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ABSTRACT 
 

Our study aimed to establish the complete structure of the main dihydroxy 

conjugated triene issued from the lipoxygenation (soybean enzyme) of docosahexaenoic 

acid (DHA), named PDX,  an  isomer of protectin/neuroprotectin D1 (PD1/NPD1) 

described by Bazan & Serhan. NMR approaches and other chemical characterization 

(e.g. GC-MS, HPLC and LC-MS/MS) indicated that PDX is 10(S),17(S)-dihydroxy-

docosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid. The use of 18O2 and mass spectrometry 

showed that PDX is a double lipoxygenation product. Its structure differs from PD1, 

with E,Z,E geometry (PDX) instead of E,E,Z (PD1) and S configuration at carbon 10 

instead of R. PDX inhibits human blood platelet aggregation at sub-micromolar 

concentrations. 
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1. Introduction 

Docosahexaenoic acid (DHA) oxygenated metabolism has been investigated and 

increasing interest arose recently for dihydroxy-docosahexaenoic acid (DHA) derivatives, 

especially neuroprotectin D1 (NPD1) described in brain tissues by Bazan et al. [1,2]. Its 

structure has been established by Serhan et al. as 10(R),17(S)-dihydroxy-docosahexa-

4Z,7Z,11E,13E,15Z,19Z-enoic acid [3-5] in T helper type 2-skewed peripheral blood 

mononuclear cells as a 15/n-6 lipoxygenase-dependent product, and termed protectin D1 

(PD1). 

In mammalian cells NPD1/PD1 results from the 15-lipoxygenation of docosahexaenoic 

acid (DHA) via an epoxidation mechanism [1] as already reported for leukotriene B4 

formation [6]. Resolvin D1 and PD1, as well as mono-hydroxy-DHA products, were found to 

be produced by human whole blood and neutrophils [7], trout head-kidney [8], and stroke-

injuried murine brain tissues [9]. In contrast, the PD1 isomer, 10,17(S)-dihydroxy-

docosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid, reported by Butovich [10-11] could result 

from a double lipoxygenation mechanism, although this was not evidenced. Furthermore, the 

latter report did not state the configuration of carbon 10 and did not claim any biological 

function. The goal of the present study was to characterize the configuration of carbon 10 and 

geometry of the conjugated triene in PD1 isomer, called PDX, issued from either the n-6 

lipoxygenation of either DHA, or 10(±)-hydroxy-docosahexa-4Z,7Z,11E,13Z,16Z,19Z-enoic 

acid, or 17(S)-hydroxy-docosahexa-4Z,7Z,10Z,13Z,15E,19Z-enoic acid. Characterization used 

homodecoupling NMR techniques and UPLC-MS/MS with the Waters SYNAPT HDMS 

system and the integrated ion mobility separation. Stereochemistry of carbon 10 was assessed 

by HPLC and GC-MS approaches, and the mechanism of lipoxygenation was determined by 

using 18O2. It is concluded that PDX is 10(S),17(S)-dihydroxy-docosahexa-

4Z,7Z,11E,13Z,15E,19Z-enoic acid produced by double lipoxygenation of DHA. 
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 Preliminary data regarding the inhibitory effect of PDX on platelet aggregation are 

also given. 

 

2. Materials and methods 

2.1. Reagents 

Docosahexaenoic acid (DHA, C22:6), leukotriene B4, soybean lipoxygenase (sLOX, EC 

1.13.11.12, Type 1-B, 131,000 units/mg solid) were purchased from Sigma-Aldrich, 10(±)-

hydroxy-docosahexa-4Z,7Z,11E,13Z,16Z,19Z-enoic acid (10(±)-HDoHE), and 8(R)- and 

8(S)-HETEs were from Cayman Chemical Co. For the materials used in GC-MS analyses, 

platinum oxide (PtO2) and N,O-Bis(trimethylsilyl)-trifluroroacetamide (BSTFA) were 

products of Sigma-Aldrich, heptafluorobutyryl imidazole (HFBI) was from Interchim. 

Pestipur organic solvents were from Carlo-Erba. All chemicals used were reagent grade or 

with the highest quality available.  

 

2.2. Chiral HPLC separation of 10(±)-HDoHE 

Stereoisomers from methylesters of 10(±)-HDoHE were isolated by isocratic chiral HPLC 

on a 4.6 × 250 mm Chiralcel OD-H column hold at 25°C. The mobile phase was n-hexane/2-

propanol (100:2, v/v) pumped at a flow rate of 1 mL/min. 10(R)-HDoHE and 10(S)-HDoHE 

were detected at 235 nm and collected. Methylesters of 8(R)- and 8(S)-HETEs were used as 

corresponding homologs of 10(R)- and 10(S)-HDoHE, respectively. 

