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Abstract 

Myocardial ischemia-reperfusion injury is a major cause of morbidity and mortality in developed 

countries. To date, the only treatment of complete ischemia is to restore blood flow; thus the 

search for new cardioprotective approaches is absolutely necessary to reduce the mortality 

associated with myocardial ischemia.  

Ischemia has long been considered to result in necrotic tissue damage but the reduction in oxygen 

supply can also lead to apoptosis. Therefore, in the last few years, mitochondria have become the 

subject of growing interest in myocardial ischemia-reperfusion since they are strongly involved 

in the regulation of the apoptotic process. Indeed, during ischemia-reperfusion, pathological 

signals converge in the mitochondria to induce permeabilization of the mitochondrial membrane. 

Two classes of mechanisms, which are not mutually exclusive, emerged to explain mitochondrial 

membrane permeabilization. The first occurs via a non-specific channel known as the 

mitochondrial permeability transition pore (mPTP) in the inner and the outer membranes causing 

disruption of the impermeability of the inner membrane, and ultimately complete inhibition of 

mitochondrial function. The second mechanism, involving only the outer membrane, induces the 

release of cell death effectors. Thus, drugs able to block or to limit mitochondrial membrane 

permeabilization may be cytoprotective during ischemia-reperfusion. The objective of this 

review is to examine the pharmacological strategies capable of inhibiting mitochondrial 

membrane permeabilization induced by myocardial ischemia-reperfusion.  

 

Keywords: mitochondria; heart; ischemia-reperfusion; necrosis; apoptosis; mitochondrial 

membrane permeability.  
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1. Introduction 

Myocardial ischemia is a leading cause of death in developed countries. After an acute 

myocardial infarction, the only available treatment to reduce infarct size and to improve the 

clinical outcome is to restore blood flow (reperfusion) to the ischemic myocardium by 

thrombolysis, primary percutaneous coronary intervention or cardiac surgery. It is now well-

known that reperfusion can induce injury and is at least as deleterious as the oxygen deficit (for a 

complete review on the mechanisms of the disease see [1]). 

Cell death during myocardial ischemia-reperfusion has been assumed to occur primarily by 

necrosis. However, several studies indicate now that cell death following myocardial ischemia 

has features of apoptosis [2,3]; autophagy has also been suggested to play a role in myocardial 

ischemia-reperfusion injury [4,5]. Given that recent data indicate that the different forms of cell 

death are regulated and are probably interrelated [6,7], the better strategy to develop 

cardioprotective agents is not to define the precise mode of cell death and its proportion occuring 

during ischemia-reperfusion, but to identify mediators active in all forms of cell death. In this 

context, the mitochondrion has emerged as a relevant candidate. More importantly, the change in 

mitochondrial membrane permeability appears to be a major regulator of both necrotic and 

apoptotic cell death; the mode of death likely depends on the severity of the insult and on the 

ability of the cell to maintain ATP synthesis. 

In this review, we will examine the role of mitochondria during myocardial ischemia-reperfusion 

and we will show that pharmacological inhibition of mitochondrial membrane permeability 

represents a relevant strategy to protect the myocardium from ischemia-reperfusion. We will 

address this new pharmacological concept of cardioprotection using to two approaches:  

1) The pharmacological strategies acting directly on the mitochondrial membrane by 

targeting mitochondrial channels (section 3). 
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2) The use of pharmacological agents acting indirectly on mitochondrial membrane 

permeability, by preventing conditions promoting membrane permeabilization (e.g., 

oxidative stress or by stimulation of the survival pathways referred to as the “reperfusion 

injury salvage kinases (RISK)” pathways [8]) (section 4). 

 

2. Mitochondrial dysfunctions are at the crossroad of the deleterious events caused by 

myocardial ischemia-reperfusion  

Ischemia results in insufficient oxygen availability for mitochondrial respiration and oxidative 

phosphorylation and, rapidly leads to interruption of aerobic ATP synthesis (Fig. (1) and for 

extensive information concerning the cellular and mitochondrial events occurring during cardiac 

ischemia see reviews [9-12]). The rapid depletion of intracellular creatine kinase and the 

concomitant increase in inorganic phosphates (Pi) stimulate anaerobic ATP generation with an 

increase in glycolysis and lactate production. This temporarily supplies the deficiency of the 

aerobic pathway in the first period of the ischemic process. When hypoxic conditions continue, 

the intracellular acidification induced by lactate production and the hydrolysis ATP give rise to 

activation of the Na+/H+ exchanger (as the cell tries to restore intracellular pH), Na+/K+ ATPase 

inhibition (because of the drop in ATP levels) and activation of the Na+/Ca2+ exchanger (due to 

the increase in intracellular Na+
 concentration). This results in a profound ionic imbalance, cell 

membrane depolarization and accumulation of cytosolic Ca2+ (with depletion of the sarcoplasmic 

reticulum Ca2+). Elevated cytosolic Ca2+ concentrations may contribute to cellular damage by 

activation of degrading enzymes such as phospholipases, proteases and nucleases, cumulating in 

the destruction of the membrane integrity and leading to cell death if the ischemic period is of 

sufficient duration. 

Mitochondria are initially able to buffer cytosolic Ca2+ by storing the excess, but this process is 

limited since mitochondria become at least partly de-energized, inhibiting the Ca2+ uniporter, 
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Fig. (1): Scheme illustrating the mitochondrial sequence of events triggered by myocardial
ischemia-reperfusion.  
The scheme summarizes the processes described in the text, showing the relationships
between oxygen consumption, ATP production, Ca2+ accumulation, reactive oxygen species
(ROS) generation and the initiation of cell death through activation of the mitochondrial
permeability transition pore (mPTP). 
During ischemia, cellular acidosis along with a high concentration of ADP prevents mPTP 
opening although favourable conditions prevail (∆Ψm decrease, high Pi, slight increase in 
ROS). During reperfusion, high matrix concentrations of Ca2+ and Pi associated with a burst 
of ROS favour mPTP opening despite the antagonizing effect of ∆Ψm recovery. 
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the main route of entry of Ca2+ into mitochondria. However, during prolonged ischemia, Ca2+ 

entry may occur via reversal of the Na+/Ca2+ exchanger in the heart [12]. Temporally, the 

maintenance of a low mitochondrial Ca2+ concentration associated with the cytosolic acidosis and 

a high concentration of ADP prevents the opening of the mitochondrial transition pore, and thus 

protects mitochondrial membrane impermeability and potential. If the ischemic event continues, 

it may contribute to myocardial damage during reperfusion, since the electron transfer chain is 

altered, resulting in the increased production of superoxide anions from complexes I and III. This 

sets the stage for an increase in reactive oxygen species (ROS) production during reperfusion 

