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Abstract

Nonlinear mixed effect models (NLMEM) with multiple responses are increasingly

used in pharmacometrics, one of the main examples being the joint analysis of the

pharmacokinetics (PK) and pharmacodynamics (PD) of a drug. Efficient tools for

design evaluation and optimisation in NLMEM are necessary. The R functions PFIM

1.2 and PFIMOPT 1.0 were proposed for these purposes, but accommodate only single

response models. The methodology used is based on the Fisher information matrix,

developed using a linearisation of the model. In this paper, we present an extended

version, PFIM 3.0, dedicated to both design evaluation and optimisation for multiple

response models, using a similar method as for single response models. In addition to

handling multiple response models, several features have been integrated into PFIM 3.0

for model specification and optimisation. The extension includes a library of classical

analytical pharmacokinetics models and allows the user to describe more complex

models using differential equations. Regarding the optimisation algorithm, an

alternative to the Simplex algorithm has been implemented, the Fedorov-Wynn

algorithm to optimise more practical D-optimal design. Indeed, this algorithm optimises

design among a set of sampling times specified by the user. This R function is freely

available at www.pfim.biostat.fr. The efficiency of this approach and the simplicity of

use of PFIM 3.0 are illustrated with a real example of the joint PKPD analysis of

warfarin, an oral anticoagulant, with a model defined by ordinary differential equations.

Key words: Fisher information matrix; nonlinear mixed effect models; multiple

response models; optimal designs; D-optimality; PFIM.
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1. Introduction

Nonlinear mixed effect models (NLMEMs) are increasingly used for the analysis of

longitudinal data describing a biological process. They allow the estimation of the mean value

of parameters in population studies and their inter-individual variability. They are also used

for the joint modelling of several biological responses, such as the joint analysis of

pharmacokinetic (PK) and pharmacodynamic (PD) data [1]. Pharmacokinetics deals with the

time-course of drug concentration, whereas pharmacodynamics refers to the time-course of

drug action in the body. In pharmacometrics, analysis through a NLMEM is called the

population approach. To estimate parameters in NLMEMs, maximum likelihood estimation is

used primarily, although the likelihood for these models has no analytical solution. Specific

algorithms, implemented in several software packages, have therefore been proposed to

perform this maximisation [2].

Before the estimation step, the investigator of a study is confronted with the choice of the

design which is crucial for an efficient estimation of model parameters. A design in NLMEM,

also called a population design, is composed of the number of elementary designs (or groups)

and the specification of each elementary design and the associated number of subjects. In this

setting, the term elementary design is used to describe a collection of subjects that have

identical design characteristics defined by the number of sampling times and their allocation

in time. To evaluate and compare population designs, a statistical approach based on the

theory of optimum experimental design in classical nonlinear models and described for

instance by Atkinson and Donev [3] or by Walter and Pronzato [4] has been extended to

NLMEMs. This theory is based on the Fisher information matrix, whose inverse, according to

the Cramer-Rao inequality, is the lower bound of the variance covariance matrix of any

unbiased estimators of the parameters. Due to the lack of an analytical expression for the

likelihood in NLMEM, an exact expression of the Fisher information matrix cannot be
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defined. That is why an expression based on a linearisation of the model around the

expectation of random effects has been proposed by Mentré et al. [5] and extended by Retout

and Mentré [6] in the context of a single response model. The usefulness of this approach has

been demonstrated, both by simulation [7, 8] and in real pharmacokinetic studies [9, 10]. To

make the procedure more accessible to investigators, the approximate expression of the Fisher

information matrix has been implemented in the R function PFIM 1.2, which can be used for

design evaluation and comparison [11].

Regarding optimisation, two approaches can be used, either the optimisation of exact

designs or of statistical designs. In the case of optimisation of exact designs, the group

structure of the design is fixed: the number of elementary designs, the number of samples per

design and the number of subjects per elementary design are given and the design variables

used to optimise are only the sampling times. Optimisation of statistical designs consists in

optimising both the allocation of the sampling times and the whole group structure, that is to

say the number of elementary designs, the number of samples per elementary designs and the

proportion of subjects in each elementary design. An exact design is then derived by rounding

off the proportion of subjects in each elementary design. Optimisation based on the D-

optimality criterion has been implemented in the R function PFIMOPT 1.0 [12], where the

optimal design is the one that maximises the determinant of the Fisher information matrix. In

PFIMOPT 1.0, both exact or statistical optimisation can be performed using the general

Simplex algorithm [13]. It optimises the sampling times in given continuous intervals.

The main limitation of PFIM 1.2 and PFIMOPT 1.0 is that both aim at evaluating and

optimising population designs only for single response models. Moreover, the model had to

be written using an analytic expression and thus the need to use more complex models is

limited. Regarding optimisation, the Simplex algorithm is a general optimisation algorithm.