 

2.3. Biosynthesis of 17(S)-hydroxy (HDoHE) and 10,17-dihydroxy (diHDoHE) DHA 

derivatives, as well as 8,15-diHETEs from 8(R)- and 8(S)-HETE 

Reactions were catalyzed by soybean lipoxygenase (sLOX type 1-B) in sodium-borate 

buffer under normal or 18O2 atmosphere (PDX production from DHA). DHA was treated by 
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sLOX,  hydroperoxides were reduced by NaBH4, the incubate was acidified to pH 3, and di- 

and mono-hydroxylated fatty acids were extracted using a C18 solid-phase cartridge with 10 

mL of ethanol. They were further dried under a stream of nitrogen.  

Similarly, 2 µM of either 17(S)-HDoHE (produced from DHA) or 10(R)-HDoHE, or 

10(S)-HDoHE isolated by chiral HPLC as described above, were treated by sLOX  to 

generate 10,17-diHDoHE. 8,15-diHETEs were obtained by the same way from commercial 

sources of 8(R)- or 8(S)-HETE.  

 

2.4. Purification of monohydroxylated and dihydroxylated  fatty acids 

Mono- and dihydroxylated fatty acids were analyzed by reverse phase high performance 

liquid chromatography (RP-HPLC) on a Waters XBridge C18 column (4.6 x 250 mm, 3.5 

µm) using a linear solvent gradient (1 mL/min): A was a mixture of acetonitrile/water 

acidified to pH 3 (10:90, v/v), and B was acetonitrile. Conjugated diene monohydroxylated 

and conjugated triene dihydroxylated fatty acids were detected using a diode array detector at 

235 nm and 270 nm, respectively, and collected separately. 

 

2.5. GC-MS analysis of diHDoHE 

DiHDoHE isolated by HPLC were hydrogenated using platinum oxide, and derivatized 

into methyl esters and trimethylsilyl ethers. Samples were then analyzed by GC-MS using 

electron impact mode (EI) to localize the hydroxyl groups in the fatty chain.  

 

2.6. Nuclear magnetic resonance (NMR) of PDX 

NMR spectra were acquired on a BRUKER drx500 spectrometer equipped with a 5 mm 

TXI probe. Experiments were driven at 25°C on 2 mg of samples dissolved in 450 µL of 

CD3OD. 
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2.7. UPLC-MS of 10,17-diHDoHE and ion mobility 

Dihydroxylated-DHA isomers were analyzed on the Waters® SYNAPT™ HDMS™ 

system in MS mode coupled directly to the Acquity® UPLC® with a BEH™ -C18 1.7 µm, 1.0 

mm x 100 mm column. The separation was performed at 40°C at a flow rate of 0.25 mL/min 

using a mobile phase system which consisted of acetonitrile/water (containing 0.1% of formic 

acid) that was run as a linear gradient to reach 100% acetonitrile (containing 0.1% of formic 

acid) after 6 min. MS data were acquired from 50 to 1000 m/z at 10 spectra/sec rate.  

The ion mobility of PDX and Isomer 1 (obtained from the lipoxygenation of 10(S)-

HDoHE) were measured on the SYNAPT HDMS system in HDMS mode. All samples were 

infused at a flow rate of 10 µL/min and ionized using electrospray ionization-mass 

spectrometry (ESI). ESI-MS/MS was performed on the M+Na adduct and mobility 

separations were performed with nitrogen admitted to ion mobility cell at a pressure of 0.5 

mbar. Data extraction and analysis were performed with MassLynx™ and Driftscope™ 

software. 

 

3. Results and Discussion 

3.1. Metabolites of DHA obtained after  soybean 15-lipoxygenase (sLOX)treatment 

DHA was a good substrate for sLOX and led to a main compound eluted at 51.6 min 

(Fig. 1A). This compound was identified as 17(S)-HDoHE since it had the same retention 

time as commercially available 17(R)-HDoHE on reverse phase HPLC, but separated from it 

by chiral HPLC, both compounds having the same UV spectrum with max = 235 nm. In 

addition, a main product called PDX, eluted at 35.4 min, and was detected at 270 nm (Fig. 

1B), as well as five minor compounds, all with a conjugated triene structure according to their 

UV spectra (see below). The minor conjugated trienes had shorter retention times compared 
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to PDX, but their amounts were much too low (the whole five compounds represented less 

than 5% of the amount of PDX) to allow their characterization.  

