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Abstract

Processing blurred images is a key problem in many image applications. Existing methods to obtain blur invariants which are
invariant with respect to centrally symmetric blur are based on geometric moments or complex moments. In this paper, we propose a
new method to construct a set of blur invariants using the orthogonal Legendre moments. Some important properties of Legendre
moments for the blurred image are presented and proved. The performance of the proposed descriptors is evaluated with various
point-spread functions and different image noises. The comparison of the present approach with previous methodsin terms of pattern
recognition accuracy is also provided. The experimental results show that the proposed descriptors are more robust to noise and have
better discriminative power than the methods based on geometric or complex moments.

Author Keywords Blur Invariants ; Blurred Image ; Data mining ; Gaussian noise ; Imaging ; Legendre Moments ; Pattern Recognition ; Pixel ; Robustness ; Symmetric
Blur.

I ntroduction

Image processing is a very active area that has impacts in many domains from remote sensing, robotics, traffic surveillance to
medicine. Automatic target recognition and tracking, character recognition, three-dimensional (3-D) scene analysis and reconstruction are
only a few objectives to deal with. Since the real sensing systems are usually imperfect and the environmental conditions are changing
over time, the acquired images often provide a degraded version of the true scene. An important class of degradations we are faced with in
practice is image blurring, which can be caused by diffraction, lens aberration, wrong focus, and atmospheric turbulence. In pattern
recognition, two options have been widely explored either through a two steps approach by restoring the image and then applying
recognition methods, or by designing a direct one-step solution, free of blurring effects. In the former case, the point spread function
(PSF), most often unknown in real applications, should be estimated [1 -5 ]. In the latter case, finding a set of invariants that are not
affected by blurring is the key problem and the subject of this paper.

The pioneering work in this field was performed by Flusser and Suk [6 ] who derived invariants to convolution with an arbitrary
centrosymmetric PSF. These invariants have been successfully used in template matching of satellite images [6 ], in pattern recognition [7 ]
-[10 1, in blurred digit and character recognition [11 1, [12 ], in nhormalizing blurred images into canonical forms [13 ], [14 ], and in
focus/defocus quantitative measurement [15 ]. More recently, Flusser and Zitova introduced the combined blur-rotation invariants [16 ] and
reported their successful application to satellite image registration [17 ] and camera motion estimation [18 ]. Suk and Flusser further
proposed a set of combined invariants which are invariant to affine transform and to blur [19 ]. The extension of blur invariants to N
-dimensions has also been investigated [20 ], [21 ]. All the existing methods to derive the blur invariants are based on geometric moments
or complex moments. However, both geometric moments and complex moments contain redundant information and are sensitive to noise
especially when high-order moments are concerned. Thisis due to the fact that the kernel polynomials are not orthogonal.

Teague has suggested the use of orthogonal moments to recover the image from moments [22 ]. It was shown that the orthogonal
moments are better than other types of moments in terms of information redundancy, and are more robust to noise [23 ]. As noted by Teh
and Chin [23 ], the moment invariants are considered reliable features in pattern recognition if they are insensitive to the presence of image
noise. Consequently, it could be expected that the use of orthogonal moments in the construction of blur invariant provides better
recognition results. To the authors knowledge, no orthogonal moments have been used to construct the blur invariants.
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In this paper, we propose a new method to derive a set of blur invariants based on orthogonal Legendre moments (for a recent survey
on moments, refer to [24 1-[27 ]). The organization of this paper is as follows: in Section 2, we review the theory of blur invariants of
geometric moments and the definition of Legendre moments. In Section 3, we establish a relationship between the Legendre moments of
the blurred image and those of the original image and the PSF. Based on this relationship, a set of blur invariants using Legendre moments
is provided. The experimental results for evaluating the performance of the proposed descriptors are given in Section 4. Finally, some
concluding remarks are provided.

BLUR INVARIANTSAND LEGENDRE MOMENTS

This section first reviews the theory of blur invariants of geometric moments proposed by Flusser and Suk [6 ], [7 ], and then presents
some basic definitions of Legendre moments.