However, even if its applicability has been shown in pharmacokinetic examples [8], when
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there are a large number of parameters to optimise, or when the model is complex, it could

have difficulties in converging towards the optimal design and should sometimes be run again

using the optimised design as a new initial design.

Recently, the expression for the Fisher information matrix has been extended in the

context of a joint estimation of a set of parameters from multiple responses using the same

linearisation as for single response [14-16]. In that context, some parameters can be included

in several responses, as for instance in a classical PKPD model with the PD response

depending on the PK parameters That joined estimation is then more informative, obtaining

information on the PK parameters from both PK and PD responses. However, it increases the

complexity of the computation of the Fisher information matrix compared to its computation

for each response (single response). The relevance of the use of this approximation of the

Fisher information matrix for that multiple response NLMEM context has been shown by

Bazzoli et al. [14] through simulation of a PKPD model; results were very similar to those

obtained from a more exact computation of the information matrix, without any linearization,

using stochastic approximation through the SAEM algorithm of MONOLIX [17].

This expression has been implemented in PFIM 3.0, an extension of PFIM to handle both

design evaluation and optimisation in NLMEMs with multiple responses. The extension

includes a library of classical analytical pharmacokinetics models and allows more complex

models to be described using a system of differential equations. Regarding the optimisation

step, an alternative to the Simplex has been added in PFIM 3.0, the Fedorov-Wynn algorithm.

It is a specific design optimisation algorithm implemented in PFIM 3.0 for statistical

optimisation [5, 18] which has the property of converging towards the D-optimal design.

The aim of this paper is to present PFIM 3.0. In section 2, we present a nonlinear mixed

effect multiple response design and model and the expression of the population Fisher

information matrix for multiple responses. Then, the structure of PFIM 3.0 and the description
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of its features and use are presented in Section 3. Lastly, an example of the use of PFIM 3.0 to

design a new trial for the joint analysis of the pharmacokinetics and pharmacodynamics of

warfarin, an oral anticoagulant, is provided in Section 4.

2. Statistical methods

a. Nonlinear mixed effect multiple response design and model

A design for NLMEM, i.e. a population design, is composed of N individuals to whom

we allocate an “elementary” design iξ , 1, ,= �i N . Each elementary design is defined by a

number
i

n of sampling times and their allocation in time. A population design is therefore

described by N elementary designs :

{ }1, ,Ξ = � Nξ ξ (1)

leading to a total number n of observations.

In the case of a multiple response model, an elementary design for one individual i is

composed of several sub-designs, i.e ( )1 2, , ,i i i iKξ ξ ξ ξ= � , where
ik

ξ is the design associated

with the th
k response, k = 1, …, K.

ik
ξ is defined by ( )1 2, , ,

ikik ik ikn
t t t� , the vector of the

ikn

sampling times for the observations of the th
k response, so that

1

K

i ik

k

n n
=

=� .

Usually, population designs are composed of a limited number Q of groups of

individuals. Each group is defined by an elementary design
qξ , 1, ,= �q Q , which is

composed, for the th
k response, of

qk
n sampling times ( )1 2, , ,

qkqk qk qknt t t� to be performed on

a number
qN of individuals. The population design can then be noted as follows:

[ ] [ ]{ }1 1 2 2, ; , ; ; ,Q QN N Nξ ξ ξ� �Ξ = � �� (2)
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A nonlinear mixed effects multiple response model or a multiple response population

model is defined as follows. The vector of observations
i

Y for the i
th

individual is defined as

the vector of the K different responses:

1 1, , ,
T

T T T

i i i iKY y y y� �= � �� (3)

where
ik

y , 1, ,k K= � , is the vector of observations for the k
th

response. Each of these

responses is associated with a known function fk which defines the nonlinear structural

model. The K functions fk can be grouped in a vector of multiple response models F, such as:

( ) ( ) ( )1 1 2 2( , ) , , , , , ,
T

T T T

i i i i i i K i iKF f f fθ ξ θ ξ θ ξ θ ξ� �=
� �� �

� (4)

where iθ is the vector of all the individual parameters needed for all the response models for

individual i. The vector of individual parameters iθ depends on �, the p-vector of the fixed

effects parameters and on
i

b the vector of the p random effects for individual i. The relation

between
i

θ and ( ), ibβ is modelled by a function g , ( ),i ig bθ β= , which is usually additive,

so that = +i ibθ β , or exponential so that ( )exp=i ibθ β . It is assumed that
i

b ∼ ( )0,N Ω with

Ω defined as a p p× -diagonal matrix, each diagonal element 2

r
ω , 1, ,r p= �

, representing

the variance of the th
r component of the vector bi. We consider here only the case of a

diagonal Ω matrix with no correlation between the random effects.