[13]. In addition, the F1F0-ATPsynthase now hydrolyses ATP. Jennings et al. [14] established 

that 35% of ATP utilization observed during the first 90 minutes of complete ischemia in the 

canine heart is due to F1F0-ATPase activity. Mitochondria are believed to hydrolyse ATP under 

conditions of oxygen deficit to maintain the mitochondrial membrane potential. However, this 

effect destroys any available ATP and favours Ca2+ accumulation, which may contribute to the 

reduced performance of the heart (stunning) during reperfusion. 

 

Some reports have also observed decreases in NADH dehydrogenase and adenine translocase 

activities, a reduction of the protective mechanisms against oxygen toxicity, and decreases in 

superoxide dismutase (SOD) activity and glutathione content. The final extent of the damages 

depends on the duration and the severity of ischemic event, which emphasises the crucial time 

for the onset of the reperfusion (which can be combined with a pharmacological intervention). 

This is a critical juncture which may limit or even reverse at least some of the changes in 

mitochondrial functions.  

Ischemic damage can paradoxically be amplified by reperfusion that corresponds to the 

restoration of oxygenated blood flow to the ischemic tissue. This is mainly due to the generation 

of ROS, which can result from the reactivation of respiratory complexes blocked in a reduced 
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state without functional coordination (inefficient transfer of electrons generating superoxide 

anions). ROS have direct effects on the respiratory chain components, resulting in decreased 

efficiency of oxidative phosphorylation; complex I appears to be especially sensitive to ischemic 

injury [13,15]. Changes in complexes III and IV were also observed, but this would occur later 

during the deleterious process [11]. They also cause inhibition of the enzymes of the Krebs cycle 

(i.e. aconitase) [16,17]. ROS cause non-specific damages to lipids, proteins and mitochondrial 

DNA, and induce peroxidation of cardiolipin, a major constituent of the inner membrane, which 

increases the inhibition of oxidative phosphorylation [18,19].  

ROS production is exacerbated by the high concentrations of Ca2+, which is driven from the 

cytosol into the mitochondria by restoration of the mitochondrial membrane potential. These 

conditions favour an increase in mitochondrial membrane permeability and the induction of the 

mitochondrial permeability transition pore (mPTP), which cause swelling, collapse of membrane 

potential, and ultimately total inhibition of mitochondrial functions [10]. This phenomenon is 

now considered to play a central role in different kinds of cell death; Crompton et al. [20] were 

the first to report that mPTP opening plays a crucial role in myocardial ischemia-reperfusion 

injury. It is generally accepted that mPTP opening is associated with postischemic reperfusion 

[21] but some studies have suggested that mPTP opening might also occur during ischemia [22]. 

It should be noted that mPTP is not the only mechanism by which mitochondrial membranes can 

be permeabilized, and the search for cardioprotective agents must consider all the mitochondrial 

targets that can prevent mitochondrial membrane permeabilization. 

 

3. Pharmacological strategies acting by direct inhibition of mitochondrial membrane 

permeability by targeting mitochondrial channels 

During ischemia-reperfusion, cell death occurs by necrosis and apoptosis, both being induced by 

the change in mitochondrial membrane permeability. Mitochondrial membrane permeability is 
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regulated by stress signals originating in mitochondria but also those of cytosolic origin such as 

proteins of the Bcl-2 family. Two classes of mechanisms (Fig. (2)), which are not mutually 

exclusive, have been proposed to explain mitochondrial membrane permeabilization (for review 

see [23]). 

The first one involves the participation of both the inner and the outer membranes and 

corresponds to the mPTP. The second mechanism involves only outer mitochondrial membrane 

and the formation of channels across the membrane.  

Although there is a controversy concerning the structure, the regulation and the definite role of 

these different channels, strong evidences indicate that proteins of the Bcl-2 family contribute to 

both mechanisms [24,25]. 

Triggering mitochondrial membrane permeabilization induces the release of cell death effectors 

and the loss of mitochondrial functions which are fundamental for cell survival. Thus, drugs able 

to block or to limit mitochondrial membrane permeabilization might be cytoprotective during 

ischemia-reperfusion and this pharmacological approach is reviewed in this section (Fig. (3)). 

 

3.1. The mitochondrial transition pore as a pharmacological target 

The mitochondrial respiratory chain catalyzes the oxidation of substrates by oxygen and couples 

electron flux to H+ pumping to establish an H+ electrochemical gradient across the inner 

membrane. ATP is synthesized by the enzyme F1F0-ATPsynthase which utilizes the free energy 

released by the H+ backflow from intermembrane to mitochondrial matrix. Therefore,  
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Fig.(2): Hypothetical models of the increase in mitochondrial membrane permeability during
ischemia-reperfusion. 
A: mitochondrial permeability transition pore (mPTP). Classical model: mPTP is formed by
the interaction of VDAC, ANT and CyP-D at the contact sites between the inner and the outer
membrane and can be modulated by other proteins such as creatine kinase (CK), hexokinase
(HK), translocator protein (TSPO) and proteins of the Bcl-2 family. New hypothetical model:
recent genetic manipulations suggest that mPTP might be an unidentified channel regulated
by the proteins constitutive of the classical model. 
B: outer membrane permeability can be due to the formation of pores induced by the 
activation of Bax by BH-3 only proteins and its translocation to the mitochondrial membrane. 
It should also be caused by the interaction of Bax with VDAC. 
It should be noted that VDAC alone could regulate outer membrane permeability and that 
other mechanisms than Bax and BH-3 only proteins have been involved in outer membrane 
permeability. However, they were not described during myocardial ischemia-reperfusion. 
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the maintenance of the H+ gradient and the impermeability of the inner membrane to ions, 

