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Abstract. A new algorithm for segmentation of white matter lesions
and normal appearing brain tissues in Multiple Sclerosis (MS) is pre-
sented. Two different segmentation methods are combined in order to
have a better and more meaningful segmentation. On the one hand, a
local segmentation approach, the Mean Shift, is used to generate local
regions in our images. On the other hand, a variant of the Expectation
Maximization is employed to classify these regions as Normal Appearing
Brain Tissues (NABT) or lesions. Validation of this method is performed
with synthetic and real data. The output is a more powerful algorithm
that employs at the same time global and local information to improve
image segmentation.

1 Introduction

Multiple Sclerosis (MS) is a chronic disease of the central nervous system leading
eventually to severe handicap. Magnetic Resonance Imaging (MRI) serves as a
sensitive biomarker for diagnostic, prognosis and follow up, especially in clinical
trials [1]. The automatic segmentation of MS white matter lesions (WML) and
NABT in MRI is a challenging task for image processing.

Most segmentation algorithms can be roughly divided into either global or
local depending on the information they use. Global methods try to extract
information from the whole image and then use this information to classify each
voxel independently [2, 3]. This is the case of all clustering- or histogram-based
segmentation methods. In some cases some spatial information is introduced into
these methods by using Markov Random Fields [4] or probabilistic atlas [5].

On the other hand, local methods use exclusively local information to create,
in many cases, an undetermined number of local regions. The challenge of these
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methods is to combine these local regions to build a global and meaningful
segmentation [6]. One such local method is the Mean Shift (MeS6) [7]. MeS
is an unsupervised and non-parametric gradient density estimation algorithm
that has been successfully applied in clustering, segmentation and filtering of
natural 2D images [8]. Recently, it has been applied, in two different ways, in the
segmentation of brain MRI of healthy volunteers [9, 10]. The first method uses an
atlas to label the regions given by the MeS in three classes (white matter (WM),
grey matter (GM) and cerebrospinal fluid (CSF)). The second method performs
an Expectation Maximization (EM) algorithm [11] over the image intensities in
order to estimate a 3-class Finite Gaussian Mixture Model (FGMM), and then
assigns each MeS region to the class with highest probability.

To our knowledge, none of those local methods has been applied to WML
and NABT segmentation in MS patients. However, local information potentially
should improve the contour delineation of the WML and NABT as it only uses
local information. Global information is needed then to reduce the number of
MeS regions for the final segmentation. Here, we propose to improve Mayer’s
approach[10] by replacing the original EM by a robust EM (mEM) algorithm [12],
that was successfully applied in MS patients[2].

The paper is structured as follows: in Section 2.1, we briefly describe the
MeS approach, then in Section 2.2 the mEM is presented. Section 2.3 describes
the complete segmentation algorithm. In Section 3 the algorithm is tested with
synthetic and real images. Section 4 presents the conclusions of this work.

2 Methods

2.1 The Mean Shift algorithm

Theory The Mean Shift algorithm is a non-parametric technique for the proba-
bility density gradient estimation [7] with multiple applications [8], one of them
being the image segmentation.

Given n data points xi, i = 1, .., n in the d-dimensional space Rd the Parzen
window density estimator, with spherical kernel K(x) (whose profile kernel is
named k(x)) and one bandwidth parameter b, is given by
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The gradient of the density can be estimated as

∇̂f (x) ≡ ∇f̂b,k =
2
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Then if we define g(x) = −k′(x) we call the “mean shift vector” the difference
between the weighted mean and the center of the kernel.

6 Mean Shift abbreviation is normally MS but in this article MS is reserved for Multiple
Sclerosis
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The mean shift vector always points towards the direction of maximum increase
of the density [8]. For each point x, the mean shift vector mb,G(x) is calculated
and then the center of the kernel is translated by mb,G(x). Convergence is guar-
anteed to a zone of zero gradient and local maximum of density, called mode.
All the points that converge to the same mode M , are given the same label and
form a region.

MeS for 3D images The MeS algorithm can be used in two different ways for
image segmentation. The first option is to use it as a clustering technique where
a point xi has the dimension d = m, where m is the number of different MR
sequences. In that case, the MeS is performed on the joint intensity histogram.
Another approach is to add the three spatial dimensions to the feature vector
having d = 3 + m so that the classification will be done in the joint spatial-
intensity domain [8]. This last option is more adapted because it also integrates
the spatial information in the classification. As spatial information and intensity
information have different nature, the kernel K(x) can be decomposed into two
kernels allowing two different bandwidth parameters, one for spatial components
bs and another one for intensity components br, as:

Kbs,br
(x) = K

(
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bs

)

K
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xr
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where xs contains the three spatial dimensions and xr the m intensity compo-
nents. Segmentation methods using the same parameter b for both kernels [10]
can be inefficient because of an improper normalization between spatial and
intensity dimensions.

