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Abstract: 

The ventricular pressure profile is characteristic of the cardiac contraction progress and is useful to 

evaluate the cardiac performance. In this contribution, a tissue-level electromechanical model of 

the left ventricle is proposed, to assist the interpretation of left ventricular pressure waveforms. 

The left ventricle has been modeled as an ellipsoid composed of twelve mechano-hydraulic sub-

systems. The asynchronous contraction of these twelve myocardial segments has been represented 

in order to reproduce a realistic pressure profiles. To take into account the different energy 

domains involved, the tissue-level scale and to facilitate the building of a modular model, multiple 

formalisms have been used: Bond Graph formalism for the mechano-hydraulic aspects and cellular 

automata for the electrical activation. An experimental protocol has been defined to acquire 

ventricular pressure signals from three pigs, with different afterload conditions. Evolutionary 

Algorithms (EA) have been used to identify the model parameters in order to minimize the error 

between experimental and simulated ventricular pressure signals.  Simulation results show that the 

model is able to reproduce experimental ventricular pressure. In addition, electro-mechanical 

activation times have been determined in the identification process. For example, the maximum 

electrical activation time is reached, respectively, 96.5 ms, 139.3 ms and 131.5 ms for the first, 

second, and third pigs. These preliminary results are encouraging for the application of the model 

on non-invasive data like ECG, arterial pressure or myocardial strain. 
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Introduction 

The evaluation of cardiac performance is one of the most challenging tasks in cardiology. 

This evaluation is often based on the analysis of blood pressure measurements, which can 

be performed invasively or non-invasively, in a discrete or continuous manner. Typically, 

values of diastolic and systolic pressures are acquired and monitored over time, but the 

information contained in the morphology of pressure signals is generally not exploited. 

Mathematical modeling of the cardiac mechanical activity can be useful in this sense. 

A variety of mathematical models of the ventricular function have already been proposed. 

The left ventricle can be represented simply by a time-varying elastance (Guarini et al. 

1998; Palladino et al. 2002) that can give realistic simulations of global cardiac 

characteristics. However, since this approach represents the whole left ventricle (LV) 

with a single element, it is not possible to reproduce ventricular pressure in particular 

cases, for example, during the electro-mechanical desynchronisation of one part of the 

myocardium, as observed in some patients suffering from heart failure. Other approaches 

have been proposed in order to represent explicitly, at different levels of detail, cardiac 

electrical activity (Luo et al. 1994; ten Tusscher et al. 2004), excitation-contraction 

coupling (Wong 1973; Hunter 1995; Rice et al. 2000; Kerckhoffs et al. 2003), cardiac 

mechanical activity (Chaudhry 1996; Nash 1998; Kerckhoffs et al. 2003) and mechano-

hydraulic coupling (Verdonck 2002; Kerckhoffs et al. 2007). 

Complete models of ventricular activity are developed from a combination of these 

different energy domain descriptions (Nash 1998; Kerckhoffs, Faris et al. 2003). A fine-

grained description of the ventricular activity (at the cellular or sub-cellular levels) is 

presented in the most detailed approaches. They have been shown to be useful for the 

analysis of regional myocardial dynamics (Nash 1998; Nickerson et al. 2005) or to study 

the influence of mechanical stresses on ventricular fibrillation, by integrating specific 

ionic currents, excitation–contraction coupling, anisotropic nonlinear deformation of the 
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myocardium, and mechano-electric feedback (Hirabayashi et al. 2008). 

However, these approaches require significant computational resources and are 

characterized by a large number of parameters. These aspects reduce the model 

identifiability, make it more difficult to couple these models with models of other 

physiological systems (e.g., circulation), and thus limit their application to our problem. 

Complete models of the cardiovascular system, that include tissue-level descriptions of 

the electrical activity of the heart, the electro-mechanical coupling in the ventricles, the 

circulation and the Autonomic Nervous System (ANS) have already been proposed in 

other studies (Shim et al. 2008) and in our previous works (Le Rolle et al. 2005; Le Rolle 

et al. 2008). However, in these models, the asynchronous contraction of the different 

myocardial walls was not taken into account and it is thus not possible to simulate 

realistic ventricular pressure morphologies. 

As previously stated, the main objective of the present work is to propose a personalized 

model-based approach to reproduce and interpret left ventricular pressure waveforms. A 

new model has been developed, with the following specific properties: i) the model 

resolution stands at an intermediate scale, since it takes into account a limited number of 

coupled tissue-level elements; ii) The model is based on functional integration of 

interacting physiological processes, by taking into account electro-mechanical coupling, 

the coupling of blood inside the cavity with the myocardial wall, as well as a simplified 

representation of the systemic circulation.  