especially to H+, is vital to the cell. However, under stress conditions, the permeability of the 

membrane may increase with the formation of a voltage-dependent nonspecific pore, known as 

the mPTP, which allows the influx of water and molecules up to 1.5 kD and therefore induces 

swelling of the organelle matrix. An extensive swelling results in the rupture of the outer 

membrane and in the release of proapoptotic proteins into the cytosol. The exact composition of 

this pore remains uncertain although it was formerly thought to include adenine nucleotide 

translocase (ANT) modulated by cyclophilin D (CyP-D) in the inner membane and a voltage-

dependent anion channel (VDAC) in the outer membrane [10,26]. CyP-D is a member of the 

cyclophilin family which displays peptidyl-prolyl cis-trans isomerase activity and resides in the 

mitochondrial matrix. During mPTP formation, CyP-D interacts with the inner membrane and is 

thought to induce a conformational change of ANT, leading to an increase in inner membrane 

permeability (Fig. (2)).  

 

In vivo experiments confirm the role of CyP-D-dependent mitochondrial mPTP for mediating 

Ca2+- and oxidative damage-induced cell death: CyP-D-deficient mice are protected from 

ischaemia-reperfusion-induced cell death in vivo, whereas CyP-D-overexpressing mice show 

mitochondrial swelling and spontaneous cell death [27-29]. These genetic experiments also 

provided significant information about the mechanism of cell death triggered by mPTP. CyP-D-

deficient cells responded to various apoptotic stimuli, but showed resistance to necrotic cell death 

induced by ROS and Ca2+ overload. This led to the conclusion that CyP-D and thus mPTP do not 

play a major role in the apoptotic process, but rather are major components of the necrotic death 

pathway.  
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Fig. (3): The inhibition of mitochondrial permeabilization as a pharmacological approach 
to limit myocardial ischemia-reperfusion injury.  
Schematic representation of the pharmacological strategies which have been or might be 
used to limit mitochondrial membrane permeabilization. They can target directly or 
indirectly the outer mitochondrial membrane permeability (OMP) or both the outer and the 
inner membrane (mPTP). 
CyP-D: cyclophilin D; mPTP: permeability transition pore; VDAC: voltage-dependent 
anion channel. 
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Studies on mitochondria lacking these putative components of the mPTP did not permit definit 

conclusions about the identity of its membrane components. Indeed, a functional mPTP can form 

in the absence of ANT in mice [30], and it was suggested that ANT may not be the protein which 

binds CyP-D [31]. Juhaszova et al. [32] suggest that ANT may be a non-essential structural 

component of the mPTP but may have a regulatory role in mPTP induction (see Fig. (2A)). 

VDAC also may not be an essential component of the mPTP as the pore can be induced in 

mitochondria devoid of all VDAC isoforms [33]. It should be added that other proteins such as 

hexokinase, creatine kinase or the mitochondrial translocator protein (TSPO), have been 

proposed to be involved in pore formation, but to date it is not known whether these proteins are 

structural or regulatory components of the pore.  

Taken together, these data show that the molecular composition of mPTP remains a source of 

debate, but nevertheless, strong evidence suggests that mPTP contributes to cellular injury during 

myocardial ischemia-reperfusion: (1) mPTP opening is favored by conditions prevailing during 

ischemia-reperfusion (2) mPTP might control cell death by releasing apoptogenic factors 

[10,34,35], (3) mPTP is regulated by the pro- and the anti-apoptotic members of the Bcl-2 family 

[36,37], (4) increasing lines of evidence suggest that mPTP is involved in the cardioprotective 

effect of ischemic pre- and post-conditioning (see section 4.1.). 

Therefore, targeting mPTP appears as a promising pharmacological approach in ischemia-

reperfusion and numerous studies show that almost any procedure that reduces mPTP opening 

affords protection against ischemia-reperfusion injury.  

 

The first demonstration of the relevance of this approach was provided by the 

immunosuppressant agent cyclosporin A (CsA) which binds to CyP-D with high affinity and 

precludes the interaction of this protein with a component of the mPTP, thus inhibiting its 

opening. CsA protected against hypoxia-reoxygenation-mediated cell death in isolated 
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cardiomyocytes [38,39] and reduced infarct size in ex-vivo models of cardiac ischemia-

reperfusion [40,41]. Shanmuganathan et al. [42] have also demonstrated that inhibition of mPTP 

opening by CsA at the onset of reoxygenation protected the human myocardium against lethal 

hypoxia-reoxygenation injury. The clinical use of CsA is hampered by pharmacokinetic and 

pharmacodynamic parameters [43] and by the fact that CsA fails to inhibit pore opening when 

mitochondria are exposed to strong stimuli [44]. However, a recent clinical study showed that an 

intravenous bolus of 2.5 mg/kg CsA just before reperfusion reduced infarct size in patients 

suffering from acute myocardial infarction [45]. 

 

Similar cardioprotective effects were obtained with non-immunosuppressant derivatives of CsA, 

such as [N-methyl-ala6]CsA, [N-methyl-Val4]CsA, Debio 025 or NIM811, [21,40,46,47]) 

confirming the relevance of this approach. Sanglifehrin A also prevents myocardial ischemia-

reperfusion injury [48,49]. This drug is unrelated to CsA but potently inhibits mPTP by 

inhibiting the peptidyl-prolyl cis-trans isomerase activity of CyP-D (Fig.(3) and (4)). 

It should be added that the inhibition of mPTP opening by CsA was also effective in a particular 

case of ischemia-reperfusion, the hypothermic preservation of the heart before transplantation. 

Indeed, CsA improved functional recovery after long-time hypothermic heart preservation [50].  