2.2 The modified EM

A 3-class FGMM [4, 5] is used to model NABT intensities. All the MR sequences
are used to create a multidimensional feature space in order to benefit from
the specific inherent information of each sequence. The EM algorithm has been
widely used for estimating the NABT parameters in healthy volunteers and in
MS patients [4, 5]. Recently a robust modified EM (mEM) has been used for
automatic WML segmentation [2]. This method performs a good estimation of
NABT parameter although it does not have any spatial constraints to improve
the segmentation results.

The mEM allows to compute the trimmed likelihood estimator [12] and has
a monotonous convergence, at least to a local maximum of the trimmed likeli-
hood (TL), as the original EM algorithm. The idea is to use exclusively in our
computation of trimmed likelihood the n − h voxels that are close to the model



and reject the h voxels more likely to be outliers.

TL =

n−h
∑

i=1

f(xν(i);Θ) (5)

where n is the total number of voxels, h the number of rejected voxels, xi is a
vector with the intensities of the m sequences of the voxel i, Θ the parameters
of our 3-class model, f() the probability density function of the model and ν()
is a permutation function which sorts voxels so that:

f(xν(1);Θ) ≥ f(xν(2);Θ) ≥ ... ≥ f(xν(n);Θ) (6)

Fig. 1. Workflow of REMMeS algorithm. Each step is described in Section 2.3

2.3 REMMeS: Robust Expectation Maximization with Mean Shift

Figure 1 displays the workflow of this method with all the steps explained in the
following.

NABT Model estimation (mEM) The image intensities in a healthy brain
are usually modelled as a 3-class FGMM [2]. In the case of MS patients, the
WML can bias the estimation of the model if we use a classical EM algorithm.
In our case, we use the mEM explained in Section 2.2 with h = n

10 . This value
is large enough to ensure that all the lesions are not used in the estimation of
the parameters of our model.

Sequence Normalization (Normalization) Different MR sequences have
different tissue variances so the bandwidth parameter br may be inefficient. In
(4), the kernel can be decomposed to have one br parameter per sequence but



this increases the processing time of the algorithm. Our solution is to normalize
the image intensity of each sequence so that the WM variance is 1.0, using the
WM parameters estimated by the mEM algorithm.

MeS segmentation (MeS) MeS algorithm creates an undetermined number
of output regions using only local information. Two parameters have to be tuned:
bs and br. Small values create an oversegmentation and make MeS more sensitive
to noise while large values tend to eliminate small regions, such as the WML.
After several tests in real and synthetic images, those values have been fixed to
bs = 6mm and br = 2.0 using a biweighted kernel for K(x).

Region Fusion Depending on the data and the MeS parameters, the number
of regions can be very high. In homogeneous regions the density gradient is near
zero which may cause oversegmentation. For this reason, to reduce the number
of meaningless regions two steps are normally applied to the MeS results: region
merging and pruning.

Our region fusion method merges the spatially neighboring regions, ri, rj ,
when the intensity distance, dist(Mri ,Mrj ), between their modes, Mri ,Mrj

is less than a threshold t. Our implementation avoids the creation of a Region
Adjacency Graph [9], using a union-find algorithm with the regions to be merged.
All regions are merged at the same time instead of by pairs [6], in order to avoid
a staircase effect. The final mode of the fusion region is the mean of the modes
weighted by the size of the region associated to each mode.

Small regions follow a pruning process. Regions ri, whose size is smaller
than a size s = S, are automatically merged with the neighboring region with
minimum dist(Mri ,Mrj ). Small regions can only be merged with regions larger
than s, so the pruning process is done iteratively from s = 2, ..., S. This pruning
process stops with S = 3 because the minimal size of MS white matter lesions
is defined as 3mm3 [13].

Region Classification & Outliers Detection (Classification) We compute
the Mahalanobis distance between the mode of each region in the image and
each NABT given the previously computed parameters. Considering that voxels
intensities in each NABT follows a Gaussian law, these Mahalanobis distances
follow a χ2 law with m degrees of freedom [2, 5]. Each region in the image
is defined as an outlier if the Mahalanobis distance for every class is greater
than the threshold defined by the χ2 law, for a given p-value. Regions that are
not considered as outliers are then classified in the class yielding their lowest
Mahalanobis distance [10].

MS Rules White matter lesions are hyperintense compared to the WM in
T2-w, Proton Density (PD-w) and FLAIR sequences [13], these intensity char-
acteristics differentiate them from other outliers, e.g. noise, skull-stripping errors
or vessels. For this reason, expert knowledge is formalized and applied in order
to correctly classify the WML [2]. First, MS white matter lesions have to be
hyperintense, so Iseq(Mri) > µWM

seq + trules
seq ∗ σWM

seq for seq = T2, PD, FLAIR,



where Iseq(M
ri) is the value of the mode for the sequence seq, and µWM

seq and

σWM
seq are the mean and standard deviation of the white matter for the same se-

quence. trules
seq is a parameter chosen equal to 3 in our experiments. As we focus

in WM lesions, all detections that are not contiguous to the WM are removed.

