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Abstract. The design of a robust automatic segmentation workflow is
crucial to deal with the shortcomings of images that impacts on their
analysis. In this paper, different workflows, using state-of-the-art tools,
are compared in order to evaluate the role of the different preprocessing
tasks. We propose some methods in order to improve the computing time,
robustness and accuracy of the segmentation method. We compare with
manual segmentation as ground truth the workflows and improvements in
the segmentation method. Finally, we present a new automatic workflow
for white matter lesions segmentation in Multiple Sclerosis.

1 Introduction

Multiple Sclerosis (MS) is a chronic inflammatory-demyelinating disease of the
central nervous system. Magnetic Resonance Imaging (MRI) serves as a biomarker
that detects with high sensitivity white matter lesions (WML) in patients with
MS. Over the last 25 years, it has been increasingly used for diagnosis, progno-
sis and as a surrogate marker in MS trials. Conventional Magnetic Resonance
(MR) sequences for MS include pre- and post-gadolinium (gd) T1-weighted (T1-
w), T2-weighted (T2-w), proton density (PD) or FLuid Attenuating Inversion
Recovery (FLAIR). These sequences have been developed to optimize the detec-
tion of the lesions in the white matter (WM) [1].

In cross-sectional and longitudinal studies, manual segmentation has been
used to compute the total lesion load in T2-w, PD-w, unenhanced and gd-
enhanced T1-w MR sequences but this method is very time consuming and
has large intra- and inter-operator variability [2]. Semi-automatic methods tend
to reduce this variability, but there is a great promise that automatic methods
? We are thankful to ARSEP for funding
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will improve considerably lesion segmentation reproducibility, which is of critical
importance when processing huge amounts of MR images, as in large multicenter
clinical trials.

Automatic segmentation of WML is a complex task that requires consider-
able preprocessing of MRI data [3], but so far no standards have been defined
for preprocessing. Our assumption is that WML segmentation methods signifi-
cantly depend on the preprocessing tasks, most notably: registration, skull strip-
ping, image denoising and intensity inhomogeneity correction. In this paper, the
segmentation of WML is performed with STREM [4]. It is a parametric mul-
tidimensional and multitemporal approach for the segmentation of WML and
Normal Appearing Brain Tissues (NABT).

The purpose of this paper is to investigate how the different preprocessing
procedures impact on the segmentation results, comparing manual segmentation
of WML performed by an expert as the ground truth. Another outcome of this
work is to propose improvements of the WML segmentation method in terms of
computation time, robustness and accuracy.

This paper is structured as follows. In Sections 2.1 and 2.2, we briefly describe
the STREM algorithm, its original version and the modifications we implement
to shorten its computing time and to increase its robustness and accuracy. Then
in Section 2.3, we present each of the typical preprocessing tasks. In Section 3 we
describe the different data, the different workflows we used in our experiments
and the results. Then we present conclusions of this work in Section 4.

2 Methods

2.1 The original segmentation algorithm: STREMv1 (version 1)

A 3-class Finite Multivariate Gaussian Mixture Model [5] is used to model NABT
intensities. All the MR sequences are used to create a multidimensional feature
space in order to benefit from the specific inherent information of each sequence.
The main idea of this algorithm is to find the atypical intensities of the WML
voxels not as a specific class but as outliers to the model. This is performed
through a three-step process: 1. Robust estimation of NABT parameters, 2.
Refinement of outliers detection and 3. Application of lesion rules

Estimation of NABT parameters To calculate the NABT parameters we
use a modified Expectation Maximization algorithm, called mEM, based on the
Trimmed Likelihood (TL) Estimator [?]. It was shown to have a monotonous
convergence, at least to a local maximum of TL, as the original Expectation
Maximization (EM) algorithm. The idea is to use exclusively in our computation
of TL the n−h voxels that are closer to the model and reject the h voxels more
likely to be outliers.