 

Although the molecular structure of mPTP remains unknown, other approaches have been 

developed to find new mPTP inhibitors. Binding sites involved in the regulation of mPTP were 

described [51]. Clinically approved drugs, including tricyclic antidepressants, antipsychotics and 

antiarythmic agents were found to bind to these sites and to inhibit mPTP  
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in vitro [51,52]. Some of these drugs reduced neurological impairment in mice subjected to 

middle cerebral artery occlusion/reperfusion [52], but, to our knowledge, have not been tested in 

myocardial models of ischemia-reperfusion. Most of these drugs are amphiphilic cations which 

are known to interact with biological membranes which could change mitochondrial membrane 

potential and thus possibly induces closure of the pore [53].  

Another approach to design new pore inhibitors was provided by the results of Bernardi and 

colleagues who demonstrated that the coenzyme Q family in addition to its antioxidant effects 

and its role in the regulation of electron transfer modulates mPTP opening by acting on a specific 

site [54]. Exogenous coenzyme Q0 (ubiquinone 0) and coenzyme Q10 (decylubiquinone) are very 

potent inhibitors of mPTP opening induced by Ca2+ overload, whereas coenzyme Q1 (ubiquinone 

5), which did not inhibit pore opening per se, counteracted the effects of coenzyme Q0 and 

decylubiquinone [54]. As a putative component of mPTP, VDAC was suggested to be one of the 

target of ubiquinone analogues [55], but since liver mitochondria from mice lacking VDAC1 

exhibit normal mPTP opening and inhibition by ubiquinone analogues [56], this hypothesis 

seems unlikely. It should be noticed that the design of new mPTP inhibitors from coenzyme Q 

may be difficult since minor structural changes profoundly modify the effects of quinones on the 

mPTP [57]. 

To our knowledge, it has not been established whether this is what is responsible for the 

antiischemic effect of coenzymes Q [58] and data indicate that coenzyme Q0 even impairs 

myocardial performance following ischemia-reperfusion [44]. However, the antioxidant 

properties of coenzyme Q may contribute to mPTP inhibition as decylubiquinone was shown to 

inhibit redox-activated permeability transition [59]. 

Taken together, these data suggest that the direct inhibition of mPTP opening constitutes a 

relevant objective in cardioprotection. This requires the search for new direct mPTP inhibitors 
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[55,60] with good specificity and selectivity and the identification of the molecular site of action 

of these compounds to further elucidate mPTP structure.  

 

3.2. The MAC/Bak channel 

It is now well-established that mPTP is not the only mechanism by which the  mitochondrial 

membrane can be permeabilized [61]. Indeed, cytochrome c release was observed in the absence 

of mitochondrial depolarization [62] and without loss of mitochondrial outer membrane integrity 

(i.e., independently of mPTP opening), indicating that permeabilization of the outer membrane is 

a regulated phenomenon occurring via the formation of a pore [24]. This type of release has been 

observed during cardiac and liver ischemia [63-65]. 

Mitochondrial membrane permeabilization is under the control of the Bcl-2 family of proteins 

(for a recent review see [66]). Proapoptotic members (e.g. Bax, Bak or the BH3-only subfamily 

proteins Bid, Bad, Bnip3) facilitate membrane permeabilization and promote the release of 

cytochrome c and other intermembrane space components. Cytochrome c triggers formation of 

the apoptosome complex and activation of caspase-9 [61]. This is not the only pathway which 

can be activated by outer membrane permeabilization, since two other proteins, apoptosis 

inducing factor (AIF) and endonuclease G, which are also released after outer membrane 

permeabilization, can induce apoptosis in a caspase-independent manner [67,68]. Two main 

possibilities have been proposed to be responsible for governing this increase in permeability. 

Bax resides in the cytosol in normal, healthy cells but, once activated, translocates to 

mitochondria, where 1) it incorporates into the outer membranes and oligomerizes to form 

permeable pores [3,61] and/or 2) interacts with existing channels such as VDAC [3,69] . The 

activation of Bax is regulated by the BH3-only proteins, which facilitate Bax channel formation. 

It should be pointed out that the Bax channel appears to be identical to the mitochondrial 

apoptosis-induced channel (MAC channel; [24]), which was first detected on mitochondria in 
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patch-clamp experiments. The anti-apoptotic members Bcl-2 and Bcl-xL are mainly localized to 

the mitochondrial outer membrane where they antagonize the pro-apoptotic effect of Bax and 

Bak [70]. 

 

The importance of the Bcl-2 family proteins in myocardial ischemia-reperfusion injury was 

demonstrated in mouse models. Indeed, Bax deletion in mice, interference with Bax activation, 

or over-expression of Bcl-2 levels have been shown to attenuate apoptosis and reduce infarct 

size, while reduction of Bcl-2 levels (via antisense oligonucleotides) suppressed protection 

against injury [72-76]. Therefore, anti-apoptotic interventions targeting Bcl-2 family proteins 

provide opportunities for possible antiischemic therapies [77], either through a gain of 

antiapoptotic function or loss of proapoptotic function. Polster et al. [78] demonstrated that the 

well-known drugs propranolol and dibucaine inhibited Bax-induced permeability changes and 

cytochrome c release from mitochondria through a direct interaction with the lipid membrane. A 

similar approach allowed others to identify 3,6-dibromocarbazole piperazine derivatives of 2-

propanol as inhibitors of cytochrome c release triggered by induction of the Bax channel [79]. In 

the same way, a pentapeptide derived from the Bax-modulating Ku70 protein inhibited Bax-

dependent apoptosis [80]. More recently, Hetz et al. [81] identified two blockers of Bax channel 

activity, bci1 and bci2 (Fig. (4)), which prevented cytchrome c release in vitro and in vivo, and 

protected neurons in a gerbil model of global brain ischemia at reperfusion. It is a promising 

pharmacological strategy, but to our knowledge, these compounds have not been evaluated 

during myocardial ischemia.  