Blur invariants of geometric moments

The two-dimensional (2-D) geometric moment of order (p +q ), with image intensity function f (x , y ), is defined as

mpq J\l}[ x¥PVaf(x, Vidxdy,

where, without loss of generality, we assume that the image function f (x , y ) is defined on the square [-1, 1] [-1, 1].

The corresponding central moment of image f (x , y ) isdefined as

q
0= J I e x0T yip)"re yieaty
with the coordinates ( ¥ %) denoting the centroid of f (X, y )

" (f
) = Mo 1 Mo
ﬂﬂ‘ Sl

Letg(x,y) beablurred version of the original image f (x , y ). The blurring is classically described by the convolution

gix, VI=(f * h)x V)

whereh (x, y) isthe PSF of theimaging system, and * denotes linear convolution.

In this paper, we assume that the PSF, h (x , y ), isa centrally symmetric image function and the imaging system is energy-preserving,
that is,

hx Y)=h(=x =i
1
f_lflh(x Vxdy= 1.

As noted by Flusser [7 ], the assumption of centrally symmetry is not a significant limitation of practical utilization of the method.
Most real sensors and imaging systems have PSFs with certain degrees of symmetry. In many cases they have even higher symmetry than
central, such as axial or radial symmetry. Thus, the central symmetry assumption is general enough to describe almost all practical
situations.

Lemma 1l
The centroid of the blurred image g (x , y ) is related to the centroid of the original image f (x , y ) and that of the PSF h (x ,y ) as
g — (1 iH)
XO XO + KO 1

=

In particular, if h (x , y ) is centrally symmetric, then ' =>8'=C_ |n such a case, we have *¢' =X ¥ =,
The proof of Lemma 1 can befoundin[9].

L egendre moments
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The 2-D (p+q )th order Legendre moment of image function f (x , y ) is defined as[28]

1
=] _lflelszquﬂx Vdxdy, pa=012

where P (x) isthe p th-order orthonormal Legendre polynomials given by

Pyx) =£meiﬁ

k=0
with
ey
2 !
) — k =evern
o=V 2 7w P
Q p—k=odd

The corresponding central moments are defined as

1
10 = [ |7 Pobe~ XPOP v — 1t Yidedy
where the coordinates ( ¥ ") are defined in (3).
Method

In this section, we first establish a relationship between the Legendre moments of the blurred image and those of the original image
and the PSF. We then derive a set of blur moment invariants.

L egendre moments of the blurred image

The 2-D normalized L egendre moments of blurred image, g (x , y ), are defined by

L8y =1" I Po0P )gtx, yidixdly

=1 I PuxIPLOT ¢ hix, Vieixdy

= [* I PP @ bifix - g,y - bidadbldxdy
=1 Wa Bl S Pox+ alP oy + DI, YidxdVidadb

In the rest of this subsection, we discuss how to express the Legendre moments of blurred image defined by (12 ) in terms of Legendre
moments of the original image and the PSF.

Making the notation Uy, (x) = (P, (X ), P, (X ),..., B, (x)) Tand M, (x) = (1, x, ..., xM) Twhere the superscript T indicates the vector
transposition, we have

where C,, = (cpk), withO<sk<spsM, isa(M +1)x(M +1) lower triangular matrix whose elements cp’karegiven by (10).

Since all the diagonal elements of C,,, ==~ "%, are not zero, the matrix C,, is non-singular, thus

M (%) = (Cpg T Upg(X) = Dy U f(X)

where Dy, = (d;, ), withO <k < p<M , istheinverse matrix of C,, . The elements of D, are given by [29]

] k-
= I Pk o
| S R——" BNESL p— k=even
k= (EE] T (et
o] p—k=o0dd

By expanding (14 ), we obtain
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i=0
Similarly,
amzi AmsF {al
=0
Replacing the variable x by x+ain (9 ), we have
- m
Fﬂk+al=i CpmiX + ) =ifl L [Comxkam ¥
el melk=0
Substitution of (16 ) and (17 ) into (18) yields
14 MM k i
Pp(x+aj|=z 3' |_k_|CEmZMdMP£XJZE A 15 Pl

T k ek
=Z;_,ZMZ,£ [ ol 1. P X)P )
i
=Z;Zﬂ zp E | JepmAiidm s PP a)
i k=—me=k=—s=0 ' ™'

E. 1

J=DI=jn=lt=0

Similarly, we have

The following theorem reveals the relationship between the Legendre moments of the blurred image and those of the original image
and the PSF.