TL =
∑n−h

i=1 f(xν(i);Θ)
Where n is the total number of voxels, h the number of rejected voxels, xi is a

vector with the intensities of the m sequences of the voxel i, Θ the parameters of
our 3-class model, f() the p.d.f. of the model and ν() is a permutation function
which orders voxels so that:
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f(xν(1);Θ) ≥ f(xν(2);Θ) ≥ ... ≥ f(xν(n);Θ)
Once the algorithm arrives to a maximum of TL, each one of the three classes

is assignated to its corresponding tissue using the mean value of the Gaussian in
the T1-w sequece, thus the class with lower mean in is CSF, the next one GM and
the last one WM. In order to initialize the EM algorithm, an atlas is registered
to the subject and the probability maps for the three tissues associated to the
atlas are used to obtain the initial mean and variance for each class [6].

Refinement of outliers detection The trimming parameter h is chosen ar-
bitrarily with a high value, to ensure the rejection of all WML voxels from the
computation of the NABT parameters. In practice, these h rejected points ac-
tually contain some inliers that actually fit the NABT model reasonably well.
Thus, to refine the outliers detection, we compute the Mahalanobis distance be-
tween each of the n voxels in the image and each NABT given the previously
computed parameters. Considering that voxels intensities in each NABT follows
a Gaussian law, these Mahalanobis distances follow a χ2 law with m d.o.f [4,
7]. Each voxel in the image is defined as an outlier if the Mahalanobis distance
for every class is greater than the threshold defined by the χ2 law, for a given
p-value.

Application of lesion rules Outliers found with the Mahalanobis distance
may be originated from other tissue compartments than WML, basically due
to partial volumes, vessels, registration errors, noise, etc. In order to discrimi-
nate between the WML and false positives, rules are defined with neurologists
and neuroradiologists based on image intensities from the respective MR se-
quences [4].

2.2 Some improvements: STREMv2 (version 2)

In StremV2 we perform two major changes of the algorithm. In order to speed
up the process and to reduce the probability to reach a local maximum of TL,
the initialization of mEM is modified. Then, new rules are introduced to take
into account simple spatial constraints to reduce the number of false positives.

Improvement of the initialization of the mEM algorithm As mentioned
earlier, the mEM algorithm, as the original EM, may converge to a local max-
imum of TL. That is why a proper initialization is critical to find the global
maximum. In MRI tissue segmentation, a typical approach is to use an atlas to
initialize the EM algorithm [6], but the atlas registration may be time consuming
and not very appropriate in MS patients displaying important tissue atrophy or
a huge lesion load. Another option is to perform multiple random initializations,
let the algorithm converge and keep the solution which maximizes the TL of the
image [8]. The drawback of this approach is that it is computationally expensive
as multiple mEM must be performed to guarantee the global convergence. There
exists no general agreement on how many mEM must be performed but as the
number of parameters is a O

(
m2

)
the number of possible local maxima also

increases, and so does the computational complexity.
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To guarantee reaching to the global maximum, we choose to implement mul-
tiple initializations. In order to reduce the computation time, two shortcuts are
implemented. T1-w is known to have the best contrast between NABT, so we
decide to perform a two-step procedure. First, the classification of T1-w images
is performed with a mEM with multiple random initializations, then the a pos-
teriori probabilities obtained by this initial mEM (at the end of the E-step) are
used to initialize a multidimensional mEM with all the MR sequences (applying
the multidimensional M-step with the output of the T1-w E-step).

The second shortcut is to use a selection strategy when initializing multiple
mEM. Instead of waiting for the convergence of each mEM, selections can be
done after a fixed number of iterations. This strategy works as follows:

i n0 random initializations
ii Use mEM with iter0 iterations using these initializations
iii Keep n1 best solutions
iv Use mEM with n1 partial solutions until convergence
v Keep the best solution

In practice, we use n0 = 300, iter0 = 10 and n1 = 10, as results where similar
to higher values for the three parameters. After modifying the initialization of
the mEM algorithm, we perform the same steps 2 and 3 of STREMv1 and we
call the new algorithm STREMv1.5 (version 1.5).

Spatial constraints One of the assumptions of STREMv1 is that WML can be
segmented only based on MR intensities, without any spatial constraints. This
hypothesis is only partially satisfactory because, in practice, this leads to the
detection of a number of false positives:

1. In brain WM, isolated hyperintensity voxels are misclassified due to image
noise.

2. In the cortex and CSF, voxels can have the same MR intensity as WML.

To further improve WML segmentation, we apply spatial constraints to the out-
put of STREMv1.5 and we will call this algorithm STREMv2. To avoid the first
type of false positives, a minimal size of WML is defined [9]. With morphologi-
cal operations we eliminate all WML that have a size smaller than 3 mm3. For
the second type of errors, a rule is applied to eliminate all WML that are not
contiguous to the WM.

