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Abstract:  Vascular endothelial-cadherin (VE-cadherin) is the major constituent of the adherens junctions of 
endothelial cells and plays a key role in angiogenesis and vascular permeability. The ectodomains EC1-4 of 
VE-cadherin are known to form hexamers in solution. To examine the mechanism of homotypic association 
of VE-cadherin, we have made a 3D reconstruction of the hexamer using electron microscopy and produced 
a homology model based on the known structure of C-cadherin EC1-5.  The hexamer consists of a trimer of 
dimers with each N-terminal EC1 module making an anti-parallel dimeric contact, and the EC4 modules 
forming extensive trimeric interactions. Each EC1-4 molecule makes a helical curve allowing some torsional 
flexibility to the edifice. While there is no direct evidence for the existence of hexamers of cadherin at 
adherens junctions, the model we have produced provides indirect evidence since it can be used to explain 
a number of disparate results for adherens junctions. It is in accord with the X-ray and electron microscopy 



results which demonstrate that the EC1 dimer is central to homotypic cadherin interaction. It provides an 
explanation for the force measurements of the interaction between opposing cadherin layers, which have 
previously been interpreted as resulting from three different interdigitating interactions. It is in accord with 
observations of native junctions by cryo-electron microscopy.  The fact that this hexameric model of VE-
cadherin can be used to explain more of the existing data on adherens junctions than any other model alone 
argues in favour of the existance of the hexamer at the adherens junction. In the context of the cell-cell 
junction these cis-trimers close to the membrane, and trans-dimers from opposing membranes, would 
increase the avidity of the bond. 
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Summary 

Vascular endothelial-cadherin (VE-cadherin) is the major constituent of the adherens 

junctions of endothelial cells and plays a key role in angiogenesis and vascular permeability. 

The ectodomains EC1-4 of VE-cadherin are known to form hexamers in solution. To examine 

the mechanism of homotypic association of VE-cadherin, we have made a 3D reconstruction 

of the hexamer using electron microscopy and produced a homology model based on the 

known structure of C-cadherin EC1-5.  The hexamer consists of a trimer of dimers with each 

N-terminal EC1 module making an anti-parallel dimeric contact, and the EC4 modules 

forming extensive trimeric interactions. Each EC1-4 molecule makes a helical curve allowing 

some torsional flexibility to the edifice. While there is no direct evidence for the existence of 

hexamers of cadherin at adherens junctions, the model we have produced provides indirect 

evidence since it can be used to explain a number of disparate results for adherens junctions. 

It is in accord with the X-ray and electron microscopy results which demonstrate that the EC1 

dimer is central to homotypic cadherin interaction. It provides an explanation for the force 

measurements of the interaction between opposing cadherin layers, which have previously 

been interpreted as resulting from three different interdigitating interactions. It is in accord 

with observations of native junctions by cryo-electron microscopy.  The fact that this 

hexameric model of VE-cadherin can be used to explain more of the existing data on adherens 

junctions than any other model alone argues in favour of the existance of the hexamer at the 

adherens junction. In the context of the cell-cell junction these cis-trimers close to the 

membrane, and trans-dimers from opposing membranes, would increase the avidity of the 

bond.  

 

Keywords: VE-cadherin; homophilic association; homology model; hexamer; electron 

microscopy;  
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Introduction 

 Cadherins constitute a superfamily of Ca++-dependent adhesive molecules that bind 

cells together via homotypic interactions 1. By promoting clustering of cells with identical 

phenotypes, cadherins play a crucial role in the elaboration of various tissues during 

embryogenesis and in the maintenance of tissue architecture. Junctions between endothelial 

cells, in particular adherens junctions, rely on the interaction of vascular endothelium (VE) 

cadherin molecules that are specifically expressed at these junctions. VE-cadherin is involved 

in the maintenance of endothelium permeability and in the control of the traffic of leukocytes 

from blood toward inflamed tissues.   

 Cadherins generally possess a modular structure consisting of five or so Ig-like 

extracellular cadherin domains, a single-pass transmembrane domain and a conserved 

cytoplasmic tail. They may be divided into subfamilies according to their sequence identity. 

Two important subfamilies are the classical type I cadherins such as N-, E-, and C-cadherin, 

and type II cadherins such as VE- MN- and OB-cadherin. Both these types have a conserved 

tryptophan (W2) at the N-terminus while the type II cadherins have an additional conserved 

tryptophan (W4).  