Theorem 1

Letf (x,y ) betheoriginal image function and the PSF h (x , y ) be an arbitrary image function, and g (x , y ) be ablurred version of f (
X, Y ), then the relations

i
my(n
Eﬂquiiﬂ?ii)i Siizl " |Cﬁ'??£q-ndh;idm—ksdudn—w

=0=0  =01=0 k=im=itsl=f =+t

and
ifl [T
fi LUS fl i S EZ e anch s
=0 =0 p=0p=0 k=imdtsil=jrnd+t
hold for every pand q .
Proof

Substituting (19) and (20) into (12 ), we have

J'l hq 'E-':’Ul‘r |iii§| v |Cnmdk: ks {(X)Ps X|iiiil |C:1ndudn—zzp,r{y |f>< yidx

i=0k=im=k s=0 b Dl eli=0

The above eguation can be rewritten as
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e -1
o] Fro P
L ZZZ:_ZMZ kz Z )ZH H;.l kA " | Cp, mdm-hsdi'c iCq ndn—z :r'i11 uxf—ul
zﬂﬁﬂz LI:SZ’:;Z Z Z |Cp qu,ndk idm‘—k sdudn—gr
i"n:k+.5‘ n=lH"

The proof of (21) is now complete. The proof of (22 ) isvery similar to that of (21), it is omitted here.
Theorem 2
If h(x,y) satisfies the conditions of central symmetry, then
o Lih=Laafor every pand g ;
* |f (p+q) isodd, then Lra=0
Proof

Using Lemma 1, the assertion of (a) can be easily proven. To demonstrate (b), it is noticed that P, (-x ) = (-1) PP, (x ). Using this
relationship, we can deduce the result.

Blur invariants of L egendre moments

With the help of Theorems 1 and 2, we are now ready to construct a set of blur invariants of Legendre moments through the following
theorem.

Theorem 3

Let f (x,y) beanimage function. Let us define the following function | (f): NxN -R.

If (p+q) iseven then

Iipglf=0

If (p+q) isodd then

) i g
—
I, qf" = L, - EL(]‘] E I. “J’iﬂi iji ii SZ |_|i:_|_j_|CR”ﬂ%ndk,idwk,sdiﬁdmi,r

s=01=0 k=l m=k+si=j =1+
WHHHQ

Then, | (p, q) isinvariant to centrally symmetric blur for any p and q . The number p+q is called the order of the invariant.
The proof of Theorem 3isgivenin Appendix A .

Using the Legendre central moments instead of Legendre moments, we can obtain a set of invariants to translation and to blur which
areformally similarto | (p, q)(f).

Theorem 4

Let f (x,y) beanimage function. Let us define the following function (f): NxN -R.

If (p+q) iseven then

I g =

If (p+q) isodd then

ig—j 5 I g
| v
Itp, qf" = Lfr,!l?q E I. I ﬁmi ijlﬁii SZ |_ L _I_ g_le,mC an i@y A1 0 g

s=0t=0 k=i m=k+sl=j n=l+
'3'*:1+J<§'-’-‘+t?
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Then,1 (p q) isinvariant to centrally symmetric blur and to translation for any pand q .

The proof of Theorem 4 isvery similar to that of Theorem 3, it is thus omitted here. It should be noted that 1 (p, q) in (26 ) deals with
trandlation of both the image and the PSF.

Based on (26 ), we can construct a set of blur and translation invariants of Legendre moments and express them in explicit form. The
invariants of the third, fifth and seventh orders are listed in Appendix B .

