promoting their cancerous transformation. This further shows that the change in theα
differentiation status of the astrocytes is a prerequisite condition to their cancerous transformation. Whether this sensitization is of the

same magnitude for artificial  and natural  progenitors remains to be determined. It is indeed possible to envisage that de-differentiated“ ” “ ”
cells possess particular chromatin states and/or inappropriate DNA repair and apoptosis pathways. The present work indicates that

alteration of the differentiation state of mature cells could be at the core of glioma development, although it does not allow eliminating

neural stem or progenitor cells as parallel cells of origin of these primitive brain tumors.

In any case, our results suggest that the frequent TGF  over-expression observed at the early stages of glioma development testifies toα
a participation of this growth factor in the earliest pathological events that result in glioma induction.
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Figure 1
Response to irradiation of astrocytes and astrocytes de-differentiated into progenitor-like cells by TGF . Schematic representation of theα a. 

experimental protocol. See text for details. Mouse astrocytes have a flat, polygonal shape in serum-free medium. After 7 days in theb. c. 

presence of TGF , astrocytes acquire a bipolar shape. . Irradiation does not affect the survival of astrocyte cultures maintained in serum-freeα d 

medium. They die within 3 weeks post-irradiation, as do their sham-irradiated counterparts. Six weeks post-irradiation, TGF -treatede. α
cultures contain densely packed bipolar cells. Giant stellar shaped cells (arrow) co-exist with bipolar cells in irradiated TGF -treatedf. α
cultures (6 weeks post-irradiation). Three months post-irradiation, cells growing as free-floating cellular spheres appeared in irradiated TGFg. 

-treated cultures. Scale bar  40 m in a g. Growth during serial passage of sham-irradiated TGF -treated astrocyte cultures (black points)α = μ – h. α
and irradiated TGF -treated astrocyte cultures (red points). Serially passaged irradiated TGF -treated astrocytes exhibited immortal growthα α
while non-irradiated TGF -treated astrocytes underwent proliferation arrest. Illustration of 3 independent experiments.α
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Figure 2
ErbB1 is expressed and activated in response to TGF  in mouse astrocyte cultures. Phosphorylated erbB1 was analyzed by Western blot ina. α

mouse astrocyte cultures under control conditions and following 5 min TGF  treatment. IPP: immuno-precipitation. IB: immuno-blotting.α
4G10: monoclonal anti-phosphotyrosine antibody. TACE expression in mouse astrocyte cultured in serum-free medium. i: immature formb. 

of TACE; m: mature form of TACE. Immunofluorescent detection of TGF  in mouse astrocytes cultured in serum-free medium. Bar  50 c. α = μ
m.

Figure 3
Irradiated TGF -treated astrocyte cultures form large and numerous colonies in semi-solid medium, while their sham-irradiateda. α

counterparts form only rare and small colonies (insert). Scale bar  100 m. Subcutaneous tumors derived from irradiated TGF -treated= μ b f. – α
astrocytes. Illustration of the macroscopic appearance of the subcutaneous tumors. Hematoxylin-eosin staining illustrating theb. c d. –
spindle-cell morphology of the tumor cells, and their destruction of the host dermis ( ), the cartilages ( ), and the muscles ( ). Star in cc d e 

marks an area of necrosis. Arrow in e points to a muscle fiber. The tumors contained numerous Ki67-immunoreactive cells. Scale bar  100 f. =
m in c, d, e and f.μ
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Figure 4
Intra-cerebral tumors derived from irradiated TGF -treated astrocytes. Cresyl violet staining. Striatal grafts of neural stem-like cells derivedα a. 

from TGF -treated astrocytes do not form tumors. Examples of tumors derived from irradiated TGF -treated astrocytes. The tumor cellsα b c. – α
were spindle-shaped and invaded the host well beyond the transplantation point. LV: lateral ventricle. Scale bar  500 m. High power= μ d. 