This allows the representation of the main cardiac properties required to tackle the 

problem under study, such as the Frank-Starling law and the influence of preload and 

afterload. The variety of energy domains, the spatial scale retained (tissue-level) and our 

desire to build a modular model, led us to use the Bond Graph formalism for the 

mechano-hydraulic aspects and cellular automata for the electrical activation. These two 

formalisms have already been proposed in the literature and have shown interesting 

results and low computational costs (Bardou et al. 1996; LeFèvre 1999; Hernandez 2000; 

Hernandez et al. 2002; Diaz-Zuccarini 2003). An original aspect of this work is thus the 
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combination of Bond Graphs and Cellular Automata into a multi-formalism model of 

the left ventricle. 

The proposed model is used to reproduce and analyze intra-cardiac pressure signals by 

adapting the model parameters to experimental data. An experimental protocol has been 

defined to acquire ventricular pressure signals from three pigs. Model parameters are 

adjusted to the data by minimizing the difference between real and simulated ventricular 

pressure signals by using Evolutionary Algorithms (EA).  

This paper is organized as follows: in a first section, the proposed model is described in 

detail before introducing the identification method. Section two presents the experimental 

protocol employed. Acquired and simulated signals are compared for the different 

physiological conditions (steady-state, afterload, and ischemia) and identification results 

are discussed.  

Methods 

Model description 

An ellipsoidal geometry has been chosen to model the left ventricle, as it is close to the 

real anatomical shape, and yet quite simple. The myocardial wall has been divided into 12 

segments (Silva et al. 2002) that are composed of three layers (base, medium and apex). 

Each layer is separated in 4 components corresponding to the septal, lateral, anterior and 

inferior walls (Figure 1). Each wall segment interacts with the blood volume inside the 

intra-ventricular cavity. The shape of the ventricle is defined as an ellipsoid of revolution, 

which can be described in spherical coordinates by:  

      ( 1 ) 

        

  where θ ∈ [0,2π] and ϕ ∈ [0,π].   

Parameters a and b of the ellipsoid are respectively defined as the minor and major 

ventricular axes. 
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B 

 

Figure 1 : A) Segmentation of the proposed model of the left ventricle composed of twelve 

segments at the basal, equatorial and apical level. Each layer is separated into 4 components: 

septal, lateral, anterior and inferior wall, B) The parameters a and b of the ellipsoid are 

respectively defined as the minor and major ventricular axes. 

 

The development of ventricular pressure waveforms during a heart beat is the 

consequence of the asynchronous electro-mechanical function of the cells associated with 

each ventricular segment.  In order to represent this tissue-level myocardial regional 

activity, we have chosen to integrate, for each segment, simplified representations of their 

electrical, electro-mechanical, mechanical and hydraulic activities. The 12 segments are 

then coupled to the hydraulic and electrical domains to constitute the organ-level model. 

Electrical activity 

The tissue-level wall segments previously defined contract asynchronously, following the 

electrical propagation through the ventricular walls. Each myocardial segment has a 

specific electrical state, which depends on the neighboring segments. The model of the 

cardiac electrical activity should take into account the propagation of a tissue-level 

Action Potential (AP) and the electrophysiological status of each segment. The use of a 

cellular automata network seems to be a judicious choice for this, since it has already 

given good results concerning electrical cardiac modeling (Bardou, Auger et al. 1996) 
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and it can reduce simulation time, as the simulation of cellular automata does not require 

any integration process to compute the change of electrical state. 

A four-states cellular automaton is defined for each tissue-level segment (Hernandez 

2000; Hernandez, Carrault et al. 2002). The states correspond to specific action potential 

phases: rapid depolarization period (RDP), absolute refractory period (ARP), relative 

refractory period (RRP) and waiting period (idle). The transitions between states happen 

at the end of each phase. After the RDP period, an automaton transmits a stimulus to its 

neighboring segments. Each automaton is connected to its three or four neighbors by 

antegrade, retrograde or lateral connections. 

The beginning of the RDP corresponds to the beginning of the tissue-level AP, and is 

called the Electrical Activation Time . At the end of the RDP, the ARP begins. This 

instant is defined here as the Mechanical Activation time ( ). In order to represent, in a 

simplified manner, the complex processes involved in the electro-mechanical coupling at 

the tissue-level (e.g. calcium dynamics of each cell composing the tissue, effect of the 

heterogeneous mechanical activation of each cell, etc.), the choice was made in this work 

to use an Electro-Mechanical Driving Function (EMDF), which is based on a truncated 

sine function characterized by its amplitude K and period T (Figure 2) : 

   (2) 

where tes is the time (ms) elapsed since the  for each segment s, 

€ 

Tmax is the activation 

duration (ms), K the maximum value of the EMDF signal, which has been defined here to 

be in a scale similar to the mean tissue-level calcium concentration (µM) and  is the 

minimum level of the EMDF. In this way, the EMDF can be interpreted as the mean 

calcium concentration level resulting from the set of cells composing a myocardial 

segment.  