The UV spectrum of PDX (Fig. 1b inset) showed a maximum absorption at  = 270 nm 

with two smooth shoulder peaks at  = 260 nm and  = 280 nm indicating the presence of a 

conjugated triene. Moreover, the left shoulder peak was higher than the right shoulder one 

suggesting that the triene geometry could likely be E,Z,E, as observed with 8(S),15(S)-di-

HETE and 5(S),12(S)-diHETE which  have the same triene geometry (results not shown). UV 

spectra of these compounds differ from compounds with a Z,E,E configuration such as 

leukotriene B4 (LTB4) and 12-epi-LTB4, for which both right and left sharp shoulder peaks 

have nearly the same height (results not shown). In our conditions, the yield conversion rate 

of DHA by sLOX was estimated at 10% for the monohydroxy derivative and 3% for the 

dihydroxy one (PDX).  

 

3.2. Localization by GC-MS of hydroxy groups on the chain  

For this purpose, PDX was derivatized as described in “Materials & Methods”.  

GC-MS spectrum of the hydrogenated PDX  derivative showed characteritic ions at m/z: 

515 (M-15, loss of CH3), 459 (M-71 loss of CH2
+-(CH2)3-CH3), 369 (M-(71+90)), 359 (M-

171, loss of CH2-(CH2)7-COOCH3), 273 (base peak, Me3SiO+-CH2-(CH2)7-COOCH3), 173 

(Me3SiO+-CH2-(CH2)4-CH3) and 73 (SiMe3) (Fig. 2A). PDX synthesized under 18O2 

atmosphere revealed a shift of the fragments ion mass of 2 or 4 (Fig. 2B), indicating the 

insertion of 18O at both carbons 10 and 17 (m/z at 519 and 463 instead of 515 and 459, and 

371, 275, 175 and 131 instead of 369, 273, 173 and 129). 
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3.3. Determination of carbon 10 stereochemistry  

If the stereochemistry of carbon 17 is S according to the well known properties of sLOX 

[12], that of carbon 10 remained to be determined. For this purpose, 17(S)-HDoHE prepared 

from DHA treated by sLOX, and 10(S)- and 10(R)-HDoHE separated by chiral 

chromatography from 10(±)-HDoHE, were incubated separately with sLOX followed by 

hydroperoxide reduction. Two diastereo-isomers were eluted by HPLC (Fig. 3B) at 36.7 and 

37.1 min. The first peak was attributed to 10(S),17(S)-diHDoHE and the second to 

10(S),17(R)-diHDoHE, according to the separation (Fig. 3A) of 8(S),15(S)- and 8(R),15(S)-

diHETEs synthesized from 8(S)-HETE and 8(R)-HETE, respectively [13]. Moreover, the 

former diHETE also co-eluted with commercial 8(S),15(S)-diHETE. In addition, the 

lipoxygenation of 17(S)-HDoHE led to a dihydroxy derivative that co-eluted with 

10(S),17(S)-diHDoHE (not shown). 

Finally, PDX synthesized from DHA, co-eluted with 10(S),17(S)-diHDoHE issued from 

10(S)-HDoHE (Fig. 3C) whereas 10(R),17(S)-diHDoHE from 10(R)-HDoHE was eluted 0.5 

min later, as shown in Fig. 3B, which indicates that PDX has the S stereochemistry at carbon 

10, and the same E,Z,E geometry of the conjugated triene, as already described for AA 

dioxygenation [14].  

The complete structure was also confirmed by using a new UPLC-MS/MS system 

including an ion mobility interface which is able to discriminate between different 

isotopologues which differ in their structure. For this purpose, 10(S),17(S)-diHDoHE and 

PDX were analyzed by UPLC using electrospray ionization as described in “Materials & 

Methods”. The mass spectrum of PDX (Fig. 4A) was superimposable to that of 10(S),17(S)-

diHDoHE, with the same main ion at m/z 383 corresponding to the sodium adduct. In addition, 

the HDMS infusion data of PDX and 10(S),17(S)-diHDoHE, where the M+Na was isolated in 
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the quadrupole, showed that they have identical drift time which indicates they have the same 

collisional cross sectional areas. This is shown by the mobilograms of PDX and 10(S),17(S)-

diHDoHE (Fig. 4B) which are fully superimposable except for a small contaminant detected 

in 10(S),17(S)-diHDoHE. This is again in agreement with PDX being 10(S),17(S)-dihydroxy-

docosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid. 