The molecular basis of classical type I cadherin homophilic association has been 

extensively studied. On the basis of considerable biochemical 2 and structural evidence 3, 4, 5, 

6, it is now generally believed that the first extracellular domain (EC1) determines the binding 

specificity of cadherins 7. Central to this specificity is the formation of a strand dimer which 

involves the insertion of tryptophan 2 from EC1 of one molecule into a hydrophobic pocket 

on EC1 of the adjacent molecule 3. Boggon et al. determined the structure of the entire 

ectodomain of C-cadherin 6. In this structure, the EC1 trytophan 2-mediated interface is 

involved in the maintenance of two adjoining cadherin molecules arranged in an almost-
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parallel fashion. The EC1-5 C-cadherin dimer seen in the crystal, is slightly curved with a 

length of 385 Å, and so the dimer cannot be oriented perpendicular to the membrane. It has 

been proposed that this C-cadherin dimer is oriented at an angle to the membrane to account 

for the width of the junction and a model based on tomagraphic reconstruction of freeze 

substituted desmosomes of mouse epidermis has been published 8. There is no consensus 

model for the adherens junction. Based on structural evidence, several different models for 

adherens junctions have been proposed 3, 4, 5, 6, 9, 8. They mostly involve cis-dimerisation of 

molecules from the same cell and trans-dimerisation of EC1 from opposing cells 3. The 

cadherin molecules dimerize with a very low binding affinity and it has been suggested that 

the binding specificity occurs by amplification of small differences of this low affinity 

binding by multiple cadherin interactions at the adherens junctions 10. 

The structure and mechanism of type II cadherin-mediated adhesion is less well 

characterised, however, it is thought that the overall 3-dimensional structures and the 

homophilic interactions of the type I and type II cadherins are similar, despite the low (~25%) 

sequence homology. Electron microscopy data on the extracellular fragment of murine VE-

cadherin linked to a trimeric base of cartilage matrix protein revealed interactions of the EC1 

and EC2 domains similar to type I cadherins 11. While type I cadherins generally form 

homotypic interactions, they can interact to some extent with other type I cadherins, but not 

with type II cadherins 12. The same holds true for type II cadherins 13. Also, both the 

conserved tryptophane (W2 and W4) in the type II cadherins are necessary for junction 

formation 14. Thus it is probable that the type II cadherins form a strand dimer which 

nevertheless differs from that of the type I cadherins.  

In contrast to the above structural data, surface force measurements between two 

monolayers of the complete extracellular domain of C-cadherin, and bead aggregation assays 

on C-cadherin constructs, suggest that multiple cadherin extracellular repeats mediate 
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homophilic self-association of cadherin 15, 16. The surface force measurements show three 

force maxima which have been interpreted to show that three different interdigitating 

interactions exist. Using several biophysical techniques, we demonstrated that the 

extracellular part of VE-cadherin forms hexamers in vitro. Cryo-EM of these hexamers 

revealed a hollow cigar, 233 Å long and 77 Å wide 17. No dimeric interaction between the VE 

EC1-2 or EC1-3 fragments in solution was observed while a strong interaction between the 

EC3-4 fragments was detected 18.  

Here we present a homology model of the VE-cadherin hexamer based on a 3D 

reconstruction from negatively stained EM images and the X-ray structure of C-cadherin 6. 

This model, consists of a trimer of dimers with each N-terminal EC1 module making an anti-

parallel dimeric contact and the EC4 modules forming extensive trimeric interactions. It is in 

accord with the generally held belief that an EC1 dimeric interaction is central to homotypic 

cadherin interaction. Evidence in favour of the existence of this hexameric architecture in vivo 

at the adherens junction is examined. This model is used to explain the results of surface force 

measurements  15, 16  and also to explain the width and striated appearance of recent cryo-

electron microscopy of vitreous sections (CEMOVIS) of human skin desmosomes 19. 

 

Results 

Structure of the VE-EC1-4 hexamer 

Electron micrographs of negatively stained VE-EC1-4 reveal an oligomer in the form of a 

hollow cigar 233 Å long and 77 Å wide (Figure1(a)) 17. End-on views in negative stain are 

occasionally seen in the form of an annulus of 70-80 Å diameter (Figure 1(a)).  All the single 

particle image analysis was performed using SPIDER 20  (Figure 1(b), (c)). The VE-EC1-4 is 

adsorbed to the carbon with a preferred orientation as seen in Figure 1(e). This is an 

orientation midway between the 2-fold axes. There is a ratio of 10 to 1 for images in this 
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orientation and images down the 2-fold axis (Figure 1(d)).  We note the similarity of this 2-

fold projection and the averaged image of the hexamer obtained from cryo-electron 

micrographs of small 2D arrays 21.  