The statistical model is thus given by:

( )( ), ,
i i i i

Y F g bβ ξ ε= + (5)

where
i

ε is the vector composed of the K vectors of residual errors
ik

ε , 1, ,k K= � ,

associated with the K responses. We also suppose
ik

ε ∼ ( )0,
ik

N Σ with
ikΣ a

ik ikn n× -diagonal

matrix such that
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( ) ( )( )( )
2

int int, , , , , ,
ik i erk slopek ik erk slopek k i ik

b diag f g bβ σ σ ξ σ σ β ξΣ = + (6)

where
int erkσ and slopekσ qualify the model for the variance of the residual error of the

th
k response. The case 0slopekσ = returns a homoscedastic error model, whereas the case

int 0
erk

σ = returns a constant coefficient of variation error model. The general case where the

two parameters differ from 0 is called a combined error model. We then note

( )int, , , ,i i er slope ibβ σ σ ξΣ the variance of
i

ε , over the K responses, such that
i

Σ is a
i i

n n× -

diagonal matrix composed of each diagonal element of
ikΣ with 1, ,k K= � .

slope
σ and

int er
σ

are two vectors of the K components
int erk

σ and slopekσ , 1, , ,k K= � respectively. Finally,

depending on the value of bi, we assume that the errors iε are independently distributed.

Let � be the vector of population parameters to be estimated, i.e.

2 2

1 int( , , , , , )T T T T

p er slopeβ ω ω σ σΨ = � and let � be the vector of variance

terms
2 2

1 int( , , , , )T T T

p er slopeλ ω ω σ σ= � , so that ( ),T T Tβ λΨ = .

b. Fisher information matrix

The population Fisher information matrix ( ),Ψ Ξ
F

M for multiple response models with

the population design ΞΞΞΞ is given by:

( )
( )2 ,

,
� 	∂ Ψ

Ψ Ξ = −
 �
∂Ψ ∂Ψ� 

F T

L Y
M E (7)

where ( ),ΨL Y is the log-likelihood of the vector of the whole observations Y for the

population parameters �.

Assuming independence across individuals, this log-likelihood can be defined as the

sum of the log-likelihoods of the vectors of observations for each individual:
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( ) ( )
1

, ,
=

Ψ = Ψ�
N

i

i

L Y L Y . Therefore, taking the second derivatives, the population Fisher

information matrix for N individuals can also be defined as the sum of the N elementary

information matrices ( ),Ψ
F i

M ξ computed for each individual i:

( ) ( )
1

, ,
=

Ψ Ξ = Ψ�
N

F F i

i

M M ξ (8)

In the case of a limited number Q of groups, it is expressed as:

( ) ( )
1

, ,
Q

F q F q

q

M N M ξ
=

Ψ Ξ = Ψ� (9)

The expression of an elementary Fisher information matrix for multiple responses has been

described in Bazzoli et al. [14] where further details are given. For the sake of simplicity, we

have omitted the index i for the individual in the following. The Fisher information matrix is

a block matrix depending on the approximated marginal expectation E and variance V of the

observations.

( )
( ) ( )
( ) ( )

, ,1
,

, ,2
F T

A E V C E V
M

C E V B E V
ξ

� 	
Ψ ≅ 
 �

� 
(10)

where

1 1 1( ( , )) 2 ( )
T

ml

m l l m

E E V V
A E V V tr V V

β β β β
− − −∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂

with m and 1, ,l p= �

1 1( ( , )) ( )ml

m l

V V
B E V tr V V

λ λ
− −∂ ∂

=
∂ ∂

with m and ( )1, ,diml λ= �

1 1( ( , )) ( )ml

l m

V V
C E V tr V V

λ β
− −∂ ∂

=
∂ ∂

with ( )1, ,diml λ= � and 1, ,m p= �
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Note that in this work, we consider that the variance of the observations with respect to the

mean parameters is constant, i.e. ( , ) 0
ml

C E V = and 1( , ) 2 −∂ ∂
=

∂ ∂

T

ml

m l

E E
A E V V

β β
.

3. Implementation of PFIM 3.0 using R software

The development of the population Fisher information matrix described previously has

been implemented in an extension of the R function PFIM: PFIM 3.0. It allows a design

evaluation and optimisation of multiple response population models. PFIM 3.0 can be used

for single response models instead of the previous version PFIM 1.2 or PFIMOPT 1.0. In

addition to the extension for multiple response models, options have been added for model

specification and for design optimisation. The free statistical R software (R 2.4.1 and higher

versions) [19] (http://cran.r-project.org/) is required to use PFIM 3.0. This function is freely

available on the PFIM website http://www.pfim.biostat.fr as well as an extensive

documentation and some examples to use it.

a. Model specification

In PFIM 3.0, the model has to be entered in a model file called by default model.r. It must

be specified by the user either in its analytical form or by using a system of differential

equations. This extension to a system of differential equations requires the use of the lsoda

function included in the library “odesolve” implemented by Setzer to solve the system [20]

and the fdHess function included in the library “nlme” developed by Pinheiro and Bates [21]

for numerical derivatives. The lsoda function uses a function of the same name written in

Fortran by Petzold and Hindmarsh [22, 23]. This function solves a system of differential
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equations using the Adams method, a predictor–corrector method for non-stiff systems; it uses

the BDF (Backward Differentiation Formula) for stiff systems. Regarding the function

fdHess, it evaluates an approximate gradient of a scalar function using finite differences.