Overall, these results are in favour of a double lipoxygenation with a S,S configuration 

as expected according to similar mechanism which has already been reported for some 

diHETEs from arachidonic acid. This is valid for 5(S),12(S)-dihydroxy-eicosatetraenoic acid 

(5(S),12(S)-diHETE), which results from the oxygenation of 12(S)-hydroxy-eicosatetraenoic 

acid (12(S)-HETE) by 5-lipoxygenase, or 5(S)-HETE by 12-lipoxygenase [15-17], and for 

5(S),15(S)-diHETE through 5- and 15-lipoxygenases [18]. This hypothesis was validated by 

using 18O2 since both hydroxyl groups at carbon 10 and 17 were labelled. According to these 

results, which complete and fit with previous data from Butovich, we can definitely conclude 

that 15-soybean lipoxygenase produces PDX via a double lipoxygenation of DHA. PDX 

differs from the initially described 10,17(S)-docosatriene by Hong et al. (7), further named 

PD1. 

 

3.4. Determination by different NMR techniques of the PDX conjugated triene geometry 

Taking into account that the stereochemistry of carbon 10 has not yet been assigned, it 

was important to verify the geometry of double bounds, provided that PD1 has an R 

configuration at carbon 10, with a E,E,Z triene as reported by Serhan et al. [3]. Sequential 

attribution of protons and carbon atoms via a high resolution HSQC-TOCSY experiment 

(starting from each edge of the molecule), and high resolution 2D matrix (Fig. 5) allow a good 

sequential identification of spin systems. 11-12-13 and 14-15-16 spin systems at the center of 

the molecule were quite indistinguishable (same proton and same carbon chemical shifts), 
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which in fact confirms the symmetrical structure of the triene segment. We used a modified 

HSQC-TOCSY experiment (IPAP hsqc-gpsp) [19] to increase resolution for AB spin systems, 

and a 30 ms mixing time to get more information from those very near cross peaks. At this 

stage, the attribution of all protons and carbons confirms the results of previous works of 

Butovich [10]. However, collected NMR data presented in Table 1 showed that the acidic 

carbon is missing in the 13C spectrum, and remains not determined. 

In a second step, we measured proton J coupling constants in the conjugated triene. The 

easiest part was J11,12 and J15,16, because of the AX character of spin system.  A simple 1D 

proton spectrum with multisite homodecoupling [20] of H13-H14 and H10-H17 led to J11,12 

=J15,16=15Hz (Fig. 6A) demonstrating the E character of these two double bonds. At the end, 

the measurement of J13,14 was more difficult to get because of second order effects between 

H13 and H14, and superimposition of carbon signals. However, we succeeded to get a good 

measurement by the SAPHIR method [21] (Fig. 6B). The heart of the method was based on 

the asymmetry introduced in the AB system by the diluted carbon 13 isotope. Considering a 

2D HSQC experiment acquired without 13C decoupling, the response of the couple H13-
13C13 

was split in a doublet with JCH = 158Hz, whereas the H14-
12C14 neighbor was at the center of 

this doublet, cancelling second order effects. In addition, the homodecoupling of all other 

coupled protons during acquisition led to simple couple of proton doublets separated by JCH.  

The measurement of JH13-H14=11Hz gave the evidence that this double bond was in a Z 

geometry.  

As a confirmation, in a last step, we simulated (Fig. 6C) the spectrum of the central part 

of the molecule with the BRUKER DAISY spin simulator. 10 spins were taken into account, 

and the result was very close to the acquired spectrum, confirming the determination. This 

NMR study confirms that the geometry of the conjugated triene in PDX is 11E,13Z,15E. 
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3.5. Inhibition of platelet aggregation by PDX 

PDX incubated with platelet suspension at different concentrations ranged from 0.3 µM 

to 10 µM inhibited collagen-induced platelet aggregation in a dose-dependent manner (Fig. 7). 

25% and 75% inhibition were observed at 0.3 µM and 1 µM of PDX, respectively. 

 

4. Conclusions 

We conclude from the present data that the main dihydroxylated compound issued from 

the 15-lipoxygenation of DHA by the soybean enzyme is PDX. Its structure, 10(S),17(S)-

dihydroxy-docosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid, differs from PD1 described as 

10(R),17(S)-dihydroxy-docosahexa-4Z,7Z,11E,13E,15Z,19Z-enoic acid [3]. Moreover, PDX 

exhibits interesting inhibition of human blood platelet aggregation. 
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Figure legends: 

 

Fig. 1. Typical RP-HPLC profile of DHA derivatives. DHA was incubated with sLOX 

and lipid extract was analyzed by reverse phase HPLC: (a) Monohydroxylated fatty 

acids ( = 235 nm); (b) dihydroxylated fatty acids ( =270 nm). 