EXPERIMENTAL RESULTS

In this section, some experiments are described in order to show the invariance of the proposed method to various PSF's and its
robustness to different kinds of noise. The comparison with some existing methods in terms of recognition accuracy is also provided.

Test of invariance and robustness to noise

A toy cat image, whose size is 128x128 (Fig. 1 ), has been chosen from the public Columbia database [30 ]. This image was then
successively degraded by out-of-focus blur, averaging mask, Gaussian function and motion filter as reported in [8], [9] and [19 ]. The
parameter o (standard deviation of the Gaussian function) of Gaussian blur was chosen equal to 0.5, and the parameter 6 (6 means the
angle in the counterclockwise direction, 8 = 0 corresponds to a horizontal motion, and 6 = /2 corresponds to a vertical motion.) of motion
blur set to 0. Other parameters such as the size for averaging blur, the radius for out-of-focus and the depth for mation filter were chosen
equal to the size of blur mask in all the experiments. We first checked that the eighteen Legendre moment invariants of order up to seven
(listed in Appendix B ) were exactly equal to those of the original image whatever the blurring mode (the corresponding numerical values
are omitted here).

Let us define the vectors1,=(1 (0,r),1 (1, r-1),...,1(r,0)) and1(r) = (1 5,1 ,...,1,) for any odd value of r =z 3. The relative error
between the two images is computed by
i)

~|:ﬂ =
177 -1
Ef, g)=
1170

where ||.|| is Euclidean norm in L 2space. In the following experiments, moment invariants of order up to r = 7 are used.

The next experiment was carried out to verify the performance of the invariants to both image blur and noise. The original cat image
was blurred by a 9x9 averaging mask and a zero-mean Gaussian noise with standard deviation (STD) from 1 to 50 was added. Some
examples of the blurred image with additive Gaussian noise or salt-and-pepper noise are shown in Fig. 2 . Plotsin Fig. 3 compare the
relative error defined by (27 ) for Flusser's method based on geometric moment invariants (GMI) where eighteen blur invariants derived
from central moments are used [7 ], the complex moment invariants (CMI) reported in [16 ] and the present Legendre moment invariants
(LMI) up to order seven by averaging blur with different Gaussian noises. It can be seen from the figure that the proposed descriptors
perform better than the GMI and CMI. Then, the cat image was blurred by a 11x11 motion filter, and the same Gaussian noise was added.
Theresults (Fig. 4 ) again indicate the better behavior of the proposed method. Similarly, the original cat image was degraded on one hand
by out-of-focus blur (13 pixel-radius of the PSF support) and by adding a salt-and-pepper noise with noise densities varying from 0.004 to
0.2 (see Fig. 5) and, on another hand, by Gaussian blur (the PSF was a Gaussian function with 15 pixel-radius of support) with the same
salt-and-pepper noise (see Fig. 6). It can be also seen that a better robustness is achieved whatever the PSF or the additive noises.

Classification results

This experiment was carried out to compare the discrimination power of the GMI, CMI and LMI. A set of alphanumeric characters
whose size is 50x50 pixels (Fig. 7 ) is used for the recognition task. The reason for choosing such a character set is that the elementsin
subset {0, 0}, {2, Z}, {7, T} and {9, g} can be easily misclassified due to their similarity. The testing set is generated by adding averaging
blur, out-of-focus blur, Gaussian blur and motion blur with mask of sizes 3x3, 4x4, 5x5, 6x6, 7x7, 8x8, 9x9, 10x10, 11x11, 12x12 pixels,
respectively. The parameter o of Gaussian blur was chosen equal to 1 or 2, and the parameter 6 of motion blur set to 0 or 1, forming a set
of 480 images. Note that the original images as well as the blurred images are mapped onto the area of orthogonality, and the actual size of
the blurred images in this experiment is 80x80. This is followed by adding a white Gaussian noise with different standard deviations,
salt-and-pepper noise with different noise densities and multiplicative noise with different noise densities. The Euclidean distance is used
here as the classification measure. Table 1 shows the classification rates using the different moment invariants. One can observe from this
table that the recognition results are quite good for the different methods in the noise-free case. The classification rates remain high for low
and moderate noise levels but decrease significantly when the noise level goes up. However, if the GMI behaves better than the CMI, the
LMI approach is the only one providing arate close to or over 90% whatever the noise nature and its level.
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In the next example, eight objects were selected from the Coil-100 image database of Columbia University as an original image set
(see Fig. 8). The actua size of the blurred images in this experiment is 160x160. Fig. 9 shows some examples of the blurred and corrupted
images. The recognition results are displayed in Table 2 . They lead to the same conclusions regarding the performance of the respective
moment invariants but the decrease in recognition rate is more significant when the noise level isincreased. Thisis also true for the LMI.
The CMI do not perform well in these experiments due to their additional invariance to rotation. The worse numerical stability isatax on
the combined invariance. The orthogonality of LMI explains the difference in performance with GMI.