Moreover, a library of standard PK models has been added. Twelve PK models are

included: one or two compartment models, with first order oral, bolus or infusion

administration and after a single dose, multiple doses or steady-state. Only models with first

order elimination are presently available in the library of PFIM 3.0. Currently, there are no

models with lag time. A list of the models and their characteristics included in the library is

given in Table 1.

b. Optimisation algorithms

An alternative to the Simplex algorithm has been added in PFIM 3.0, the Fedorov-Wynn

algorithm. It is specifically dedicated to design optimisation problems and has the property of

convergence towards the D-optimal design [5, 24, 25]. It optimises statistical designs (i.e the

group structure, the number of samples per subject and the sampling times) for a given total

number of samples. Minimum and maximum number of samples per subject are specified. To

optimise the design, it considers only a set of possible sampling times defined by the user.

This can be an advantage in clinical practice to avoid unfeasible sampling times. Design

optimisation can be constrained to the same sampling times across responses or not. It is also

possible to give each elementary design sampling times from a different set of finite sampling

times. For instance, it is possible to specify that each elementary design should include two

points among a first set of sampling times (for instance Day 1) and a third point among a

second set of sampling times (for instance Day 2). The user therefore specifies a list of

sampling windows, and for each window, the set of possible sampling times and the miminum

and maximum number of sampling times within that window. The Fedorov-Wynn algorithm
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is programmed in C code and is linked to PFIM 3.0 through a dynamic library. Moreover,

PFIM 3.0 uses the function combn in the R package “combinat” to generate all possible

elementary designs from the set of pre-specified sampling times. To start the algorithm, an

initial population design is required.

c. Input file

The inputs to PFIM 3.0 are entered in R objects by filling in one input file called by

default stdin.r. The same function PFIM 3.0 is used for the evaluation and optimisation of

population designs, which is why the user has to notify it in the input file in a specific R

object. Then, this input file is composed of two main sections of R objects. The first one is

composed of general R objects required for evaluation and optimisation such as the model

form (analytical or differential equation system), the parameterisation of the structural model,

the type of inter-individual random effect model (additive or exponential), values of int er
σ

and
slope

σ for the variance error model and a priori values of the fixed effect parameters and

variance parameters. The user also specifies the population design to evaluate or, for

optimisation, an initial population design. They are defined as a group of elementary designs

each one associated with a number of subjects. The second section is dedicated to design

optimisation where the specific objects are algorithm options. First, the user specifies if the

same sampling times are required for each response or not. Then, the algorithm is chosen

(Simplex or Fedorov-Wynn). If the Fedorov-Wynn is required, the user must provide the

following information: the number of sampling windows, the list of the allowed sampling

times for each sampling window, the list of the number of allowed sampling times for each

sampling window, the maximum and minimum total number of sampling times per subject.
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Graphical representations are provided automatically if graph objects are completed. Once

the model file and the input file are filled in, the user can run the function PFIM 3.0 by calling

the function in the R Console window: PFIM ( ).

d. Output file

The results are written to an output file named by default stdout.r or with a name

specified in the input file. PFIM 3.0 returns a summary of the input, the population design

evaluated or optimised, the associated population Fisher information matrix, the standard

error expected on each parameter, the corresponding coefficient of variation (%), its

determinant and a criterion Φ defined as the determinant standardized by the dimension of

the vector Ψ : ( ) ( )( ) ( )
1

dimdet ,
F

M Ψ� �Φ Ξ = Ψ Ξ� � . When design optimisation is performed, the

list of the algorithm options is also specified in the output file. For instance, for the Fedorov-

Wynn algorithm, the set of allowed sampling times, the number of sampling times, the

maximum and the minimum number of points for each response are returned. The optimised

design is reported with the proportion of subjects optimised by the Fedorov-Wynn algorithm

and their absolute number. If a graph has been supplied in the input file, the mean profile of

each response and the associated sampling times of the evaluated or optimised design are

represented on an R graph.

4. Illustration of design for PKPD of warfarin

We aim to illustrate the use of PFIM 3.0 for the joint PKPD modelling of the time course of

total racemic warfarin plasma concentrations and effect on prothrombin complex activity

(PCA), by designing a new trial for this joint population analysis.