Although, this description remains simple, we consider it is accurate enough for this 

study, as the aim is to investigate the influence of the asynchronous electro-mechanical 
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function of myocardial segments on ventricular pressure. In this sense, the interpretation 

of the electromechanical parameters in our model will be limited to the analysis of the 

relative contribution of each segment to the whole ventricular activity by means of the 

tuning parameter T. It should be noticed that such an analytic approach has been already 

used in tissue-level models of the whole organ (Bovendeerd et al. 2006), showing a good 

correspondence with organ and system-level data.  

A 

 

B 

 

Figure 2 : A) Each automaton is defined by four electrical states: 1. rapid depolarization period 

(RDP), 2. absolute refractory period (ARP), 3. relative refractory period (RRP) and 4. a waiting 

period (idle). B) Relation between the automaton states and the electro-mechanical driving 

function (EMDF):  and  correspond respectively to the electrical activation and 

mechanical activation instants. 

 

Mechanical activity  

Cardiac mechanical properties can be separated into active and passive components. 

Cardiac tissue deformations are limited by the passive stresses that can be explained by 

the myocardium organization (fibers, collagen…), whereas actives stresses are generated 

by the variation of the intracellular calcium concentration. To describe the cardiac 

mechanical activity, the stress/strain relation must be determined using a constitutive law, 
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characteristic of the myocardial behavior and the relation between myocardial stress and 

ventricular pressure must be defined. The whole stress tensor can be expressed as the sum 

of a passive term and an active term: 

       ( 3 ) 

Concerning the passive properties, as the material is assumed to be hyperelastic and 

incompressible, which is a usual assumption for cardiac muscle, the passive stress 

depends on a strain energy function W:  

      ( 4 ) 

where p stands for the hydrostatic pressure, I is the identity tensor, F the deformation 

gradient tensor, C is the right Cauchy-Green tensor (Chaudhry 1996; Taber et al. 1996) 

computed from F : . Several functions W have been defined in the literature to 

describe cardiac performance and are based on knowledge of the structure and 

experimental acquisitions on cardiac tissues. A polynomial energy function (Humphrey et 

al. 1990) was chosen here because its polynomial form facilitates the implementation and 

this function has proven useful in many studies (Chaudhry 1996; Taber, Yang et al. 

1996): 

W = c1.(α-1)²-c2.(α-1)³+c3(I1-3)+c4(I1-3)(α-1)+c5(I1-3)² with   

 ( 5 ) 

where I1 and I4 stand for the invariants of the deformation gradient tensor. By applying 

equation ( 4 ), the passive stress can be expressed as : 

     ( 6 ) 

with  , , and  

where N is a unit vector in the direction of the fiber and  is the fiber angle with respect 

to the parallel direction. Since we know the strain energy function W, the deformation 
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gradient tensor F should also be defined. In this paper, spherical coordinates are used, 

and the deformation is assumed to be exclusively radial. Thus, a material particle in the 

undeformed state ( ) goes to ( ) in the deformed state, which verifies: 

;  ;      ( 7 ) 

Then, it is possible to obtain the components of the deformation gradient F in spherical 

coordinates. Because of the radial motion hypothesis, F becomes a square diagonal 

matrix the three nonzero elements of which provide the strains  in the 

principal directions. It can easily be shown that the deformations in the three directions 

are expressed as:  and  (common value denoted by  in the 

following). As the myocardium has been assumed to be incompressible, it holds: 

. So a simple relation between  and  can be found:  and the 

invariants are computed as :  and  

The other part of the stress tensor due to active properties can be expressed using the 

relation: 

      ( 8 ) 

where N still stands for a unit vector in the fiber direction and  depends on the 

intracellular cardiac concentration. The form proposed in (Hunter 1995) is used in this 

paper and is related to the EMDF by the following function: 

 ( 9 ) 

where 

€ 

Tref  the value of the tension at λ = 1,  is the calcium concentration at 50% of 

the isometric tension, n is the Hill coefficient determining the shape of the curve and β is 

a nondimensional slope describing the myofilament “cooperativity”, which translates the 

impact of sarcomere length on the level of cardiac activation. The parameters values and 

functions for and n are taken from (Hunter 1995). Since the total stress tensor has 

! 

Ta =Tref
EMDF

n

EMDF
n

+Ca50
n
[1+ " (# $1)]
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been defined as the sum of the active and passive tensors, the three directional 

components are: 

 with       ( 10 ) 

 with   ( 11 ) 

  with   ( 12 ) 

This three-equations system is implicit, because it includes four unknown variables , 

, and p. The Laplace Relation is added to link the three stress components. This 

relation has been demonstrated for thin ellipsoidal myocardial segments in (Back 1977), 

which shows that the thin wall theory is adequate for the estimation of average 

longitudinal and latitudinal stresses in ventricular walls: 

      ( 13 ) 

where  and  stand for the radii of curvature in the meridian and parallel directions, 

while e is the wall thickness. Since the ventricle is assumed to be an ellipsoid of 

revolution, ( , ) can be expressed as: 

 and   ( 14 ) 

Since the coupling between the fluid and the structure can be locally expressed by the 

relation , it is possible to obtain the wall radial force by integrating the radial 

stress over the segment surface: . The explicit expression can be written as:  

    ( 15 ) 

with 
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These mechanical relations provide the constitutive law of a capacitive element suitable 

to model the segment and should be connected with a hydraulic description of the blood 

in contact with the myocardial wall. 