 

3.3. BH3-only Bcl-2 proteins 

The activation of Bax and Bak is regulated by the class of Bcl-2 proteins that contain single BH3 

domains. These proteins control apoptotic signals upstream of mitochondria and transmit them 
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directly or indirectly to Bax and Bak [66], thus they represent specific targets for preventing 

myocardial ischemia-reperfusion injury. This appears to be an excellent point of intervention 

because only activation of Bax and Bak would be affected, minimizing cell apoptosis. This 

approach would also facilitate maintenance of mitochondrial integrity. 

Among these proteins Bid (BH3-Interacting Domain death agonist) is one of the most abundant 

in mammalian tissues, including the heart [82]. Bid is subjected to a protein cleavage by caspase-

8, granzyme, or calpain, and truncated Bid (tBid) translocates to the mitochondria where it is 

involved in Bax/Bak activation and/or Bax/Bak channel formation [66]. Thus, Bid is at the 

crossroad of the intrinsic and the extrinsic death pathway. Bid-mediated apoptosis has been 

shown to contribute to myocardial ischemic injury [83] and Bid-deficient mice have reduced 

infarct size and improved cardiac functions after ischemia-reperfusion [3]. In addition, calpain 

inhibitors reduce infarct size in animal models of isolated perfused heart [84] and slow the 

progression of heart failure in rats [85,86]. These data suggest that Bid is an attractive target 

during myocardial ischemia-reperfusion, and pharmacological inhibitors which are effective in 

vitro assays have already been designed [87]. 

Other BH3-only Bcl-2 proteins have been implicated in cardiac ischemia-reperfusion injury [88]. 

Bnip3 (Bcl-2/adenovirus E1B 19kDa interacting protein 3) has been shown to mediate 

mitochondrial dysfunction and cell death of ventricular myocytes subjected to hypoxia [89-90]. It 

was also reported to contribute to myocardial ischemia-reperfusion injury through a 

mitochondrial death pathway [91-92]. Interestingly, a TAT-fusion protein encoding a carboxyl 

terminal transmembrane deletion mutation in of Bnip3 conferred protection against myocardial 

ischemia-reperfusion injury, improved cardiac function, and protected mitochondrial integrity 

[92], confirming that Bnip3 could constitute a relevant therapeutic target.  

In the same way, Puma (p53-Upregulated Modulator of Apoptosis) was upregulated in response 

to hypoxia/reoxygenation in isolated cardiomyocytes and Puma-deficient mice have reduced 
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infarct size and improved cardiac function after myocardial ischemia-reperfusion [93]. Until 

now, pharmacological strategies targeting selectively Puma have not been described. 

The pharmacological strategy inhibiting mitochondrial outer membrane permeability, and thus 

apoptosis, by manipulation of the Bcl-2 family proteins to protect the myocardium against 

ischemia-reperfusion is very recent. It has already provided interesting results, which support the 

idea that a clinical benefit might be obtained in the near future. 

 

3.4. The voltage-dependent-anion channel (VDAC) as a pharmacological target. 

Another potential mechanism for outer mitochondrial membrane permeabilization might involve 

VDAC which is the major permeability pathway for metabolites through the mitochondrial outer 

membrane [94]. Different isoforms of VDAC have been identified [95,96] and the role of VDAC 

in cell death induced by mitochondria seems to be isoform specific. Indeed, VDAC1 has been 

implicated in the mitochondrial release of proapototic protein whereas VDAC2 displays 

antiapoptotic properties [97,98]. 

It is important to note that much of the evidence involving VDAC opening and closing in 

proapototic protein release has arisen from in vitro experiments, and it is not clearly established 

whether this can be observed in vivo [99]. However, VDAC is a hypothetical component of 

mPTP, interacts with pro- and anti-apoptotic proteins of the Bcl-2 family members, and VDAC 

has been also proposed to control the release of cytochrome c without mPTP opening 

[97,100,101]. 

 

Taken together, these data make VDAC a putative target in ischemia-reperfusion. Interestingly, a 

strategy developed to inhibit VDAC was shown to reduce myocardial ischemia-reperfusion 

injury. Perfusion of rat hearts with a cell permeable peptide corresponding to the BH4 domain of 

Bcl-XL, which had been reported to close VDAC and to prevent the VDAC-mediated release of 
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cytochrome c [102], was shown to inhibit creatine kinase release and to reduce myocardial cell 

death [84]. In the same way, the Ca2+-dependent actin-regulatory protein gelsolin was suggested 

to inhibit apoptosis by blocking mitochondrial VDAC activity [103]. This is in disagreement 

with recent results that indicate that closure of VDAC, not opening, leads to mitochondrial outer 

membrane permeabilization and apoptosis [104]. It is clear that a better knowledge of the role of 

VDAC, if any, in ischemic injury, will take time, given the lack of proven pharmacological 

compounds specifically targeting VDAC.  

 

3.5. Mitochondrial potassium (mitoKATP) channels.  

MitoKATP channels were first identified in liver mitoplasts (mitochondria stripped of the outer 

membrane) by Inoue et al. [105] in patch-clamp experiments, and then by light scattering 

experiments in liver and heart isolated mitochondria [106-107]. Evidence for the involvement of 

mitoKATP channels in cardioprotection was provided by the observation that mitoKATP openers, 

like diazoxide or nicorandil, can protect the myocardium against ischemia-reperfusion injury 

[108-110] and mimic ischemic pre-conditioning, while blockers inhibit [111-113]. In the same 

way, recent data show that the myocardial protection conferred by ischemic post-conditioning is 

blocked by the mitoKATP channel blocker 5-hydroxydecanoate and thus achieved at least in part 

by opening of mitoKATP channels [114]. The mechanism for mitoKATP channels opening during 

pre-and post-conditioning is currently the subject of intense investigation.  

Several recent studies have linked the protein kinase C epsilon (PKCε), which translocation to 

mitochondria seems important for pre-conditioning [115], to mitoKATP channel opening. Other 

kinases have also been involved [116-117].  