2.3 Preprocessing stage
Intensity inhomogeneity (IIH) correction Several factors cause IIH in
MRI, for example the inhomogeneity of the magnetic B0 field. Usually this
small spatial variation of intensity does not significantly affect conventional ra-
diological assessments of the images but reduces the performance of many im-
age processing algorithms. To correct for this IIH, the image intensity profile
is modified using B-spline functions which minimize the entropy of the image
histogram [10]2.
2 available at: http://brainvisa.info/index.html
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Denoising Image additive noise due to hardware acquisition and thermal noise
may also impact the processing performances, and thus have to be removed.
Several edge preserving denoising techniques have been recently developed and
we choose the Non-Local Means (NLM) algorithm which has shown better per-
formance compared to other state-of-the-art methods [11]1.

Registration In order to process multiple sequences, images have to be aligned
in the same reference frame. One of the images has to be chosen as reference
and the other images are registered to this reference. The optimal rigid body
transformation which maximizes the mutual information is calculated using the
NEWUOA optimizer that has been shown to be faster and more robust than
traditional minimization techniques [12]1. In this study FLAIR sequence is used
as reference and registration is applied after IIH correction and denoising if they
are employed.

Skull Stripping As in most brain segmentation techniques, a preprocessing
task has to be performed in order to extract the brain from non-brain tissues.
A deformable model is applied in the T1-w images for this task [13]3.

It has been largely studied that skull-stripping can cause very unstable effects
[14]. To minimize this effect we choose always to correct the automatic skull-
stripping results in order to focus the validation only in the IIH and denoising
steps.

3 Evaluation & Results

In order to evaluate the new tissue segmentation method in the context of the
workflow, we have retained three types of data acquisition protocols and five
combinations of workflows.

3.1 Data

Three different MR protocols are used in the experiments:

subject1 Images acquired on a 3T Siemens TRIO: 3D 1mm isotropic T1-w, 2D
3-mm axial slice thickness Dual Echo (T2-w and PD) and 2D 3-mm axial
slice thickness FLAIR.

subject2 Images acquired on a 3T Philips ACHIEVA: 3D 1mm isotropic T1-w,
2D 3-mm axial slice thickness Dual Echo (T2-w and PD) and 2D 3-mm axial
slice thickness FLAIR.

subject3 Images acquired on a 3T Siemens TRIO: 3D 1mm isotropic T1-w, 3D
1mm isotropic T2-w and 3D 1mm isotropic FLAIR.

For datasets including Dual Echo acquisitions, the PD image is discarded
because of the poor contrast in the sequences. For each subject, an expert reader
manually segmented the hyperintensity WML in the FLAIR sequence that is
used as the ground truth.
1 available at: http://www.irisa.fr/visages/benchmarks/
3 available at: http://www.fmrib.ox.ac.uk/fsl/index.html

in
se

rm
-0

04
21

70
2,

 v
er

si
on

 1
 - 

2 
O

ct
 2

00
9



3.2 Evaluation

Preprocessing Workflows Five different workflows are tested in this experi-
ment. For all the subjects, the same parameters are used in every step. STREMv1
is the last step in the different workflows:

1. Basic : No preprocessing before registration.
2. NLM : Denoising before registration.
3. IIH : Intensity correction before registration.
4. IIH+NLM: Intensity correction and then denoising before registration.
5. NLM+IIH: Denoising and then intensity correction before registration.

STREMv1, STEMv1.5, STREMv2 In order to compare the different ver-
sions of STREM with each other, we choose a fixed workflow for the three ver-
sions of STREM and we evaluate the segmentation among the three approaches.
NLM+IIH is chosen because the first experiment demonstrated that it is the
best preprocessing workflow for STREMv1.