Hydraulic activity 

Since the radial force has been computed previously, the ventricular pressure is deduced 

using the relation: 

     ( 16 ) 

where S can be easily calculated since the surface is ellipsoidal: . 

Equation ( 16 ) expresses the mechanical-hydraulic conversion and can be represented by 

a Bond Graph element called transformer (see APPENDIX A). 

The interaction between the development of force in the deformable structure and the 

variation of pressure at the surface of the wall has been defined previously. This 

description must be completed by the representation of the hydraulic behavior of the 

blood volume in contact with the wall segment to obtain the pressure characteristics from 

the wall surface ( ) to the cavity center ( ).  In fact, the fluid mass mainly brings 

inertial effects that can be defined by the law: 

      (17) 

Moreover, the blood viscosity induces frictions between the fluid and the wall of the 

vessel. This friction contributes to the resistance to flow, which is defined, in the model, 

by a hydraulic resistance R. To describe the rapid filling phases, this resistance is 

considered lower during the diastole (

€ 

Rmin ) and higher during systole (

€ 

Rmax ). A resistive 

law relates pressure and flow: 
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      (18) 

Summary of the whole-ventricle model 

The myocardial segment and the blood volume in contact with it were modelled first. The 

electrical activity of each segment is represented by a cellular automaton to give the 

electrical status and an estimation of the electro-mechanical activation that is associated 

with the mechanical model. A capacitive Bond Graph element is defined in the 

mechanical domain since the previously established relations provide a global force that 

depends on the radius. Next, the energy conversion (equation 16) can be represented by a 

transformer to connect the mechanical and hydraulic parts. Finally, an inertial effect 

associated with a resistive effect describes the hydraulic behavior of the fluid, modeling a 

radial flow (Figure 3.A). 
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A 

 

B 

 

Figure 3: (A) Bond Graph of the segment and the fluid in contact. The EMDF is connected to the 

mechanical model that is composed of two capacitive Bond Graph elements. The energy 

conversion is represented by a transformer. An inertance and a resistance describe the hydraulic 

behavior of the fluid. (B) Model of the whole ventricle including the preload (Se), the valves and 

the afterload (see APPENDIX A). The segments are connected through the hydraulic domain as 

the pressures are equal and the flow is the sum of each segment’s flow.  

 

Connections between segments must also be defined. We represent the ventricle by 

twelve cellular automata to describe the electrical propagation. An external excitation 

first stimulates the mid-septum segment. This activation allows the stimulation of the 

other segments thanks to propagation. In fact, each automaton transmits a stimulation at 

the end of the RDP period. Segments are also coupled through the hydraulic domain 

(Figure 3.B), since the total flow is the sum of the regional flows : 

       (19) 

The connections between the three layers are defined by considering the resistive 

properties of the blood inside the cavity. These relations are represented in Bond Graph 

notation by a 0-junction.  
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The preload has been modeled by a constant effort source. Parallel capacitance, 

resistance, and inertance describe the aortic obstacle and systemic arteries. The heart 

valves are represented as non-ideal diodes that correspond to modulated resistances, and 

the valvular plane is described by a constant capacitance. 

The parameters values of afterload (capacitance and inertance) have been taken from the 

literature (Ursino et al. 2000) and the constant effort source has been deduced from 

previous simulations to be equal to the venous return flow. The ventricular model 

includes parameters that describe the mechanical behavior. The values of many of these 

(c1, c2, c3, c4, c5, 

€ 

Tref , 

€ 

β , 

€ 

Ca50
n ) have been estimated in the literature (Hunter 1995; 

Chaudhry 1996) (see APPENDIX B). The ellipsoid dimensions correspond to mean 

values measured on healthy human adults: a = 2 cm et b = 4.8 cm. The myocardial wall is 

divided into 12 segments. The ventricular length is separated into three parts in order to 

have equal azimuthal angle. Each layer is divided into four parts, each of which forms an 

angle of π/2. It is possible to calculate, on each segment, the surface (S) and the radii of 

curvature to obtain coefficients , , . The other parameters values have to be 

determined by an identification algorithm, in particular, the mechanical activation period 

(

€ 

Tmax ), the maximum activation level (K) and the RDP period. The use of such an 

identification algorithm relies on the exploitation of experimental data. A protocol has 

thus been defined to measure the intra-ventricular pressure in pigs. 