The mechanism by which activation of mitoKATP results in cardioprotection is not well-

understood, but implies a limitation in mitochondrial membrane permeability. Several 

hypotheses have been proposed. The first one considers that the beneficial effect of mitoKATP 
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activation could be the consequence of a partial dissipation of the membrane potential caused by 

the net influx of K+ [118]. This would reduce Ca2+ entry or release an excess of Ca2+, preventing 

Ca2+ overload [119] and thus mPTP opening during reperfusion. This is consistent with the 

results of Korge et al. [120] and Facundo et al. [121], who reported that diazoxide prevents 

opening of the mPTP induced by elevated Ca2+ concentrations in isolated mitochondria. 

However, this hypothesis has been disputed, because mitochondrial membrane depolarization 

generated by K+ flux does not appear to be sufficient to affect Ca2+ transport [122] and has not 

been observed in intact cardiac myocytes [123]. Moreover, a higher depolarization may lead to 

deleterious phenomena more frequently associated with cell death, than t protection (such as 

decreased ATP synthesis and even mPTP opening).  

The second hypothesis proposes that perturbed ROS production is responsible for mitoKATP 

channel effect. Depending on the conditions, pre-conditioning phase, ischemia or reperfusion, 

mitoKATP channel openings could either increase or attenuate ROS generation [121,124], but the 

link between mitoKATP channels, ROS and the induction of a cytoprotective effect is not clear. In 

this context, Hausenloy et al. [125] suggested that the cardioprotection induced by diazoxide is 

ROS-dependent and due to transient mPTP opening-mediated ROS release during the pre-

conditioning phase. In this scheme, mPTP opening may act as a protective mechanism in 

response to different stimuli during the pre-conditioning period to inhibit its deleterious opening 

during the reperfusion phase. This is an attractive mechanism but is still highly controversial 

[126]. Similarly, Costa et al. [127] have reported that mPTP inhibition by mitoKATP opening 

requires the generation of ROS. 

The third hypothesis, which is not mutually exclusive, considers the only well-defined 

physiological function of mitochondrial K+ transporters, i.e. the regulation of the matrix volume 

[128]. Dos Santos et al. [129] hypothesized that opening of the mitoKATP during ischemia 

resulted in a slight mitochondrial swelling which preserved the structure of the intermembrane 
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space and thus maintained VDAC in a low permeability state for adenine nucleotides. This would 

reduce glycolytic ATP entry into mitochondria and, therefore, ATP hydrolysis by F1F0-ATPase, 

and would preserve ADP for phosphorylation upon reperfusion (for review see [130]). 

Thus, the mechanism by which mitoKATP channels exert their cardioprotective effect is still a 

source of debate, but most of the studies suggest that opening of mitoKATP channels prevents 

cellular death by decreasing mitochondrial ROS release and Ca2+ overload during the 

reperfusion, thus inhibiting mPTP. 

Based on these experimental data, clinical studies have been performed. Some of them reported 

cardioprotection with intravenous administration of nicorandil (a mixed mitoKATP channels opener 

and nitric oxide donor) in patients with acute myocardial infarction [131,132], but another study 

failed to demonstrate this effect in the same clinical setting [133]. 

However, the full demonstration of the involvement of mitoKATP channels in cardioprotection is 

hampered by the absence of selective agents for the mitoKATP channel; the mitoKATP channel 

openers and inhibitors which have been used to demonstrate the cardioprotective effects of these 

channels (most notably diazoxide and 5-hydroxydecanoate), are claimed to be specific for this 

channel, but numerous studies argue against this specificity (see the review of Halestrap et al. 

[134]). 

A better understanding of the cellular mechanisms and of the role of mitoKATP channels will 

require the development of more specific and more selective pharmacological entities; however, 

they still appear to be a promising target for the development of new cardioprotective agents.  

3.6. The mitochondrial translocator protein (TSPO). 

TSPO (formerly known as Peripheral Benzodiazepine Receptor [135]) is a ubiquitous high 

affinity cholesterol binding 18 kDa protein primarily located on the outer mitochondrial 

membrane, where it is associated with VDAC [136]. It has been implicated in numerous 

biological functions [135], including regulation of mPTP opening [136,137] but the exact 
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physiological role of TSPO remains unclear (except in steroid-producing tissues where TSPO 

mediates the transport of cholesterol from the outer to the inner mitochondrial membrane and 

promotes pregnenolone synthesis [138]). TSPO is also present in non steroidogenic tissues, 

especially in the heart, where its function is unknown. Several reports suggest that TSPO ligands 

might modulate apoptotic responses [139] and play an anti-apoptotic role in oxidative stress 

conditions such as ischemia-reperfusion [140]. In this context, TSPO expression correlated with 

the quality of kidney preservation, indicating that it might serve as an index of kidney and 

mitochondrial viability during storage [141]. Thus, one means to improve resistance of the cells 

to oxidative stress generated during ischemia would be to increase TSPO expression levels using 

pharmacological tools to increase TSPO transcription. Leducq et al. [142] found that the 

irreversible TSPO ligand SSR180575 prevented the cellular damages resulting from oxidative 

stress and cardiac injuries induced by ischemia-reperfusion in rodents, and Obame et al. [143] 

showed that the specific TSPO ligand 4’-chlorodiazepam (Fig. (4)) reduced infarct size in both 

global and regional models of myocardial ischemia-reperfusion in rats. The protective 

mechanism involved limiting mitochondrial membrane permeabilization, notably a resistance of 

mitochondria to mPTP opening, associated with a reorganization of the balance between pro- and 

anti-apoptotic proteins of the Bcl-2 family proteins at the level of mitochondrial membranes 

[143]. Taken together, these data demonstrate a role for TSPO as a modulator of necrotic and 

apoptotic cell death induced by ischemia-reperfusion, suggesting that TSPO could constitute a 

possible target for cardioprotection.  