To do this, we use an example extracted from a classical pharmacology study published 40

years ago, by O’Reilly et al. [26, 27] on the pharmacokinetics and pharmacodynamics of
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warfarin. Previously, these data have been fitted by Holford for the analysis of the dose-effect

relationship of warfarin [28] using nonlinear mixed effects models. This example was

presented in [29] but using different constraints in the optimisation step.

a. Population design and model

Warfarin is administered by a single oral dose of 100 mg. A one compartment model with

first order absorption and elimination adequately describes the concentration data (PK). The

PCA effect is described by a turnover model with inhibition of the input (PD). The model can

be written as a system of ordinary differential equations:

( )
( )

,
,

− ⋅= ⋅ ⋅ − ⋅ak tPK PK

a PK PK

df t CL
k D e f t

dt V

θ
θ (11)

( ) ( )
( )

( )
50

, ,
1 ,

,

� 	
= − − ⋅
 �
 �+� 

PD PD PK PK

in out PD PD

PK PK

df t f t
R k f t

dt IC f t

θ θ
θ

θ
(12)

where fPK and fPD are respectively the warfarin plasma concentrations and effect model and

PK
θ and

PD
θ the parameters needed for each response. D is the dose of warfarin. The vector

of the PK parameters is ( ), ,
T

PK a
k CL Vθ = with

a
k the absorption constant, CL the apparent

clearance and V the apparent volume of distribution. PCA is controlled by the rate of input Rin

and the output rate constant kout of the response, and its baseline value is given by the ratio of

those parameters
in out

R k . The vector of PD parameters is thus defined by

( )50, ,
T

PD in out
R IC kθ = where 50IC is the drug concentration which produces 50% of

maximum inhibition achieved at the effect site.

The inter-individual random effects are assumed to be exponential for all parameters. We

associate a proportional error for the PK model and an additive error for the PD model

characterised by the parameters
slopePK

σ and int erPD
σ . Thus, the vector of population
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parameters Ψ is described by the vector of fixed effects ( )
50

, , , , ,
a in out

T

k CL V R IC kβ β β β β β β= and

by Tλ the vector composed of the variance of the random effects and of the parameters for the

error models such that ( )
50

2 2 2 2 2 2

int, , , , , , ,
a in out

T

k CL V R IC k slopePK erPDλ ω ω ω ω ω ω σ σ= .

Values of the parameters are those obtained by Holford performing the simultaneous

PKPD population analysis of warfarin. The population parameters were estimated by

maximum likelihood, with the NONMEM software [30]. They are given in Table 2.

b. Design optimisation for a new study

Using PFIM3.0, we first evaluate the design used in the previous study to determine the

joint population PKPD model. We call this design the “empirical design” denoted
emp

Ξ . It

involves one group of 32 healthy volunteers, with 13 sampling times at 0.5, 1, 2, 3, 6, 9, 12,

24, 36, 48, 72, 96, 120 hours for warfarin concentration measurements and 8 sampling times

at 0, 24, 36, 48, 72, 96, 120, 144 hours for PCA measurement.
emp

Ξ thus has a total of 672

measurements.

We then optimise two population designs under several constraints using the Fedorov-

Wynn algorithm implemented in PFIM 3.0. To do that, we first optimise a population design

_opt iden
Ξ with only four sampling times per elementary design common to both responses.

This optimisation step is performed on the same number of 32 volunteers and the set of

admissible sampling times is the set of times used in the empirical design except times 1 and 3

for PK. We then optimise a population design _opt diff
Ξ , with four sampling times per

elementary design, but now, the optimal sampling times can be different for each response.

c. Results



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

16

Fig. 1 reports the model file used for the design evaluation and optimisation of the joint

PKPD model of warfarin. The input file of PFIM 3.0 for the evaluation of
emp

Ξ is reported in

Fig. 2. The output file of PFIM 3.0 for the optimal design
_opt iden

Ξ and the associated R graph

output are represented in Fig. 3 and Fig. 4, respectively. The optimal designs with their

associated criterion are reported in Table 3.
emp

Ξ and both optimal designs ( _opt iden
Ξ , _opt diff

Ξ )

are different by their group structure. _opt iden
Ξ and _opt diff

Ξ are composed of two elementary

designs compared to only one for
emp

Ξ . The Fedorov-Wynn algorithm optimises proportions

of subjects, to be practical those numbers are then rounded to the nearest integers. Each

elementary design involves 22 and 10 subjects for _opt iden
Ξ and 29 and 3 for _opt diff

Ξ . In order

to get more practical designs, _opt diff
Ξ is simplified in a new design _ _opt diff simp

Ξ , composed of

one group of 32 subjects, meaning that the 3 subjects originally included in the second

elementary design have been added to the first elementary design. The two optimised designs

have a smaller number of samples than the empirical design and are therefore less efficient

with lower criterion values (Table 3). These two designs include a sample at 144 hours for the

PK measurement whereas this sample is not present in the empirical design. Indeed, in

population PK studies, when a proportional residual error is associated with the model, the

optimal design includes the latest time among those proposed. In our case, for optimisation,

we allowed the sample at 144 hours both for PK and PD responses.