 Experimental Protocol used for the Acquisition of Ventricular Pressure  

Experiments were carried out in 2002 at the Laval Hospital Research Center, Laval 

University, Quebec, on 3 pigs weighing between 36 and 48 Kg. Animal care and 

experiments were conducted in accordance with the Guidelines of the Canadian Council 

for Animal Care. The protocol was approved by the Institutional Animal Care Committee 

of Laval University. The purpose of the experimental studies was to obtain several signals 

for studying the effects of cardiac inotropy of the left ventricle on acoustical and pressure 

signals: the electrocardiogram (ECG), the intra-ventricular and the intra-myocardial 
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pressures, the thoracic, esophageal and epicardial phonocardiograms (PCGs). The 

recording of the esophageal PCG was done by the insertion of a custom-designed 

microphone into the esophagus under fluoroscopy guidance until the microphone sensor 

was located near the inferior base portion of the left ventricle. The thoracic PCG was 

recorded by placing a microphone on the thorax. In order to measure the epicardial PCG, 

a left lateral thoracotomy was performed and an accelerometer (Br �uel & Kjaer, 4374, 

0.65 grams, 1-26000 Hz) was glued to the epicardium of the left ventricular lateral wall 

close to the apex (Figure 4). The left ventricular pressure was obtained by the insertion of 

a catheter (Millar Instrument, SPR-350, 5F) through the right carotid artery. The 

acquisition of the intra-myocardial pressure was performed using a needle-type catheter 

(Millar Instrument, SPR-477, 2F)  inserted inside the myocardial wall. 

 

Figure 4 : example of open chest surgery in one animal and accelerometer position on the 

epicardium surface of the heart. 

 

The measured signals were firstly amplified (Millar Instruments,TCB-600 ; Br �uel Kjaer, 

2635) and digitized by using a data acquisition system (Axoscope). The signals were 

recorded under four different cardiac inotropic conditions: baseline condition, ischemia, 

increased LV afterload by mechanical constriction of the aorta and decreased afterload by 

injection of sodium nitroprussiate. The myocardial ischemia was caused by the 
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mechanical obstruction of blood flow in the left descending coronary artery. The 

acquisition protocol was designed to obtain signals that can be relevant for different 

studies. In this paper, attention is only focussed on the intra-ventricular pressures. 

Identification of the model parameters  

Identification algorithm 

The objective of the parameter identification is to minimize an error function defined as 

the difference between the experimental and the simulated ventricular pressure. The 

synthesized pressure is obtained by simulating the proposed model with a specific set of 

parameter values P, which is composed of the time of electrical activation, the activation 

duration and the maximum level of EMDF, for the septum, lateral, anterior and inferior 

walls. These parameter values are assumed to be the same for the three anterior segments 

and the three inferior segments. Thus, 9 parameters values must be identified and P is 

defined as P=[T_ septum, T_ ant_inf, T_lat, K_ septum, K_ ant_inf, K_lat, RDP_ septum, 

RDP_ ant_inf, RDP_lat ] 

The error function used to determine the optimal set of parameters P* among all the 

possible P is defined as the sum of the absolute values of the difference between 

experimental data and simulation, calculated for the whole cardiac cycle: 

 

where  and  represents the QRS detection instant for beat i. 

Evolutionary Algorithms (EA) have been chosen because they are particularly adapted to 

this optimization problem. In fact, the error function is not differentiable and it is 

necessary to use an algorithm that does not require to compute the derivative of the error. 

In addition, EA can be employed to find an optimal configuration for a given system 

within specific constraints because of their generic definition. 

EA are stochastic search methods inspired from the natural selection process. Each 

"individual" of a "population" is characterized by a set of parameters (or 
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“chromosomes”). In these algorithms, the set of parameters P characterizes each 

"individual" of a "population". In order to reduce the search space, parameter values were 

bounded to the physiologically plausible intervals: [300 900] for the activation duration 

(ms), [5 9] for the maximum level of EMDF (µM) and [1 150] for the electrical activation 

instants (ms). These intervals have been defined from physiological knowledge of cardiac 

behavior. 

An initial population is created, usually from a set of random “chromosomes”. The 

parameter values of a given individual are independently generated from a uniform 

distribution defined under the corresponding feasibility interval. This population will 

"evolve", improving its global performance, by means of an iterative process. Each 

iteration of an EA involves a competitive selection, by means of the "fitness" function. 

Solutions with high "fitness" values are recombined with other solutions (cross-over) and 

small, random modifications of a chromosome can also be introduced (mutation). 

Explicitly, once the error function has been evaluated for each individual, selection is 

carried out by means of the "Roulette Wheel" method, adapted for function minimization, 

in which the probability of selecting a given individual depends on the value of its error 

function, divided by the sum of all the error values of the population. Only standard 

genetic operators, defined for real-valued “chromosomes”, have been used in this work: 

"uniform crossover", which creates two new individuals (offspring) from two existing 

individuals (parents), by randomly copying each "allele" (i.e., parameter value) from one 

parent or the other, depending on a uniform random variable; and "Gaussian mutation", 

which creates a new individual by randomly changing the value of one allele (selected 

randomly), based on a Gaussian distribution around the current value. 