view of tumoral cells invading the host tissue at the edge of the tumor. Scale bar  60 m.= μ
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Figure 5
Immunohistochemical characterization of irradiated TGF -treated astrocytes in vitro and after intra-cerebral grafting. Most astrocytesα a. 

de-differentiated into progenitor-like cells upon TGF  action and transformed by irradiation express the astroglial marker GFAP. Patchesα b. 

of GFAP-immunoreactive cells were observed within the core of the CNS tumors. Part of irradiated TGF treated astrocytes express c and e. α–
BLBP and nestin, markers of neural stem cells or progenitor cells. Patches of BLBP and nestin-immunoreactive cells werein vitro d and f. 

observed within the tumor masse. A subset of irradiated TGF treated cells express NG2, a glycoprotein labeling a population ofg. α–
macroglial cells and of oligodendrocyte progenitors. NG2-immunoreactive cells were observed within the brain tumor core. Scale bars  20h. =
m in a, c, e, and g; 100 m in b, d, f and h; 10 m in the insets of f and h.μ μ μ
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Figure 6
Profile of gains and losses of irradiated TGF -treated astrocytes growing in the form of adherent cells (red), compared with theira. α

non-irradiated sister cells (grey), and non-irradiated astrocytes maintained in serum-free medium (black). Shown are log 2 ratios for each

chromosome. Non-irradiated astrocytes exhibited the same profile irrespective of exposure to TGF . Irradiated TGF -treated astrocytesα α
exhibited gains in chromosomes 6, 7, 11 and 15. Profile of gains and losses of subcutaneous tumors derived from irradiated TGF -treatedb. α
astrocytes growing in the form of adherent cells (yellow) or floating cells (green).
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Table 1
Chromosomal copy number alterations. Red and green areas indicate DNA gains and losses, respectively. Aberrations were obtained with ADM2 algorithm and filtering options of a minimum of five

probes and log2 (ratio) > 0.25. Genomic coordinates according to the mm9 build (July 2007) and values in log2 (ratio).

Genomic coordonates
(mm9) chromosome band ASTRO

ASTRO
 TGF+ α

IRRADIATED
ASTRO +
T G F α
ADHERENT
CELLS

IRRADIATED
ASTRO +
T G F α
FLOATING
CELLS

TUMOR 1
F R O M
IRRADIATED
ASTRO +
T G F α
ADHERENT
CELLS

TUMOR 2
F R O M
IRRADIATED
ASTRO +
T G F α
ADHERENT
CELLS

TUMOR 3
F R O M
IRRADIATED
ASTRO +
T G F α
ADHERENT
CELLS

TUMOR 4
F R O M
IRRADIATED
ASTRO +
T G F α
ADHERENT
CELLS

TUMOR 5
F R O M
IRRADIATED
ASTRO +
T G F α
ADHERENT
CELLS

TUMOR 1
F R O M
IRRADIATED
ASTRO +
T G F α
FLOATING
CELLS

TUMOR 2
F R O M
IRRADIATED
ASTRO +
T G F α
FLOATING
CELLS

chr2:81139123-101306651 2 2qD-E1 0 0 −0.28 0 − 0.25 − 0.26 0 0 0 − 0.27 0

chr2:115846031-123819240 2 2qE5 0.84 0.86 1.04 0.92 0.78 0.87 0.83 0.82 0.78 0.69 0.78
chr3:83835375-93096260 3 3qF1 0 0 0 0.3 0 0 0 0 0 0 0
chr4:109852334-116510051 4 4qD1 2.65 2.63 2.38 2.42 2.12 2.44 0 0 2.25 2.19 2.46
chr4:132678793-140287612 4 4qD3 0 0 0 0 −0.54 −0.47 −0.58 0 0.49− 0.43− 0.49−
chr4:140287612-146469778 4 4qE1 0 0 0 0.48 0 0 0 0 0 0 0
chr4:146469778-155029701 4 4qE2 0 0.08 0 0 0 0 0 0 0 0 0
chr5:81773799-91394246 5 5qE1 0 0 0.26− 0 0.25− 0.28− 0 0 0.24− 0 0