In order to get an efficiency similar to that obtained with
emp

Ξ , we then derived two

“enlarged” designs _ _opt iden enl
Ξ and _ _ _opt diff simp enl

Ξ from the two optimal designs by increasing

the number of subjects. 55 subjects and 52 subjects are involved in _ _opt iden enl
Ξ and

_ _ _opt diff simp enl
Ξ , meaning a total of number of sampling times of 440 and 416, respectively.

The expected relative standard errors (RSE) of
emp

Ξ , _ _opt iden enl
Ξ and _ _ _opt diff simp enl

Ξ , i.e
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standard error divided by the true value of the parameter, their total number of sampling times

and the associated criterion are given in Table 4.

The evaluation of
emp

Ξ returns expected RSEs smaller than 30%, except for the variance

parameters
50

2

IC
ω and 2

outk
ω , where they are rather large (about 68% and 41%) due to the small

inter-subject variability of these parameters. Comparison between both “enlarged” designs

shows that only the coefficient of variation of the estimation of the variance parameter
50

2

IC
ω is

increased compared to
emp

Ξ . The expected RSE on the terms for residual errors increase in

both optimal designs, but they remain lower than 10%. For other parameters, the results from

design optimisation, in terms of precision of estimation, are very close to those obtained with

the empirical design, although “enlarged” designs involve only 440 and 416 measurements,

respectively, 35% and 38% fewer than the empirical design. This sample reduction, together

with a similar efficiency, leads to a more ethical and less costly study. Using PFIM 3.0, we

find new efficient designs to study the joint PKPD of warfarin fitting to different clinical

constraints.

5. Discussion

In this paper, we consider the R function PFIM 3.0, an extension of the R functions PFIM

1.2 and PFIMOPT 1.0, allowing evaluation and optimisation of designs for nonlinear mixed

effect models with multiple responses. The methodology is based on the Fisher information

matrix, developed using a linearisation of the model, as proposed for a single response by

Mentré et al. [5] and extended for multiple responses [14-16]. In addition to handling multiple

response models, several features have been integrated in PFIM 3.0. First, regarding the

model specification, it can now be specified as a system of differential equations; this is an

alternative to analytical model specification, particularly useful for complex models. For
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“classical” pharmacokinetic models, a library of twelve pharmacokinetic models is available.

Concerning the optimisation algorithm, the Fedorov-Wynn algorithm has been added as an

alternative to the general Simplex algorithm to optimise more practical D-optimal designs [24,

25]. Indeed, this algorithm allows design optimisation with fixed sampling times specified by

the user which can be a great advantage with respect to medical constraints. This algorithm

optimises the sampling times, which can be different or imposed to be identical across

responses, but also optimises the group structure, using the approach of statistical designs. In

addition to convergence issues using the Simplex algorithm compared to the Fedorov-Wynn

[18], optimisation within continuous intervals of times can be more questionable: the Simplex

algorithm can, sometimes for a long time, pursue the optimisation by exchanging at each

iteration one or several sampling times by some others which differ from the previous by only

few seconds. This greatly slows down the whole optimisation process and has no relevance in

clinical practice.

We illustrate the different options of this new extension of PFIM using a real example of

the simultaneous population analysis of the time course of warfarin concentration and its

effect on the prothrombin complex activity after single dose administration. We optimise and

derive two population designs using the Fedorov-Wynn algorithm, either imposing the same

sampling times across responses or not, and we compare them to an “empirical design” used

in the previous study of warfarin [26, 27]. Globally, the expected precision of estimations are

in the same range for the three designs, even if the number of samples per patient, and thus,

the total number of samples are considerably reduced (38% fewer samples in the optimised

designs compare to the empirical one). In this example, we show the interest of the

optimisation procedure implemented in PFIM 3.0 from a medical, economic as well as ethical

point of view. This approach can also be used for other complex modelling, such as the

pharmacokinetics of a parent drug and its metabolite [31]. However, in some situations, due to
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the different time scales of the pharmacokinetic profiles between the parent drug and the

metabolite, different sampling times for the two responses may be required. It should be noted

however, using the Fedorov-Wynn algorithm under this assumption, the number of possible

elementary designs will be large and can considerably increase the computation time and the

memory requirement. Limiting the number of allowed sampling times for each sampling

window also helps to avoid computational issues.

In the example, the prothrombin complex activity is controlled by the rate of input Rin and

the output rate constant kout of the response, and the initial condition is given by the ratio of

these parameters
in out

R k . It would be possible by using a modification of the

parameterisation of the model to estimate the initial condition and Rin or kout or even to fix the

initial condition (for instance to 100%) and to estimate only Rin or kout .