The convergence and robustness properties of EA depend upon adequate individual 

coding, proper definition of the fitness function and selection of appropriate genetic 

operators for crossover and mutation. The mutation operators help the EA process to 

explore the search space and prevent convergence to a local minimum. More details on 

EA can be found on  (Michalewicz 1994). 
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Robustness analysis 

In order to test the robustness of the identification method, the algorithm was repeated 

five times on the ventricular pressure signal of the first pig. Figure 5 shows boxplots of 

the 9 identified parameters: activation duration [T_ septum, T_ ant_inf, T_lat ], maximum 

level of EMDF [K_ septum, K_ ant_inf, K_lat ], and RDP periods [RDP_ septum, RDP_ 

ant_inf, RDP_lat ]. 

 

A 

 

 

B 

 

C 

 

Figure 5: Boxplot of the ten identified parameters for the pig : A) EMDF periods [T_ septum, T_ 

ant_inf, T_lat ], B) EMDF amplitudes [K_ septum, K_ ant_inf, K_lat ], and C) RDP periods 

[RDP_ septum, RDP_ ant_inf, RDP_lat ]. 

 

Parameters dispersion for the five identification processes can be observed in Figure 5, 

for the septum, the lateral and anterior walls. The parameters corresponding to the lateral 

wall are characterized by the highest dispersions. This observation is particularly true for 

the RDP parameter, which has less influence on ventricular pressure. 

Results and Discussion 

Global Hemodynamics 

Figure 6 presents the simulation of global hemodynamic variables: ventricular pressure, 

flow and volume. The simulation is based on parameter values from the literature:  i) 

cellular automata parameters were adjusted to fit electrical activation times from (Durrer 
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et al. 1970), ii) the activation duration was set to 400ms (Bovendeerd, Borsje et al. 

2006) and iii) the maximum level of EMDF is fixed at 7 µM (Kerckhoffs, Bovendeerd et 

al. 2003). 

 

Figure 6: Model simulation of ventricular hemodynamic variables for one beat: intra-ventricular 

pressure (mmHg), aortic flow (ml/s) and ventricular volume (ml). 

 

The global shapes of the generated pressure and flow signals appear realistic when 

compared with real data or those simulated from similar models (Kerckhoffs, Bovendeerd 

et al. 2003). The variation of ventricular volume reflects the pumping action of the 

cardiac model, and the pressure-volume curve is characteristic of the change of cardiac 

stiffness during the cardiac cycle. 
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Figure 7: Simulation of the left ventricular pressure and volume (PV loop) with increased afterload 

resistance (R) leading to a rise in ventricular pressure. The linearity of the end-systolic pressure 

that is characteristic of the ventricular behaviour 

 

Some parameter values can be varied to test the behaviour of the model. For example, 

Figure 7 shows that a rise of the output resistance leads to a rise in ventricular pressure. 

The afterload resistance is respectively equal to R=2.1 mmHg.s/ml, R=4 mmHg.s/ml and 

R=6 mmHg.s/ml for the first, second and third in silico experiments. This reaction is 

physiologically realistic because, in these conditions, the ventricle must develop a higher 

pressure to eject the blood in the aorta. The pressure-volume loop obtained with different 

resistances is shown in Figure 7, which illustrates the linearity of the end-systolic 

pressure characteristic of the ventricular behaviour 

Ventricular pressure 

The identification approach is applied to the intra-ventricular pressures of the 3 pigs. The 

experimental and simulated pressure signals are compared in the error function, which 



 

22 

22 

has to be minimized using EA as described before. All the identified parameters are 

summarized in the table of APPENDIX C. 

Figure 8 : Comparison between simulated pressure (black line) and experimental pressure 

(grey line) for the three pigs in stationnary conditions. 

 

Figure 8 presents the simulated and experimental pressures for the three pigs in steady-

state. The range of systolic pressure values is coherent with published values. But, it can 

also be noticed that these curves have particular wave shapes and durations. This 

observation is particularly visible during the systole (top of the curve). In fact, the 

rebound of the ventricular pressure, which can be remarked, is characteristic of the 

asynchronous activation of myocardium during cardiac contraction.  

The good adaptation of the model to experimental data can be observed and the global 

morphology of the curve is reproduced. In fact, the ventricular pressure is a variable that 

reflects the macroscopic cardiac behavior. The pressure signal is the result of the 

combination of different segments activity. It depends mainly on the electrical 

propagation and the association of the different electrical activation dynamics. So, even if 

the EMDF profile is basic, the combination of the segments variables brings a realistic 

pressure profile. 