3 Validation & Results

3.1 Validation

The proposed algorithm is compared to three other similar algorithms in order
to assess its performance:

– A: the proposed algorithm.
– B: as algorithm A but using the classical EM algorithm, similar to Mayer et

al. [10].
– C: instead of classifying the MeS regions, each voxel is classified indepen-

dently with the mEM algorithm, similar to Ait-Ali et al. [2].
– D: as algorithm C but using the classical EM algorithm instead of the mEM.

We evaluate the impact of using mEM instead of EM (A vs. B and C vs. D)
and using the MeS algorithm compared to a standard global likelihood-based,
approach (A and B vs. C and D).

Synthetic images We used the three sequences (T1-w, T2-w and PD-w) of the
simulated MS brain from Brainweb [14], used with 3% of noise (n) and 0%, 20%
and 40% of inhomogeneity (rf) and moderate lesion load. For these datasets the
ground truth is known. For validation, we compared the ground truth with the
automatic segmentation, the Dice Similarity Coefficient (DSC) [15] is used for
MS white matter lesions.

Real images Images from seven different MS patients were acquired on a
Philips 1.5T Gyroscan: 3-mm axial slice thickness T1-w, T2-w and PD-w. Images
were denoised, corrected for intensity inhomogeneity, normalized in the stereo-
taxic space [16] and skull-stripping was performed [17]. WML were manually
segmented by an expert and validation was done using the DSC.

3.2 Results

Results on BrainWeb phantom Table 1 shows that MeS improves WML
segmentation for all levels of inhomogeneity and EM algorithm outperforms
mEM for all levels of inhomogeneity. The reason for these results is that the
phantom does not contain as much outliers as real images, in such cases mEM
is removing too many NABT voxels from the estimation making a less precise
estimation. In spite of this imprecise estimation, algorithm A manages to perform
a good segmentation, showing the robustness of this method.

If we compare our results with other methods already published, we can
observe that the DSC of our algorithm (0.87) for Brainweb with 3% of noise and
no inhomogeneity is better than Rousseau’s [18] (0.63) ,Freifeld’s [19] (0.77) or
Van-Leemput’s [4] (0.80, calculated in[19]).



Results on real images In the real images, the EM algorithm fails to estimate
the NABT model in all patients (algorithms B and D), which shows the limitation
of the phantom studies. One example of false tissue classification can be seen in
Figure 2. In these images tissue contrast is weak and there are multiple skull-
stripping errors, making the EM unstable. The algorithm A slightly improves
the results of algorithm B and also shows less variance in its results as shows
Table 1, the robustness of algorithm A is that MeS regions are done with local
information so their classification should be easier even if the model is not well
estimated.

BW n3rf0 BW n3rf20 BW n3rf40 Average Real 3D data

D 0,79 0.80 0.78 - 0.49
C 0,72 0.77 0.41 0.52 ± 0.07 0.66
B 0,87 0.84 0.79 - 0.43
A 0,87 0.85 0.63 0.55 ± 0.05 0.67

Table 1. DSC values for WML for the different images.

Fig. 2. Example of classification error of the EM algorithm. From left to right: T1-w,
algorithm D results, algorithm C results.

4 Discussion & Conclusion

A new algorithm for WML and NABT segmentation has been presented that
combines global and local information. This fusion of global and local informa-
tion shows better results than only using global information. The idea of using
a totally local method, as MeS, for MS segmentation is an innovation to our
knowledge. We have also shown that the use of a robust estimation of param-
eters with mEM is crucial in order to correctly segment real images with this
method [10].

Other MR acquisition protocols for MS include inversion recovery MR se-
quences, mainly FLAIR, because of their higher sensitivity for WML detection.



We have tried our algorithm with MS patients images from a 3T Siemens TRIO
(1mm isotropic 3D T1-w, 1mm isotropic 3D T2-w and 1mm isotropic 3D FLAIR)
yielding satisfying results for the proposed method. DSC results are displayed in
Table 1 and in Figure 3. The use of 1mm isotropic images improves the spatial
information by improving the results compared to the images used in the vali-
dation. In addition, the use of FLAIR sequence instead of PD further improved
the results as the tissue contrast and lesion conspicuity is better in the former
MR sequences. A direct comparison was not yet performed as we had no PD
images with this resolution.

This method is an interesting novel idea for MS brain segmentation but
requires further improvements. For example, the inclusion of bias field estimation
or the automatic estimation for the parameters of the mean shift.

Fig. 3. Fully 3D protocol. Top, from left to right: T1-w, T2-w and FLAIR and WML
manual segmentation. Bottom, from left to right: algorithms D, C, B and A.
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