 Four distinct regions of density are apparent per asymmetric unit in the reconstruction 

of the VE-EC1-4 oligomer (Figure 2(a), (b) and (c)). Each domain can be interpreted as an Ig-

like cadherin module 45 Å long and 25 Å wide.  This produces a hexameric model in accord 

with our previous biochemical and biophysical studies 18 which showed that VE-EC1-4 forms 

a hexamer in solution. The attribution of modules to the four regions of density is 

unambiguous since the histag on EC4 of the VE-EC1-4-his hexamer binds to a functionalized 

membrane 22,21 and the modules must be linked to each other in succession.  

Fit of a homology model of VE cadherin 

Although little is known about the atomic structure of type II cadherins, they are generally 

supposed to have a similar structure to the type I cadherins 23. In particular, the first 4 

ectodomains of C-cadherin and VE-cadherin have a homology of only 26%. Nevertheless, a 

homology model of VE-EC1-4 was predicted based on the crystal structure of C-cadherin 6. 

We note that May et al., also used a homology model based on the C-cadherin structure to 

interpret their data 14.  

 The reconstructed map of VE-EC1-4, at 24-Å resolution, allows the homology model 

of each VE-cadherin module to be positioned visually (Figure 2(d)-(l)). But, there is not 

sufficient detail to determine the rotational orientation of each module about its long axis 

(Figure 2(d)-(l)). However, if we suppose that the EC1 dimer, seen in the hexamer, is formed 

by the exchange of N-terminal Trytophans (W2 and/or W4), as for type I cadherins, then each 

EC1 must be oriented with its N-terminal strand facing its neighbour (Figure 2(l)). 

 The hand of the reconstruction has not been determined, but, can be deduced when 

information concerning the transiently exposed VE-cadherin epitopes on EC1, as described by 
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May and colleagues 14, are also incorporated into the model. Assuming that the hexamer is 

indeed the oligomer found in native junctions, then the N-terminus of EC1, which contains 

the epitope of a mAb which is hidden in the intact junction, must be hidden in the hexamer. 

This condition is already satisfied since we have positioned the N-termini at the EC1-EC1 

interface (purple, Figure 2(k)). In addition, the epitope on EC1, which lies within amino acids 

45 to 56 14, must be accessible on the hexamer (yellow, Figure 2(k)). This is only the case for 

the reconstruction with the hand as shown. For the opposite hand, the amino acids 45 to 56 

face towards the centre of the hexamer and so would be inaccessible to antibodies. 

The density of EC2 is lower than for the other modules. A partial explanation for this 

may be that the molecule has a torsional flexibility and can unwind to some degree. EC2 may 

move more than the other modules, at least in rotation. Also, EC2 may be affected by 

interactions with the carbon film. EC2 lies close to EC1 of the neighbouring three-fold related 

VE-EC1-4 molecule (cis conformation) and so may interact with EC1 (Figure 2(l)). This is 

reminiscent of to the EC1-2 cis-dimer interaction seen in the crystal structure of C-cadherin  6. 

However, it is clear that the model we have produced cannot give precise interactions between 

amino acids. 

 The EC4 modules have extensive trimeric interactions and indeed are the only 

modules to have such an interaction. EC4 apparently interacts with EC3 on the neighbouring 

VE-EC1-4.  EC1 interacts to form anti-parallel dimers and is the only module to display a 

trans-dimeric interaction. One full length VE-EC1-4 molecule is estimated to be about 180 Å 

long, but, since each VE-EC1-4 molecule curves around in a spiral the total length of the 

hexamer is 230 Å.  

 

Discussion 

The EC1 dimer interaction 
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 The model we present here for the VE-EC1-4 hexamer consists of a trimer of dimers 

with each N-terminal EC1 module making a dimeric contact and the EC4 modules forming 

extensive trimeric interactions. This model is in accord with the generally held belief that an 