For the steady-state conditions, the electrical activation times (TEA ) can be compared for 

the three pigs. The Bull’s eye representation is used to present the fitted parameter values 

for the twelve myocardial segments. The Bull’s eye diagram allows the description of the 

myocardial segments (Figure 9); the parameters can be easily interpreted because they 

can be compared to available data (Durrer, van Dam et al. 1970). The maximum TEA 

reaches, respectively, 96.5 ms, 139.3 ms, and 131.5 ms for the first, second, and third pig. 
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These times are particularly high for the three pigs. By comparison, the work described 

in (Durrer, van Dam et al. 1970) reports that the maximum electrical activation time is 

normally about 65 ms in human adults. 

 

Figure 9: Electrical action times (TEA) for the three pigs (ms). The maximum TEA is equal to 96.5 

ms, 139.3 ms and 131.5 ms, respectively, for the first, second and third pig. 

 

The pressure morphology is well reproduced, mainly because the model integrates a 

regional description of the myocardial behavior. Thus, these results show the 

appropriateness of the proposed model that both gives realistic simulations and explains 

the particularities of some ventricular pressures, facilitating the interpretation of 

experimental data. 

Afterload variations 

Figure 10 shows the 3 curves obtained after the identification for different afterload 

conditions. The first observation is the model’s ability to reproduce experimental data. 

Some well-known physiological phenomena are reproduced, like the rise of ventricular 

pressure with afterload. 

It is interesting to note the model adaptation to different experimental curves. The 

ventricular pressure profile is well reproduced, especially concerning the curve duration 

and the particular morphology of signals from each pig. Moreover, some discontinuities 

can be observed on some curves, for example, for the curve corresponding to afterload 1. 

These can be explained by the asynchronous activation of the different segments of the 

model, and the spatial resolution of the model. 
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Figure 10: Comparison between simulated pressure (black line) and experimental pressure (grey 

line) for the first pig with two afterload conditions. The afterload resistances, which have been 

identified, are coherent with the afterload increase. 

 

The identification returns the estimated afterload resistance values. For the afterloads 1 

and 2, the resistance value is, respectively, equal to 5.30101 mmHg.s/ml and 7.3032 

mmHg.s/ml. These parameter values are coherent with the systolic pressure rise, which 

increases with the afterload 

Model limitations 

Although the results obtained for this application are encouraging, the proposed model 

includes some limitations, due to the simplifying assumptions on the electro-mechanical 

coupling and the absence of a direct mechanical coupling between segments. The main 

consequence of the latter point is the inability of the model to reproduce ventricular 

torsion. 

Concerning the electro-mechanical coupling, it is clear that an analytic profile is not 

accurate enough to describe the complexity of calcium dynamics and this can have an 

influence on the macroscopic behavior. Although the use of such analytical driving 
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functions to represent the mean tissue-level calcium dynamics has been previously 

employed in different models, to our knowledge, there is no experimental data to validate 

or improve this kind of representation. However, it should be possible to simulate these 

mean values by aggregating a set of coupled cellular-level models accounting for intra 

and extracellular calcium dynamics, such as the one presented in (ten Tusscher, Noble et 

al. 2004). This is one of the future directions intended for our work. 

Conclusion 

The present paper proposes a new multiformalism electromechanical model of the left 

ventricle. An identification algorithm is used to define the model parameters as functions 

of experimental ventricular pressures. The simulations, obtained after adjustment of the 

parameters, show that the model effectively reproduces ventricular pressure curves. The 

model accuracy is mainly due to its structure, which takes into account a simplified 

geometry, a description of the electrical, mechanical, and hydraulic activities, a 

physiological segmentation and the possibility of representing the asynchronous electro-

mechanical activation of different ventricular segments. 

One of the advantages of the approach is the low computational cost, which facilitates 

parameter identification. In fact, the simulation of one cardiac cycle (800 ms of 

simulation), takes about 20s on a dual-core Intel Xeon 2.66Ghz; whereas a complete 

electro-mechanical model based on Finite Element (Nickerson, Smith et al. 2005) can 

take three weeks on an IBM Regatta P690 high-performance computer for 1000 ms of 

simulation. 

Although the main objective of this study is to show the similarities between simulated 

and experimental intra-ventricular pressure waveforms, the identified electro-mechanical 

parameters have also been analyzed. The robustness of the identification has been tested 

by applying the identification algorithm 5 times on the same dataset.   

The important point of this work is the validation of the model to reproduce realistic 

ventricular pressure. These preliminary results are encouraging for the application of the 
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model to non-invasive data such as arterial pressure or myocardial strain. Therefore, 

future work will focus on the validation of the modeling approach in a clinical context. 

Healthy and pathological cases could be studied to test the model-based approach for 

interpretation. Such an evaluation of the proposed model-based method should allow the 

development of new diagnostic applications to heart failure and planning assistance for 

cardiac resynchronization therapy. 
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APPENDIX A: The Bond Graph Formalism 

The Bond Graph (BG) formalism is a diagram-based method that is particularly powerful 

for representation of multi-energy systems, since it is based on the representation of 

power exchanges;  the terminology, the rules, and the construction of Bond Graph models 

are the same for all energy domains. For example, in the mechanical domain, the effort 

variable e is the force and the flow variable f is the rate; whereas, in the hydraulic domain, 

the effort variable e is the pressure and the flow variable f represents flow. The power is 

the product of the effort and the flow: P=e.f. The elements of the Bond Graph language 

can be classified as: 

Passive elements: R, C and I 

• Resistive element (R): 

The resistive element R is used to describe dissipative phenomena and can 

represent electrical resistors, dashpots or plugs in fluid lines. 