 

Fig. 2.   Mass-spectrum of the Me-TMS derivative of the hydrogenated PDX 

synthesized from DHA by sLOX under normal (A) or 18O2 (B) atmosphere. 

 

Fig. 3. Typical RP-HPLC profile of dihydroxylated fatty acids issued from 8(S)- and 

8(R)-diHETE, and from 17-HDoHE stereoisomers (R and S): (A) The upper tracing 

shows 8(S),15(S)-diHETE and  8(R),15(S)-diHETE synthesized from  8(S)- and 8(R)-

diHETE treated by sLOX; (B) Typical RP-HPLC profile of 10(S),17(S)-diHDoHE and 

10(R),17(S)-diHDoHE synthesized from 10(±)-HDoHE; (C) Typical RP-HPLC profile 

of 10(S),17(S)-diHDoHE and 10(R),17(S)-diHDoHE plus PDX synthesized from DHA.  

 

Fig. 4. Analysis of PDX by UPLC-MS/MS using an ion mobility interface: (A) full LC-

MS/MS spectra of Isomer 1 and PDX; (B) Mass extracted mobilograms of Isomer 1 

and PDX from full scan MS/MS.  

 

Fig. 5. Sequential attribution of PDX with IPAP hsqc-tocsy.  The figure is the overlay 

of two matrices: the sum of in-phase IP hsqc-tocsy and anti-phase AP hsqc-tocsy 

experiment, and the difference of the two matrices. Empty regions are cut to increase 

the resolution drawing. Ns=16, time domain td2=2048 td1=2048, processing domain 

si2=2048, si1=2048 with linear prediction. 
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Fig. 6. NMR techniques applied to PDX to achieve the double bond configuration: (A) 

Zooming of H11 and H16 signals: bottom: normal proton spectrum; top: with 

simultaneously homodecoupling of H13-H14 and H10-H17. The simultaneous two 

sites decoupling driven by frequency modulation of homodecoupling signal (standard 

Bruker sequence zghc) were the shape pulse used in the decoupling sequence, 

tuned to irradiate the wanted frequencies. (B) SAPHIR-HSQC method for measuring 

J coupling constant in the AB spin system H13-14. HSQC without carbon decoupling 

was used during acquisition and simultaneous homodecoupling of H12-H15 and 

H11-H16. The measured coupling constant was J13,14=11Hz; (C) Comparison 

between the simulated spectrum (upper window) and the experimental spectrum 

(lower window). The spectrum of the central part of the molecule containing the triene 

motif with the two hydroxyl groups was simulated with the BRUKER DAISY spin 

simulator (upper window) and compared to the acquired spectrum (lower window). 

Non informative region was hidden with the cutting tool of MestReNova processing 

software. 

 

Fig. 7. Dose-dependent inhibition of platelet aggregation by PDX. Human isolated 

blood platelet suspensions were incubated with different concentrations of PDX (0.3 

to 10 µM). Aggregation was triggered by collagen and monitored for 4 min.  
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Table 1: 1H and 13C measured chemical shifts and proton coupling constants of PDX in 

CD3OD at 25°C. For AB spin systems, the values were refined by spectral simulation. 

 proton Carbon 
Atom 
number δ, ppm Coupling constant Hz  ppm  

1                      N.D.  
2 2.347  m                34.298    
3 2.39  m                23.022    
4 5.406  m              128.300    
5 5.409  m              129.047    
6 2.822  t, J(6,5)=J(6,7)=5.35                25.704    
7 5.467  m              130.009    
8 5.461  m              125.516    
9               2.4    m, J(9,10)=6.5                35.350    
10               4.198    J(10,11)=6.3,  J(10,12)=1.3                72.043    
11               5.757    J(11,12)=15              137.127    
12               6.747    J(12,13)=11, J(12,14)=-0.8              125.476    
13               5.991    J(13,14)=11, J(13,15)=-0.8              128.966    
14               5.995    J(14,15)=11              128.985    
15               6.741    J(15,16)=15, J(15,17) =1.3              125.476    
16               5.744    J(16,17)=6.3              137.066    
17               4.174    J(17,18)=6.5                72.142    
18               2.320    m                35.210    
19 5.387  m              124.446    
20 5.493  m              133.674    
21 1.2  J(21,22)=7.05                20.667    
22 0.983  7.5                13.518    
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Figure 2 
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Figure 3: 
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Figure 4: 
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Figure 5: 
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Figure 7: 
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