3.3 Evaluation metrics

The comparison of the different workflows and segmentation methods is done by
assessing the segmentation quality and the processing time. In order to evaluate
the differences between the automatic segmentation and the ground truth, we
use the Dice Similarity Coefficient (DSC) that is commonly used in all kinds of
segmentation evaluations [15]. A DSC > 0.70 is usually regarded as excellent
agreement [15].

Computation time is also measured in order to compare the two different
initializations methods and how the initialization affects the computation time.
The PC used in the experiments is an Intel(R) Core(TM)2 CPU 2.66GHz with
2GB RAM.

3.4 Results

STREMv1, STREMv1.5, STREMv2 Table 1 (left) clearly demonstrates
that STREMv2 in combination with NLM+IIH yields the best results in terms
of DSC. Comparison of v1 and v1.5 algorithms shows that the results are exactly
the same. This means that both algorithms give the same model parameters, but,
as shown in Table 1 (right), the initialization of STREMv1 outperforms as the
computation time is shorter. Multiple mEM give a better initialization than
the atlas registration for the multidimensional mEM so this last one needs less
iterations to converge. If we compare STREMv1.5 and STREMv2.0, we can see
how the new rules defined to remove false positives increase DSC values without
significantly increasing the computing time.
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Preprocessing workflows Table 1 (left) and Figure 2 show the results of all
different workflows. The NLM+IIH workflow displays better results for each sub-
ject. The preprocessing task which most impacts the segmentation results is the
IIH correction. This result is comprehensible as STREMv1 is based exclusively
on intensities, thus spatial IIH causes a poor detectability of WML.

On the other hand the effects of denoising are more difficult to evaluate.
Denoising without IIH correction may not be of any help if images have a large
IIH as in Subject 3. In addition, the order of preprocessing steps is not obvious.
Denoising methods are supposed to work better with piecewise constant regions,
that is why IIH correction is usually used before denoising [16]. The drawback
is that IIH correction changes locally the nature of the noise when correcting
a multiplicative inhomogeneity field affecting the denoising algorithm. In our
experiments NLM+IIH works better than IIH+NLM.

Subj1 Subj2 Subj3

Basic(v1) 0.31 0.20 0.42
NLM(v1) 0.33 0.29 0.42
IIH(v1) 0.31 0.49 0.53
IIH+NLM(v1) 0.30 0.46 0.48
NLM+IIH(v1) 0.31 0.49 0.56
NLM+IIH(v1.5) 0.31 0.49 0.56
NLM+IIH(v2) 0.38 0.66 0.64

IIH NLM. Reg. Atl. STREM Total

Basic(v1) 0 0 339 99 2741 3179
NLM(v1) 0 429 347 136 2486 3398
IIH(v1) 68 0 387 186 1082 1723
IIH+NLM(v1) 68 424 355 48 911 1806
NLM+IIH(v1) 80 429 362 140 923 1934
NLM+IIH(v1.5) 80 429 362 0 584 1455
NLM+IIH(v2) 80 429 362 0 588 1459

Fig. 1. Left Table: DSC values for all subjects and workflows. Right Table: Compu-
tation time in seconds for subject1 of each step and the total time, where Atl. means
atlas registration for the initialization of STREMv1.

4 Discussion & Conclusion

Segmentation methods are usually evaluated without considering the prepro-
cessing workflow, but, as we have shown, the choice of the preprocessing tasks
and their order in the overall workflow have a great impact on the segmenta-
tion performance. From our point of view, this topic should be studied for every
method which requires a complex workflow.

We presented a fully automated workflow for WML segmentation, but further
studies are necessary in order to address open questions. In this study, we have
not compared different algorithms for the same task and we have evaluated the
influence of using generic algorithms, but specific algorithms for MS patients
may be more efficient for our workflow. This study will be extended recruiting
more subjects and different algorithms in order to create a more reliable and
more specific tool for its application in clinical MS trials.
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Fig. 2. Comparison of results for subject 3: From left to right, and from top to bot-
tom: FLAIR sequence, Basic(v1), NLM(v1), IIH(v1), IIH+NLM(v1), NLM+IIH(v1),
NLM+IIH(v1.5), NLM+IIH(v2). Color coding is: Orange: True Positives, Green: False
Negatives, Red: False Positives
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