chr6:0-16613965 6 6qA1 0 0 1.02− 1.03− 0.77− 0.85− 0.79− 0.84− 0.81− 0.61− 0.77−
chr6:16613965-116786401 6 6qA2-E3 0 0 0.29 0.43 0.33 0.36 0.37 0.38 0.36 0.29 0.35
chr6:125093383-139264118 6 6qF3-G1 0 0 0.27− −0.27 0.31− 0.31− 0.25− 0 0.25− 0.24− 0

chr7:0-15170811 7 7qA1 0 0 0.3 0.3 0.26 0.24 0.34 0.3 0.28 0 0.22
chr7:15170811-37421334 7 7qA2-B2 0 0 0.36 0.45 0.26 0.31 0.34 0.3 0.28 0 0.28
chr7:37421334-47535208 7 7qB3 0 0 0.43 0.45 0.33 0.31 0.34 0.36 0.34 0 0.28
chr7:47535208-54109226 7 7qB4 0 0 0.3 0.3 0.26 0 0.34 0 0 0 0
chr7:54109226-60683244 7 7qB5 0 0 0.3 0.3 0 0 0.34 0 0 0 0
chr7:60683244-71302812 7 7qC 0.72− 0.3 0.68− 0.4− 0.26 0.42− 0.34 0.36− 0.4− 0.69− 0.45−
chr7:71302812-90013479 7 7qD1-D3 0 0 0.3 0.22 0.26 0.24 0.34 0.3 0.28 0 0
chr7:90013479-102150128 7 7qE1-E2 0 0 0.3 0.22 0.26 0 0.34 0.3 0.28 0 0
chr7:102150128-111252615 7 7qE3 0 0 0.3 0.22 0.26 0.24 0.34 0.3 0.28 0 0.22
chr7:111252615-145134094 7 7qF1-F5 0 0 0.3 0 0.26 0 0.34 0.3 0.28 0 0
chr9:14343360-24059831 9 9qA2-A3 0 0 0 0 0.32− 0.33− 0 0 0 0 0

chr10:23539770-41194597 10 10qA4-B1 0 0 0 0 0 0 0 0 0 0.27− 0.27−
chr10:41194597-63753544 10 10qB2-B4 0 0 0.3− 0 0 0 0 0 0 0 0

chr10:95630316-111323496 10 10qC3-D1 0 0 0.28− 0 0 0 0 0 0 0 0

chr11:62758837-121798632 11 11qB3-E2 0 0 0.52 0.5 0.42 0.45 0.43 0.44 0.43 0.37 0.42
chr14:43144646-51575209 14 14qC1 0 0 0.24− 0 0.31− 0.32− 0 0 0 0 0

chr14:51575209-54550702 14 14qC2 0.62 0.63 0.56 0.55 0.53 0.51 0.55 0.55 0.57 0.5 0.56
chr14:59509857-68436336 14 14qD1 0 0.83 0.36 0.44 0 0 0 0 0 0 0
chr15:0-66107593 15 15qA1-D1 0 0 0.35 0 0.31 0.35 0.39 0.43 0.36 0.31 0.43
chr15:66107593-103492577 15 15qD2-F3 0 0 0.43 0 0.39 0.44 0.39 0.43 0.42 0.39 0.49
chr17:21829683-31434744 17 17qA3.3 0.5− 0.54− 0.56− 0.51− 0.53− 0.49− 0.53− 0.49− 0.53− 0.49− 0.53−
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chr19:0-16650124 19 19qA 0 0 0.99− 0.99− 0.67− 0.7− 0.76− 0.81− 0.73− 0.3 0.67−
chr19:38173456-61321190 19 19qC3-D3 0 0 0 0 0 0 0 0 0 0.21 0