EC1 dimeric interaction is central to homotypic cadherin interaction. The EC1 modules form 

an anti-parallel dimer. This is a conformation not seen in the crystal structures of type I 

cadherins. However, this does not preclude the possibility that the dimer is formed by the 

exchange of the tryptophan(s) of N-terminal strands as for the type I cadherins. Given that the 

type II cadherins have two conserved tryptophan (W2 and W4), both of which are required for 

homotypic interaction of VE-cadherin 14, and type I cadherins have only one conserved 

tryptophan, it is highly probable that there are differences in the orientation of the EC1 

interaction. Also type I cadherins can interact to a certain extent with other type I cadherins 

but not with type II cadherins 24. This argues in favour of differences in the cadherin type I 

and type II interactions. There are differences in the dimeric interactions of EC1 of type I 

cadherins (C- N- and E-cadherin) seen by X-ray crystallography  6,3,4,5 and it is evident that 

the N-terminal strand of EC1 can adopt different conformations. The cis-dimer of VE EC1-4 

seen in 2D arrays attached to an isolated monolayer 22 appears to be a parallel EC1 dimer and 

thus differs from the dimer seen here. It is possible that VE-cadherin adopts the compact 

dimer conformation at the surface of an isolated cell for protection from degradation and only 

forms the hexamer at the cell-cell junction. 

 In EM studies of VE-cadherin Engel and colleagues 11 demonstrated the dimerisation 

of the ectodomains VE-EC1-5 via EC1 and/or EC2. VE-EC1-5 was connected by linker 

sequences to the N terminus of the trimeric cartilage matrix protein (CMP). This means that 

the "local" concentration of VE-EC1-5 at each CMP is very high. Dimers of VE-EC1-5 were 

seen as rings on the same CMP (cis-dimer), and at higher Ca++ concentration double rings, or 

trans-dimers, were visible, but it is of note that no dimers were seen to form directly between 



 9

VE-EC1-5 from different CMP. These results indicate that the dimeric interaction only occurs 

at high concentration, or when more than one dimeric interaction can occur (cooperativity).  

These results help to explain the apparent lack of dimer formation of our isolated VE-EC1-4 

fragment in solution 18, but the formation of dimeric interactions in the hexamer where the 

cooperative effect of multiple dimeric interactions is present. Only at high VE-EC1-4-His 

concentration at the lipid monolayer did we see dimer formation 22. Engel and colleagues did 

not see any hexamers. It is quite possible that the VE-EC1-5 grafted to CMP is not 

rotationally free to form trimers via the EC4 module and so cannot form hexamers.  

Alternative explanation of force measurement between cadherin extracellular domains 

In contrast to most data on cadherin interactions, surface force experiments have been 

interpreted as showing that several EC domains are involved in the homotypic interaction 9,25. 

In these experiments the extra-cellular domains of C-cadherin are bound to opposing surfaces 

via a C-terminal 6-His tag. The force between these cadherin-covered surfaces is measured as 

they are brought together and then separated.  At three discreet distances force maxima are 

observed and have been interpreted to indicate that different cadherin modules contribute to 

adhesion with the formation of inter-digitating structures in three different overlapping 

conformations at inter membrane separations of 250, 320 and 400 Å. The hexameric model 

we present here provides an alternative explanation for these results, supposing that the C-

cadherin also forms hexamers. As the surfaces are pulled apart we suppose that first one 

dimeric bond per hexamer is broken and the molecule unwinds slightly, similarly for the 

second and finally rupture of the interface occurs when the third dimer is broken. In a 

previous study designed to explore the role of each VE-EC domain in the formation of the 

VE-cadherin interaction we found a strong interaction between the EC3-4 fragments but 

found no interaction between the EC1-2 and the EC1-3 fragments. As described above we 

suppose that the dimer interaction is very weak and only forms in the context of the hexamer 

Deleted:  
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where the cooperative effect of multiple dimer interactions is present. It is of note that the 

model proposed here with a cis-trimer of trans-dimers gives a stronger bond due to co-

operativity. In this model the EC4-EC4 interaction plays an important role in strengthening 

the cell-cell bond. This is in accord with previous work which demonstrated the importance of 

modules, other than EC1, in the formation of the cadherin bond 26, 12. 

Does the hexamer exist in vivo? 

 Cryo-electron microscopy of vitreous sections (CEMOVIS) is currently the best 

method of observing sections of tissue in their fully hydrated native state 27. The images 

display more detail and a better resolution than electron micrographs of conventionally 

prepared sections where dehydration can cause aggregation and distortion of the specimen. 

The micrographs of CEMOVIS of human skin desmosomes 19  reveal the cadherin junction to 

be 290 Å wide and show strands roughly perpendicular to the membrane with a repeat 

distance of the order of 50 Å with a darker band at the mid line. This shows remarkable 

resemblance to the artificial adherens junctions formed by the VE-EC1-4-His hexamer at the 

surfaces of liposomes and observed by cryo-EM 21.  These artificial junctions are 230 Å wide 

(the length of the hexamer) and display 40 Å striations roughly perpendicular to the 

membrane. We suppose that the EC5 module continues the spiral in the native junction. Five 

cadherin modules laid out straight are roughly 225 Å long, so two cadherin ectodomains end 

to end measure 450 Å, which is much greater than the width of an adherens junction. The 

hexameric model composed of highly curved cadherin molecules, which nevertheless appears 

to have parallel strands when viewed side-on, provides an explanation for both the width and 

the striations of the junction seen by CEMOVIS.   