We also compared the computational load of the GMI, CMI and LMI in these two experiments. The programs were implemented in
MATLAB 6.5 on aPC P4 2.4 GHZ, 512M RAM. It can be seen from Tables 1 and 2 that the GMI and the LMI computations are much
faster than the CMI ones. Thisis due to the fact that the computation of the complex moments requires a mapping transformation which is
time consuming.

Real image analysis

In the last experiment, we tested the performance of the invariants on images degraded by real out-of-focus blur. A sequence of eight
pictures of acomb lying on a black ground was taken by a digital camera (Panasonic DM C-FZ50). The images differ from each other by
the level of out-of-focus blur. The picture was captured 8 times from the same position but with different focus depth, manually set. All the
test images are depicted in Fig. 10 . The values of GMI, CMI and LMI were computed for each image. Table 3 depicts the values of o /u ,
where p denotes the mean of eight real images and o the standard deviation. From this table, it can be seen that the minimal value of the
LMI is3.42% and the maximum value of the LMI is6.15%, which are lower than those obtained with GMI (resp. 4.91%, 12.43%) and the
CMI (resp. 7.47%, 7.54%).

Conclusion AND PERSPECTIVES

In this paper, we have proposed a new approach to derive a set of blur invariants using the orthogonal Legendre moments. The
relationship between the Legendre moments of the blurred image and those of the original image and the PSF has been established, and
using this relationship, a set of blur invariants based on Legendre moments has been derived. The experiments conducted so far in very
distinct situations demonstrated that the proposed descriptors are more robust to noise and have better discriminative power than the
methods based on geometric or complex moments.

One weak point of these descriptors is that they are only invariant to trandlation, but not invariant under image scaling and rotation.
The derivation of combined invariants to both geometric transformation and blur is currently under investigation.
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Appendix A

The theoretical derivations provided here allow getting the expressions of the Legendre invariants to translation and blur. To prove Theorem
3, we need first the following Lemma.

Lemma 2
Letp,i,jandtbegivenintegerssatisfying0<i<p-1,0<j<p-i-1,0st<p-i—,let usdefine
I o—J & f N
Flp i 0= i S z ii |_?.I.T.|C%”dhid*ufﬂmdhsdwm
F=Hj =i ri=lhj =tk

i I £
B m
Glp g 0= i S Z ii: | 1] 1 Jean@ iy ComiGm ics

= = fnH k=i ks
where the coefficients ¢, y andd,, ,arerespectively given by (10) and (15), thenwehaveF (p,i,j,t)=G(p,i,j,t).
Pr oof
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By changing the order of summationin (A1), we have