The present development of the Fisher information matrix for multiple response models

takes into account all the population parameters to be estimated. Another approach would

have been to optimise separately one design for the PK parameters and one for the PD

parameters, fixing the PK parameters to their mean in the population (sequential approach).

However, this approach can be sub-optimal as no variability on the PK parameters is taken

into account in the PD model. For instance, we compared this sequential approach to the one

used in this paper, using the same example and similar constraints. We obtained the same

optimal design for the PK model. Regarding the conditional D-optimal design for the PD, the

design is quite different from _ _opt diff simp
Ξ . Indeed, it involves two elementary designs with

sampling times at (0, 24, 72, 96) and (0, 24, 36, 96) hours, and with 21 and 11 subjects,

respectively. Comparison of the relative standard errors shows an increase by at least a factor

2 with this design compared to those obtained with
_ _opt diff simp

Ξ .

Following the first theoretical work on optimal design for NLMEM, this research theme

has grown rapidly both in methodological and application developments. An email mailing
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list server PopDesign is now available for questions and comments about the experimental

design of any study for which nonlinear mixed effect modelling is proposed for the analysis.

Since the first tool PFIM [11], there are now several different software tools that implement

an evaluation of the Fisher information matrix for population PK and PD models and propose

optimisation of the experimental designs (PFIM, PopDes, PopED, WinPOPT) [32]. All

software packages have ongoing development and have specific features according to the

needs and goals of the research teams that developed them. PFIM is the only one using the R

software.

PFIM 3.0 uses an approximate Fisher information matrix to evaluate and optimise design.

This approximation, using a linearisation of the model, may be a limitation. Indeed, even if

the relevance of this approximation has been shown by comparison to an exact Fisher

information matrix using a simulation study, the PKPD model used was very simple [14] and

may not be generalised to any complexity of the models. On the other hand, use of more

exact methods can be computationally intensive and thus time consuming. Their need is thus

questionable for nonlinear models for which design evaluation and optimisation require some

a priori values of the parameters to be estimated, which are often not known precisely.

In parallel to PFIM 3.0, PFIM Interface 2.1, a graphical user interface version of PFIM 1.2

and PFIMOPT 1.0 has been recently proposed, allowing both design evaluation and

optimisation but only for single response models. PFIM Interface 2.1 has the same features

for model specification and optimisation algorithm as in PFIM 3.0. PFIM Interface will soon

be extended to accommodate multiple response models.

In addition to the new features added in PFIM 3.0, several other extensions are planned.

First, the current library includes only pharmacokinetic models. Extensions to the usual

pharmacokinetic-pharmacodynamic models are planned, even if model specification for
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multiple responses is quite simple for the user as shown in the illustration using a system of

differential equations.

Then, the next version could integrate the computation of the Fisher matrix for a non-

diagonal variance of the random effects, as, in practice, one may want to allow correlation

between the random effects. Expression of the Fisher information matrix has been proposed in

this case for single response in Mentré et al. [5] and for multiple responses in Ogungbenro et

al. [33] but has not been yet implemented in PFIM 3.0.

Afterwards, an extension of PFIM is envisaged to implement the expression of the Fisher

information matrix for models including fixed effects for the influence of covariates on the

parameters [6], and thus, to compute the predicted power of the Wald test to detect a covariate

effect as well as the number of subjects needed to achieve a given power [18].

Moreover, Retout et al. [12] have recently used a modified version of PFIM for the

problem of design optimisation using cost functions. They focus on the relative feasibility of

the optimised designs, in terms of sampling times and of numbers of subjects. To do that the

Fedorov-Wynn algorithm has been extended to include cost functions to penalize less feasible

designs. An illustration of this extension of design optimisation to a joint population model of

infliximab and methotrexate pharmacokinetics administered in rheumatoid arthritis was

performed. The possibility of specifying user-defined cost-functions will be available in the

next version of PFIM.

The implementation of the Fisher information matrix for multiple response models

proposed in PFIM 3.0 is a relevant computing tool for the evaluation and comparison of

designs in the spreading development of multiple response PK studies. PFIM 3.0 is

distributed under the terms of the GNU GENERAL PUBLIC LICENSE (GNU GPL) Version

2, June 1991 and has been registered at the Agency for the Protection of Programs (APP) in

2008, at Paris, France.
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PFIM functions, including their extensive documentation and examples to use them, are

freely available from the PFIM website: http:/www.pfim.biostat.fr.
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Legends for Figures:

Fig. 1: Model file of PFIM 3.0 for the evaluation of the empirical design
emp

Ξ and

optimisation of both optimal designs _opt iden
Ξ and _opt diff

Ξ for the joint PKPD modelling of

warfarin.

Fig. 2: Input file of PFIM 3.0 in the context of the evaluation of the empirical

design
emp

Ξ for the joint PKPD modelling of warfarin.