 

4. Pharmacological strategies acting indirectly on mitochondrial membrane permeability 

4.1. Ischemic pre- and post-conditioning.  

Ischemic pre-conditioning (IPC) is one of the more powerful processes to protect the heart from 

lethal ischemia-reperfusion injury.  IPC was originally described by Murry et al. [144], who 
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demonstrated that a sequence of successive short periods of ischemia reduced infarct size 

produced by a subsequent long ischemic period. Studies revealed that IPC caused the release of 

G protein-coupled receptors agonists such as adenosine, bradykinin or opioids that activated a 

cascade of cardioprotective kinases referred to as “Reperfusion Injury Salvage Kinase” (RISK) 

pathway [145]. This cascade includes PKC, the PI3kinase-AKT pathway, the ERK1/2 pathway, 

and downstream proteins such as glycogen synthase kinase-3β (GSK-3β), PKG, Bad or 

endothelial nitric oxide synthase (eNOS). PKCε is a primary cardioprotective PKC isoform, 

whereas PKCδ promotes injury. Activation of AKT and ERK1/2 and phosphorylation of GSK-3β 

appear essential for IPC in numerous studies, although this has been questioned by Nishino et al. 

[146]. More recently, Zhao et al. [147] demonstrated that brief repetitive ischemic periods of 

ischemia followed by reperfusion after a lethal ischemic period results in a robust reduction in 

infarct size, termed ischemic post-conditioning (IPOC). Subsequent studies have shown that IPC 

and IPOC use a similar signalling pathway, i.e. the RISK pathway, and that classical ligands able 

to trigger IPC, such as adenosine or opioids, were also able to induce IPOC [148]. For a detailed 

characterization of the signalling pathways involved in IPC and IPOC see [115]. From a clinical 

point of view the discovery of IPOC is fundamental as it can be applied in patients [149]. 

 

The cellular mechanisms governing IPC and IPOC protection are not fully understood,but 

increasing lines of evidence suggest that indirect inhibition of mitochondrial membrane 

permeability, through inhibition of mPTP opening during reperfusion,  may be the target of the 

RISK pathway [150-153]. The mechanism by which the RISK pathway inhibits mPTP is 

unclear,but several candidates have emerged which may act in concert to mediate mPTP 

inhibition (Fig. (5)). These include:  

(1) eNOS generation of NO, which alone [154], or through the PKG-PKCε-mitoKATP channel 

can limit mPTP opening [115,127],  
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(2) phosphorylation and/or complex formation with cytosolic proteins like PKCε can interact 

with mPTP [155,156], whereas the activity of PKCδ and its translocation to mitochondria at the 

onset of reperfusion mediates apoptosis [157],  

(3) phosphorylation and inhibition of GSK-3β, a downstream target of AKT, which have been 

demonstrated to inhibit mPTP [150,153]. Nishihara et al. [158] suggested that the binding of 

GSK-3β to ANT might be responsible for mPTP inhibition and the myocardial protection 

afforded by IPC, 

(4) inhibition of downstream signals of the RISK pathway, such as Bax translocation from 

cytoplasm to mitochondria [159] or hexokinase II activation [160]. 

However, whatever the mechanism(s) connecting the RISK pathway to mPTP inhibition, the 

activation of this cascade of kinases offers the opportunity to promote mPTP inhibition and thus 

cardioprotection at reperfusion. This property can be exploited therapeutically as described in the 

following studies. 
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Fig. (5): Hypothetical scheme showing the cardioprotective pathways activated at the time of 
reperfusion by both ischemic pre- and post-conditioning. Ligands of receptors coupled to G-
proteins or growth factors initiate cardioprotection by activating a cascade of kinase leading 
to mPTP inhibition and thus protect the cell against apoptotic and necrotic death. 
mPTP indicates permeability transition pore; K+

ATP: mitochondrial potassium channel. 
ERK1/2, extracellular regulated kinase; MEK1/2, mitogen-activated protein kinase/ERK1/2
kinase; PI3K, Phosphoinositide 3-kinase; GSK-3ß, glycogen synthase kinase 3ß ; eNOS,
endothelial NOS; P70S6K, p70 ribosomal S6 protein kinase 
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4.1.1. Targeting of the RISK pathway by ischemic post-conditioning. 

IPOC was recently described, but small clinical studies have already been initiated [161-163]. In 

these studies, IPOC was induced in patients by a series of successive episodes of inflation-

deflation of the angioplasty balloon during percutaneous coronary intervention. IPOC 

significantly protected the heart against ischemia-reperfusion-induced injury and, importantly, 

the protective effect is of significant duration [163]. 

 

4.1.2 Targeting the RISK pathway via pharmacological agents. 

The administration of high doses of adenosine at reperfusion in acute myocardial infarction 

resulted in myocardial protection in two small clinical studies [164,165]. A reduction in infarct 

size was also observed in larger randomized controlled studies in which adenosine was 

administrated as an adjunct to thrombolytic therapy after the beginning of reperfusion [166,167]. 

However, this pharmacological strategy did not improve clinical outcomes [167]. 

Morphine is another G protein-coupled receptor agonist which is known to activate the RISK 

pathway and to cause potent cardioprotection when administrated upon reperfusion [168]. 

Recently, Obame et al. [153] have shown that morphine provides protection against myocardial 

infarction through inhibition of mPTP opening. Thus, the use of morphine, a well-known drug 

which can be administrated acutely in safe conditions, as an adjunct of myocardial reperfusion, 

may be a useful clinical strategy in acute myocardial infarction. 

It is also possible to act upstream in the RISK pathway, as several groups have shown that 

inhibitors of GSK-3β reduced infarct size in mice and rats, and that this effect was associated 

with the inhibition of mPTP opening [153,168,169].  

Similarly, beside their lipid-lowering actions, statines (3-hydroxy-3-methylglutaryl-coenzyme A 

(HMG-CoA) reductase inhibitors) have been shown to exhibit cardioprotective properties 

[170,171].  The mechanism seems to involve stimulation of several kinases in the RISK pathway 
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but also activation of the mitoKATP channel through NO generation and inhibition of mPTP 

opening [172]. 