. ‘J' Z"“ | 1
Fipij rj:zp Cpm Z:.Z ||L Ilc.ﬁ'ndiidn—udksdm—kt

=meﬂp,mF {Bmi gt

myn
Fipm i jt Sjiiil [ e M BN e P

=0 n=Dk=0s=0

where

Similarly, (A2 can be written as

. “ m H
Gilp i J Tﬁ:zp Cpm YE E l.L ;|Cmdudn—ndkzdm—ks

=Zp - CemGAD M, 1, 1)

where
P
Gipmijt Siilm ?lcmdu{in_“dk A ics
E=0 n=0k=0s=0
To prove the Lemma, it sufficesto proveF , (p, m,i,j,t)=G,(p,m,i,j,t). Sinceboth C, = (¢; ’j) andD,, = (d; 'j) are lower triangular

matrices, it is clear that d, =0if s>k, and c; = 0if n>s. Using these properties and changing the order of summation in (A4 ) and (A6),

m(n'
Fipmijt figil N JCenGy i s meica

k=0s=0r=01=0

.o (P
Gip.m i jt)= f Skzi ) ) o Tee RTe MR P N

h=0 s=0 =010

we have

(A7) can be further written as

1 (P
Fipm i j rll=zw ) } } |_ ) ) e B e S
E P
Z'Q Z’ml " |dii n—u m—kth "ji'c.:‘.'c.m

where the convention (%/=° if k > m is used in the above equation.

Since the matrix D, is the inverse of C,, , we have £+, thus, (A9 ) becomes

o —
Fipm i j rjl=z”°’ S N P
k =0 Loy
B me A1k

Letting e, =d,,/u!, we have
Fi{pm i t)= m!ff €1iCk-1iCmke = m!ff Erm-k-1i€LiCkr
k=01=0 k=00

From the above equation, it can easily be obtained
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Flpmit ji= m!leggm—k—Ejemekj = H‘E!ZZZZEH_H%EU
=F(p mi jt) (makingthechangeofwvariables k=1land!l=k)

Making the change of variablel =n-1in (A7), we can deduce
Fj_':.lr-)’:li r”: L..L I-:IZF:I_':.E'!I r”: j: !:l I-:l

Combining (A12) and (A13) and using (A7 ), we obtain

i m Il
Fipm i O=F{pmJti= Z jHZJHI i | 116 snG A o s

ZHZHZWZ T |cmdudn_“dm_“dkE{ma}ﬂngthechangeofvamableJL m—Kk)
=

= ?‘J'E H
Zk&ZrﬁZnﬂﬂzhﬁ k) Ilcsndudn—itdkzdm—ks

=G mijt
The proof of Lemma 2 is now complete.

Proof of Theorem 3

We only need to prove the Theorem for the case where p+q is odd. We will to do this by mathematical induction. It can be easily verified that
theresult istrue for p+q = 1. For p +q = 3, four cases need to be considered: (1) (p=3,9=0); (2 (p=2,9=1); A (p=1,9=2); (4 (p=0,q
= 3). We provide here the demonstration for p = 2 and g = 1, other cases can be proved in a similar manner. We deduce from (25) that

L Jai ) (M
=) J=0 IG J) f__ L I CE‘,mCLndkjdm—k,stdn—Lt
aa o m=k+.5' =l

O<it j<3

?F’Z > Y ZHZ |t 12 1nttia i o+ 1O 13@2 19, ) (o
=0 k=1 netrg -0 ) ks

Using Theorem 2, it can be obtained from (21 ) that
18-
LJ,O = Lﬁi?;. Li)g] = Lf)ﬂm
19 =1+ oD B 5 18
Lu_ [ i ﬂf)ﬂ Lih:l
L9 =1+ 25 LR+ 218 -5 LALE
Substituting the above equations into (A15 ) and using the relationships /(1 0/ =110" = Lf; and 10 1= 10 "= 1§} we have | (2,1)(9)=1 (2,2)(1).

Suppose that Theorem 3 isvalid for al invariants of order up to p +g -2, then we get
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I(p q/? —I(p, g

z a-t m n
ZF Z 0 f I j ig:lz .Z Z |Cpmcq,ndkzdm—ksdi dn—!,t
in mek+i=l=] =ln=t+1"

i+i<p+q
() i I
_LH+ A ZF@ I(% J) Ziz L Z z E JL glcnﬂi:qndkzdm—ksdudn—n
5 =k et
[f] if
=Lpg—Lpg
q F-J g1 Raainal
_ﬁy Z o “fmzz (19 cﬂ ‘Z_Z e L . .
a 0 iHag i'C_E =kt =+

Using the property (d 0,0)2 = 2, equation (25) can be rewritten as

L _WZS“ 1 ji?