Fig. 3: Input file of PFIM 3.0 in the context of the optimisation of the optimal design

_opt iden
Ξ using the Fedorov-Wynn algorithm for the joint PKPD modelling of warfarin.

Fig. 4: R graph output of the concentration and effect profiles versus time for the mean

parameter values used in the joint PKPD modelling of warfarin using PFIM 3.0. PK sampling

times and PD sampling times for the optimal design _opt iden
Ξ for each response are displayed

using number values (i.e. 1 and 2 for samples from first and second elementary design,

respectively).
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Table 1. List of pharmacokinetic models included in the library of models of PFIM 3.0. The table includes all information needed in order to use

the model function chosen: the name, the type of input, the number of compartments and the parameters used.

Name Input
Number of

compartment
Parametrisation

bolus_1cpt_Vk IV-bolus 1 V, k

bolus_1cpt_VCl IV-bolus 1 V, Cl

infusion_1cpt_Vk IV-infusion 1 V, k

infusion_1cpt_VCl IV-infusion 1 V, Cl

oral1_1cpt_kaVk 1st order 1 ka, V, k

oral1_1cpt_kaVCl 1st order 1 ka, V, Cl

bolus_2cpt_Vkk12k21 IV-bolus 2 V, k, k12, k21

bolus_2cpt_ClV1QV2 IV-bolus 2 Cl, V1, Q, V2

infusion_2cpt_Vkk12k21 IV-infusion 2 V, k, k12, k21

infusion_2cpt_ClV1QV2 IV-infusion 2 Cl, V1, Q, V2

oral1_2cpt_kaVkk12k21 1st order 2 ka, V, k, k12, k21

oral1_2cpt_kaClV1QV2 1st order 2 ka, Cl, V1, Q, V2

Table



29

Table 2. Population parameter values estimated by the PKPD joint modelling of warfarin

Parameters Fixed effects

(�)

Inter-subject variability

(�
2
)

ka (h
-1

) 1.60 0.701

CL (L/h) 0.133 0.063

V (L) 7.95 0.020

Rin (%/h) 5.41 0.190

IC50 (mg/L) 1.20 0.013

kout (h
-1

) 0.056 0.016

slopePK
σ 0.20 -

int erPD
σ (%) 3.88 -

Table
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Table 3. Optimal population designs for the joint model of warfarin concentration (PK) and the effect on prothrombin complex activity (PD)

according to different constraints.
emp

Ξ is the empirical design. _opt iden
Ξ and _opt diff

Ξ are both optimal designs. _ _opt diff simp
Ξ is a design derived

from
_opt diff

Ξ to be simpler. For each design, the number of elementary designs, the rounded number of subjects with the elementary design, the

sampling times for each response, the total number of sampling times and the associated criterion value are reported.

Number of

elementary

designs

Sampling times for each response

(hours)

Rounded

number of

subjects

Total

number of

sampling

times

Criterion

value

Φ

PK PD

emp
Ξ 1 0.5, 1, 2, 3, 6, 9, 12, 24, 36, 48, 72, 96,120 0, 24, 36, 48, 72, 92, 120, 144 32 672 984.20

_opt iden
Ξ 2 0.5, 12, 24, 144

0.5, 24, 120, 144

0.5, 12, 24, 144

0.5, 24, 120, 144

22

10

256 580.19

_opt diff
Ξ 2 0.5, 6, 9, 144

0.5, 6, 9, 144

0, 12, 24, 120

0, 24, 96, 120

3

29

256 607.86

_ _opt diff simp
Ξ 1 0.5, 6, 9, 144 0, 24, 96, 120 32 256 607.32

Table
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Table 4. Relative standard errors (RSE) (%) computed by the population Fisher information matrix for designs
emp

Ξ and for the enlarged

designs
_ _opt iden enl

Ξ and
_ _ _opt diff simp enl

Ξ derived from the two optimal designs by increasing the number of subjects in order to get a similar

efficiency obtained with
emp

Ξ . The total number of sampling times and the criterion value associated with each design are also reported.

Expected RSE (%)

ak
β

CL
β

V
β

inR
β

50IC
β

outk
β 2

akω 2

CLω 2

Vω 2

inRω
50

2

ICω 2

outkω slopePKσ
int erPDσ

Total

number

of

sampling

times

Criterion

value

Φ

emp
Ξ 15.7 4.6 2.9 8.0 3.3 2.9 28.0 26.3 33.0 26.2 68.3 40.8 3.9 5.6 672 984.2

_ _opt iden enl
Ξ 12.5 3.7 3.1 6.1 3.4 2.3 22.4 21.1 45.1 20.2 98.0 34.9 8.2 9.1 440 997.2

_ _ _opt diff simp enl
Ξ 12.7 3.8 2.8 6.3 3.2 2.6 22.9 21.8 38.9 20.8 83.6 41.7 8.8 9.4 416 987.5

Table
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