 

Another possible strategy is to directly target PKC via PKCε activators or PKCδ inhibitors. A 

recent small clinical study of acute myocardial infarction using the PKCδ inhibitory peptide, 

KAI-9803, which was delivered via intracoronary injection during percutaneous coronary 

intervention, revealed signs of cardioprotection. Unfortunately, the observed improvements were 

not significant, probably because of the small size of the sample [173] 

 

4.2. Mitochondria-targeted antioxidants in limiting mitochondrial membrane permeability. 

In physiological conditions, ROS are formed within mitochondria and are eliminated by powerful 

antioxidant systems [174]. Under pathological conditions, especially during post-ischemic 

reperfusion, the sudden influx of oxygen to the mitochondrial respiratory chain leads to a burst of 

ROS (as a superoxide anion; [175]) which can overwhelm endogenous antioxidant systems and 

deplete the reducing compounds protecting mitochondria against oxidative insults. It should be 

noted that the respiratory chain is not the only source of ROS in mitochondria [174]. For 

instance, MAO-A has been shown to represent an important source of hydrogen peroxide in rat 

heart [176]. ROS cause non-specific damage to lipids, proteins and mitochondrial DNA. When 

associated with mitochondrial Ca2+ overload and adenine nucleotide depletion, conditions that 

pertain during myocardial reperfusion, high levels of ROS can induce opening of the mPTP [44]. 

ROS generated during early reperfusion have been found to be primary activators of mPTP and 

cardiomyocyte death [177], and Clarke et al. [178] have reported that IPC-induced inhibition of 

mPTP is probably mediated by a reduction in oxidative stress. This property might also 

contribute to the cardioprotective effect of some therapeutic drugs such as pyruvate [179], the ß-

 
 

28



adrenoceptor blocking agent carvedilol [180] or the anaesthetic propofol, frequently used for 

cardiac surgery [181]. 

These data highlight the major role of ROS in the increase in mitochondrial membrane 

permeability. Thus, any antioxidant treatment is likely to protect mitochondria and ultimately the 

myocardium at reperfusion. Numerous pharmacological strategies have been developed to 

scavenge ROS or to increase mitochondrial ROS degradation [182]. Recently, Bognar et al. [183] 

have developed a novel superoxide dismutase mimetic drug which was able to eliminate ROS in 

the microenvironment of the mPTP and to inhibit its opening, leading to the protection of the 

myocardium against myocardial ischemia-reperfusion (Fig. (4)).  

 

An interesting result was also obtained with the free radical scavenger edavarone which was 

shown to inhibit mPTP opening and to prevent cardiac reperfusion injury [184]. In a recent 

clinical study, edavarone delivered via intravenous injection during percutaneous coronary 

intervention reduced infarct size and reperfusion arrhythmias, and improved short term clinical 

outcomes in acute myocardial infarction [185]. However, most of the clinical studies with 

conventional antioxidants have yielded disappointing results [186].   

 

Several reasons can be evoked to explain this failure; among them, the main reason may be the 

difficulty of delivering the drug to mitochondria in situ. To overcome these limitations, 

investigators have synthetized amphiphilic cations from well-established antioxidant compounds, 

which are sufficiently lipophilic to cross lipid bilayer membranes and which can be selectively 

taken up into the mitochondria by the large, negative inside, inner membrane potential [187,188]. 

These drugs include alpha tocopherol (MitoVit E) and ubiquinone (MitoQ) (Fig. (4)). A recent 

study demonstrated that feeding rats with MitoQ significantly limited cardiac reperfusion-injury 

[189]; this approach might provide a promising pharmacological strategy.  
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Using a similar idea, a novel class of small cell-permeable antioxidant peptides (Fig. (4)) that 

target mitochondria have been reported [190]. Their antioxidant effect is due to the presence of 

basic amino acids, tyrosine and dimethyltyrosine, which are effective in scavenging ROS. These 

peptides enter the mitochondria in a potential-independent manner (contrary to MitoQ and 

MitoVitE) because they include a sequence motif targeted to mitochondria. These peptides 

reduce mitochondrial ROS production, inhibit mPTP opening, prevent the release of cytochrome 

c from mitochondria [190] and protect against myocardial ischemia-reperfusion ex vivo and in 

vivo [191]. 

 

Another alternative antioxidant approach would be to prevent mitochondrial ROS production to 

protect mitochondrial membrane. A first possibility would be the development of specific MAO-

A inhibitors, since MAO-A inhibition has been shown to reduce myocardial damage induced by 

ischemia-reperfusion [192]. This can also be achieved by mild uncoupling [193], decreasing 

ROS generation by dissipating the electrochemical potential of H+, allowing an increase in 

electron flux at the expense of ubiquinol. Mild uncoupling might represent an antioxygen defense 

mechanism during the reperfusion period, preventing the sudden increase in membrane potential, 

the overproduction of ROS, and the increase in mitochondrial membrane permeability. 

Experimental results have confirmed the relevance of this approach. Decreased ROS formation 

associated with myocardial protection has been demonstrated using uncouplers [194,195], or by 

overexpressing uncoupling proteins [196,197], and the data of McLeod et al. [198] support a role 

for UCP2 in delayed IPC induced cardioprotection. 

 

5. Concluding remarks 

This manuscript highlights that mitochondria represent a pertinent target to develop 

cardioprotective pharmacological therapies and the crucial role of the preservation of 
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mitochondrial membrane integrity to protect cardiac cells during myocardial ischemia-

reperfusion. Beside their essential roles in energy production, Ca2+ homeostasis and ROS 

production, mitochondria control necrotic and apoptotic myocardial cell death by regulating the 

permeability of its membranes. Indeed, mPTP may be considered as a central event in necrosis 

(although a controversy persists concerning the molecular composition of mPTP), whereas the 

permeabilization of mitochondrial outer membranes by proteins of the Bcl-2 family leads to 

apoptosis. On the whole, the studies presented above reveal that both anti-necrotic and anti-

apoptotic strategies targeting mitochondrial permeability are able to protect cardiomyocytes from 

death during ischemia-reperfusion. However, the signaling mechanisms mediating mitochondrial 

membrane permeabilization in ischemia-reperfusion are diverse, so it seems likely that a 

combination of pharmacological therapies, i.e. compounds combining different pharmacological 

effects or co-administration of several drugs acting simultaneously on distinct targets, should 

afford a better protection against myocardial ischemia-reperfusion injury.  
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