Using (21), we have

P q i q Y
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Substituting (A18 ) and (A20) into (A16 ) and using (A17 ), we obtain
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it can be easily verified from (A19) that A (p,q,p,q,0,00=A(s,t,s,t,00) = (doyo)z,thus, wehaveB (p,q) =B’ (p, q). Using this
relationship, (A21) can be rewritten as
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Changing the order of summation and shifting the indices in the above equation, we obtain
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whereF (p,i,i’,s)andG (p,i,i’,s) arerespectlvely givenby (A1) and (A2).

Using Lemma 2, we have
Tipgijl fst=0.
Thus
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The proof of Theorem 3 has been compl eted.

Appendix B: LIST OF LEGENDRE MOMENT INVARIANTSUP TO THE SEVENTH ORDER

The expressions given below provide to the interested readers all the elements to replicate our method and to apply it to other examples.

® Third order _ _
I(30)=Lg,
?':], 2:|= le
100 3)= Ly
® Fifth order
15 0)= Lo - 37— —”38_;“
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/5 J10s 521
13 2)=Ls,— g'jﬁilz— 7 L3o- ﬁ|TL20112+ =5 Lysloy+ LooLso|
5 _ _ 5 - yios . - sfar . o
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g . 377 - 385 1L
IO SII=L:>5—T‘II7_ 3_3J_5T
® Seventh order
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Fig. 1
The standard gray-level image of cat with size 128x128

Fig. 2

Some examples of the blurred image: (a) averaging blur with additive zero-mean Gaussian noise, STD=10; (b) motion blur with additive
zero-mean Gaussian noise, STD = 20; (c) out-of-focus blur with additive salt-and-pepper noise, density = 0.01, (d) Gaussian blur with additive
salt-and-pepper noise, density = 0.02.

(b)
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Fig. 3
Relative error for averaging blur with Gaussian noise shown in Fig. 2(a) . Horizontal axis: standard deviation of noise; vertical axis: relative
error between the corrupted image and original image.
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Fig. 4

Relative error for motion blur with Gaussian noise shown in Fig. 2(b) . Horizontal axis: standard deviation of noise; vertical axis. relative
error between the corrupted image and origina image.

100 T T T T
n (s
* (= e
a | PP = N
-1 N /| (i \ 3
10 o O 2
S AT
0 22|
® 5]
= &
o
@ )
[0 .
107 |
—a— GMI
k —— CMI
—#— LMI
10_3 I 1 1 1
0 10 20 30 40 50

Standard Deviation

|EEE Trans Image Process . Author manuscript

Page 16/20



Fig. 5
Relative error for out-of-focus blur with salt-and-pepper noise shown in Fig. 2(c) . Horizontal axis: noise density; vertical axis: relative error

between the corrupted image and original image.
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Fig. 6

Relative error for Gaussian blur adding salt-and-pepper noise shown in Fig. 2(d) . Horizontal axis: noise density; vertical axis: relative error
between the corrupted image and original image.
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Fig. 7

Original images of aphanumeric characters for invariant character recognition
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Fig. 8
Eight objects selected from the Coil-100 image database of Columbia University

-
Fig. 9

Some exampl es of the blurred images corrupted by various types of noise

P

Fig. 10
The comb. The extent of out-of-focus blur increases from Imagel to Image8.