• Capacitive element (C): 

The capacitive element C is used to describe energy storage and can represent 

springs or electrical capacitors. 

• Inertial element (I): 
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The inertial element I is used to model inductance effects in electrical systems 

and mass or inertia effects in mechanical or fluid systems. 

Active elements: Se and Sf 

An effort source is an element that produces an effort independently of the flow, and a 

flow source an element that produces flow independently of the effort. 

Junction elements: 0, 1, TF, GY 

• 0 junction: 

The 0 junction is characterized by the equality of the efforts on all its links, while 

the corresponding flows sum up to zero, if power orientations are taken positive 

toward the junction.  

• 1 junction: 

1 junction is characterized by the equality of the flows on all its links, and the 

corresponding efforts sum up to zero with the same power orientations. 

• Transformer (TF): 

The transformer TF conserves power and transmits the factors of power with 

scaling defined by the transformer modulus. It can represent an ideal electrical 

transformer or a mass-less lever. 

• Gyrator (GY): 

A gyrator establishes a relationship between flow to effort and effort to flow and 

conserves power. It can represent a mechanical gyroscope or an electrical dc 

motor. 

The Bond Graph formalism can be particularly useful for modelling physiological 

systems which often include various energy domains. For example, models of the 

vascular system (LeFèvre 1999; Diaz-Zuccarini 2003) are especially interesting since 

they take into account different energy phenomena (hydraulic, mechanic, chemical…). 

 

APPENDIX B: Parameter Values 

Some model Parameters values are not determined by the identification algorithm. They 

are taken from the literature. 
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 Parameter values Source 

Preload   

Se 10 mmHg Estimated 

Afterload   

C  0.219 ml/mmHg (Ursino and Magosso 2000) 

R 2.1 mmHg.s/ml (Ursino and Magosso 2000) 

I  0.00082 mmHg.s2/ml (Ursino and Magosso 2000) 

Valve   

Rpass 0.01 mmHg.s/ml Estimated 

Rblo 100 mmHg.s/ml Estimated 

Ventricle   

Valvular Plan    

C 0.05 ml/mmHg Estimated 

Hydraulic Resistance   

T1 0.03 s Estimated 

T2 0.05*RR s Estimated 

Inertance   

I 0.0001 mmHg.s2/ml Estimated 

Geometric Parameters    

Mean fibre angle  π/12 (Streeter 1979) 

Thickness 1 cm (Streeter 1979) 

Active Capacity   

Tref 125 kPa (Hunter 1995) 

β 1.45 (Hunter 1995) 

n_ref 4.25 (Hunter 1995) 

pC50_ref 5.33 (Hunter 1995) 

B2 0.31 (Hunter 1995) 

Passive Capacity   

C1 15.188 kPa (Humphrey, Strumpf et al. 1990; Chaudhry 1996) 

C2 73.432 kPa (Humphrey, Strumpf et al. 1990; Chaudhry 1996) 

C3 1.4016 kPa (Humphrey, Strumpf et al. 1990; Chaudhry 1996) 

C4 -19.482 kPa (Humphrey, Strumpf et al. 1990; Chaudhry 1996) 

C5 18.887 kPa (Humphrey, Strumpf et al. 1990; Chaudhry 1996) 
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APPENDIX C: Identified Parameter Values 

 

 Pig 1 Pig 2 Pig 3 

 stationary Postload 1 Postload 2 stationary stationary 

K septum 11.9 µM 10.5 µM 9.1 µM 11.7 µM 12 µM 

K anterior 

inferior 

9.1 µM 9.4 µM 9.2 µM 11.6 µM 10.8 µM 

K lateral 7.5 µM 6.7 µM 6.5 µM 4 µM 5.6 µM 

T septum 583.9 ms 491 ms 502 ms 604.8 ms 833.1ms 

T anterior inferior 473.7 ms 545.6 ms 552.1 ms 436.1 ms 390.8 ms 

T lateral 998 ms 910.3 ms 809.1 ms 998.7 ms 864.2 ms 

UAP septum 5.24 ms 16.5 ms 14.8 ms 19.7221 ms 17.2 ms 

UAP anterior 

inferior 

25.17 ms 38.2 ms 24.2 ms 20.1468 ms 20.8 ms 

UAP lateral 15.57 ms 34.5 ms 30.7 ms 23.2628 ms 27.4 ms 

Postload 

Resistance 

 5.3 

mmHg.s/ml 

7.3 

mmHg.s/ml 
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