 The different cadherins may or may not form junctions with the same architecture.  

The hexamer model described here can explain much of the existing data on cadherin 

interactions in general and so may be a common motive. However, direct evidence of the 
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existence of the hexamer at the adherens junction is lacking. A tomographic reconstruction of 

an adherens junction seen by CEMOVIS would help to resolve this question. 

 

Materials and mothods 

Expression and purification of the recombinant fragment VE-EC1-4 

Expression and purification of the recombinant fragment VE-EC1-4 was carried out as 

described 18. 

Electron microscopy and image analysis 

Samples of VE-EC1-4 negatively stained with 2% (w/v) uranyl acetate were examined using a 

Philips CM12 electron microscope equipped with a LaB6 filament operating at 120 kV. The 

micrographs were recorded under low dose conditions (<20 electrons/Å2) at a nominal 

magnification of 45,000X. Micrographs were selected for image quality and then digitized 

using a Zeiss SCAI scanner with a 14µm step size which corresponds to a nominal pixel size 

of 3.21 Å.  Six micrographs with a defocus such that the first zero of the CTF was beyond 22 

Å were analyzed. Images of individual particles were selected with x3d2 and the subsequent 

image analysis was made with the program suite SPIDER 20. A total of 1350 particles were 

selected, and were normalized to the same mean and standard deviation, without CTF 

correction, with SPIDER.  Ten different starting models were generated from single images or 

from a reference free class average, with a symmetry axis imposed along the long axis. Two- 

three- and four-fold symmetry axes were tested but only the 3-fold axis produced an 

interpretable reconstruction. Additional 2-fold axes were apparent on the equatorial plane and 

were subsequently introduced to give D3 symmetry. The resolution was determined by 

Fourier shell correlation (50 % value) to be 24 Å. 

Homology modelling of VE EC1-4  
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A homology model for the first 4 modules of VE-cadherin, based on the structure of the C-

cadherin EC1-5 6, was generated using the program modeller 28. The sequence alignment was 

made using CLUSTAL 29 . The homology model of each VE cadherin module was positioned 

visually in the reconstructed map of VE-EC1-4 map using "O" 30. 

Figures 1(b)-(f) were made using SPIDER 20. Figures 2(a)-(c) were produced using Amira 

(Mercury Computer Systems Courtaboeuf, France), and Figures 2(d)-(l) were made with 

PyMOL (http://pymol.sourceforge.net/) 
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Figure Captions 

Figure 1: Electron micrographs of VE-EC1-4 negatively stained with 2% uranyl acetate.  

(a). Side views.  INSET End-on views. The scale bar represents 200 Å. 

(b) shows characteristic averaged images and (c) shows the corresponding projections of the 

VE-EC1-4 hexamer reconstruction. (d) is an enlarged projection down a 2-fold axis, (e) is a 

projection mid-way between two 2-fold axes and (f) shows an end-on projection.  

 

Figure 2: Surface representations of the VE-EC1-4 hexamer.  

(a) is a view down a 2-fold axis, (b) is in an arbitrary orientation and (c) is a top view. 

(d) Stereo view down a 2-fold axis of the homology model with the VE-EC1-4 dimers 

represented in violet, light-green and light-blue. 

(e) to (l) represent the fit of the VE-EC1-4 homology model in the reconstructed hexamer. 

EC1 (red), EC2 (green), EC3 (cyan) and EC4 (blue) are coloured as indicated. (e) is a stereo 
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view midway between two 2-fold axes showing the fit of one dimer of VE-EC1-4. In (f) all 

six VE EC1-4 molecules are present. (g), (h), (i), and (j) are views down the long axis of thick 

sections each chosen to include only one EC module. (k) is a closer view of the EC1-EC1 

dimer showing the N-terminal epitope (residues 4-10, purple) and the epitope (residues 45-56, 

yellow)14. In (l) a cis-dimer interaction between EC1-EC2 on neighbouring VE-EC1-4 

molecules is indicated by an asterisk. Note the similarity with the same EC1-EC2 dimer 

interaction seen in the C-cadherin crystal structure  6.  
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