Imagel Image2 Image3 Image4
Image5 Image6 Image7 Image8
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Tablel

The recognition rates obtained respectively with GMI, CMI and LMI for alphanumeric character in Fg.7

GMI CMI LMI
Noise-free 100% 100% 100%
Additive white noise with STD=1 92.08% 91.88% 100%
Additive white noise with STD=3 85% 82.92% 97.71%
Additive white noise with STD=5 77.29% 75.42% 90%
Additive salt-and-pepper noise with noise density = 0.2% 91.04% 87.08% 97.92%
Additive salt-and-pepper noise with noise density = 0.4% 83.75% 83.54% 94.79%
Additive salt-and-pepper noise with noise density = 0.8% 77.33% 75.67% 90%
Additive multiplicative noise with noise density = 0.01 95.83% 90.63% 98.13%
Additive multiplicative noise with noise density = 0.03 95% 86.88% 97.5%
Additive multiplicative noise with noise density = 0.05 91.25% 85.21% 95%
Computation time 6.86s 27.08s 6.95s
Table2
The recognition rates of the GMI, CMI and LMI in object recognition (Fig. 9)

GMI CMI LMI
Noise-free 100% 100% 100%
Additive white noise with STD=8 78.33% 80% 96.25%
Additive white noise with STD=16 68.96% 62.71% 83.96%
Additive white noise with STD=25 60.42% 50.62% 74.79%
Additive salt-and-pepper noise with noise density = 0.01 87.29% 76.46% 97.08%
Additive salt-and-pepper noise with noise density = 0.02 73.33% 64.38% 85.83%
Additive salt-and-pepper noise with noise density = 0.03 68.13% 56.46% 79.37%
Additive multiplicative noise with noise density = 0.1 100% 99.17% 100%
Additive multiplicative noise with noise density = 0.3 96.25% 87.92% 99.38%
Additive multiplicative noise with noise density = 0.5 90% 81.88% 95.63%
Computation time 9.42s 44.14s 9.80s
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Table3

GMI CMI and LMI values of the real imagesin Fig. 10

Imagel Image2 Image3 Imaged Imageb Image6 I mage7 Image8 olu

G (5,0) -0.328 -0.319 -0.324 -0.322 -0.324 -0.329 -0.357 -0.363 5.07%
C(5.0) 35.01 34.95 34.51 34.34 34.38 34.44 40.28 40.62 7.54%
C (5 0) -66.3 -66.3 -68.2 -68.5 -69.1 -69.9 -71.9 -72.8 3.42%
G (41 -0.0622 -0.0658 -0.0671 -0.0669 -0.0669 -0.0674 -0.0720 -0.0725 4.91%
C@41 50.20 50.02 49.40 49.18 49.21 49.33 57.61 58.15 7.5%
C (41) -11.4 -12.4 -12.8 -12.9 -13.0 -13.0 -13.1 -13.2 4.62%
G (3,2 -0.0190 -0.0179 -0.0174 -0.0165 -0.0166 -0.0169 -0.0219 -0.0222 12.43%
C@3 2 60.14 59.86 59.13 58.88 58.90 59.07 68.92 69.59 7.47%
L (3 2 -12.9 -13.0 -134 -134 -135 -13.7 -14.2 -14.3 3.72%
G (2,3 -0.0262 -0.0278 -0.0278 -0.0274 -0.0273 -0.0274 -0.0313 -0.0316 6.98%
C(2,3) 60.14 59.86 59.13 58.88 58.90 59.07 68.92 69.59 7.47%
C (2, 3) -10.6 -11.7 -12.1 -12.2 -12.2 -12.2 -125 -12.5 5.16%
G(1,4) -0.0485 -0.0479 -0.0480 -0.0468 -0.0471 -0.0475 -0.0549 -0.0554 7.11%
C(,4 50.20 50.02 49.40 49.18 49.21 49.33 57.61 58.15 7.5%
C (1, 4) -8.84 -8.79 -8.89 -8.72 -8.79 -8.86 -9.98 -10.06 6.15%
G (0, 5) -0.223 -0.250 -0.257 -0.257 -0.257 -0.258 -0.269 -0.269 5.67%
C(0,5) 35.01 34.95 34.51 34.34 34.38 34.44 40.28 40.62 7.54%
L (0, 5) -40.6 -454 -46.8 -46.8 -46.9 -47.1 -48.6 -48.6 5.49%
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