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Abstract: This paper presents an image reconstruction method for X-ray tomography from limited 

range projections. It makes use of the discrete Radon transform and a set of discrete orthogonal 

Tchebichef polynomials to define the projection moments and the image moments. By establishing 

the relationship between these two sets of moments, we show how to estimate the unknown 

projections from known projections in order to improve the image reconstruction. Simulation results 

are provided in order to validate the method and to compare its performance with some existing 

algorithms. 

Keywords: discrete Radon transform; discrete orthogonal moments; projection moments; image 

reconstruction 

 

1. Introduction 

The issue of image reconstruction has received much attention in the medical imaging literature. This 

is due to the constant search for improvements of imaging modalities, ranging from X-ray 

computerized tomography and emission tomography up to acoustic and optical techniques. They all 

bring different insights in the human body either morphological or functional. The standard 

mathematical model of X-ray computerized tomography (CT) assumes that the sensing device 

measures the line integrals of the object attenuation coefficient at some known orientations. An 

analytical formulation for the reconstruction of two-dimensional (2-D) tomographic images from 

projections, i.e., an inverse problem, has been first proposed by Radon in 1917. The filtered 

back-projection (FBP) algorithm, which can be seen as a computer implementation of Radon’s 

inversion formula, still plays an important role although algebraic methods are also intensively used 

[1-3]. However, the reconstruction based on FBP algorithm requires the projections for all angles from 

0 to π. A major health concern today is related to the reduction of dose to the patient which means 

limiting either the X-ray source intensity or the number of projections. This issue is critical not only 

for diagnosis imaging but also in interventional setting where for instance rotational—X is used. 

One way to improve the quality of the reconstructed image when only limited range projections 

are available consists to estimate the projections at unknown views by moment-based approaches [4, 
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5]. Milanfar et al. [6] presented a variational framework for the tomographic reconstruction of an 

image from the maximum likelihood estimates of its orthogonal moments. Basu and Bresler [7, 8] 

investigated the problem of recovering the view angles from the projection data by means of moment 

method. By establishing a relationship between the image geometric moments and projection 

moments, Wang and Sze [9] presented an approach to reconstruct the CT images from limited range 

projections. Shu et al. [10] extended Wang’s method by using the orthogonal Legendre moments to 

improve the quality of the reconstructed image. Its advantage is that the orthogonal moments have 

simple inverse transform, thus the image can be more easily reconstructed from the orthogonal 

moments. Moreover, the geometric moments, especially at high order, are sensitive to noise and 

digitization error. However, both Wang’s and Shu’s methods were based on the use of continuous 

moments. When applied to 2-D digital images, the double integrals are usually approximated by 

discrete summations that lead to numerical errors in the computed moments. The discrete orthogonal 

moments recently introduced for image analysis [11-14], in particular Tchebichef moments, have 

shown a better image representation capability than the traditional continuous orthogonal moments 

because they do not require any discrete approximation for numerical implementation. Two other 

arguments motivate our use of the discrete orthogonal Tchebichef polynomials: (1) they are the 

simplest among all the discrete orthogonal polynomials; (2) they have a definition domain ideally 

suited for square images [11]. 

   Since the reconstruction techniques are typically modeled in the domain of the continuous 2-D 

plane from which projections are acquired, the need to impose the reconstructed solution as an image 

on a 2-D discrete grid of pixels is usually accommodated at a later stage of the implementation for 

each algorithm. In some approaches, these discrete sampling issues do constrain the data acquisition 

process and the reconstruction and may influence the experimental design of CT scanner. Moreover, 

when using the discrete orthogonal polynomials to define the projection moments, the traditional 

Radon transform is no longer applicable, and a discrete version of Radon transform is required. 

Guédon and Normand [15] introduced the so-called Mojette transform as a discrete geometric tool. 

Beylkin [16] described the discrete Radon transform (DRT) to map a set of sampled image points 
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onto a set of discrete projections. The algebraic mapping for this transformation can be computed 

exactly since no interpolation of the data is required. Matus and Flusser [17] developed a group 

theoretic and Fourier based approach to the DRT. Svalbe [18] and Kingston [19] derived improved 

versions of DRT to handle both continuous projections and discrete projections in Fourier and Radon 

space. The advantage of the techniques reported in [18] and [19] is that they require no pre-processing 

of the projection data, a straightforward 1-D linear interpolation and a simple sorting of projection 

samples. 

The organization of this paper is as follows. A brief outline of the discrete Radon transform is 

provided in Section 2. The definition of projection moments and image moments is given in Section 3. 

In this section, we also establish a relationship between the projection moments and image moments 

and discuss how to estimate the projection moments at any specific view from the image moments. 

The performance of the proposed solution with a comparison to some existing methods is reported in 

Section 4. The concluding remarks are given in Section 5. 

 

2. Discrete Radon transform 

Because the data projections are acquired in discrete form, we use the following version of DRT 

suggested by Kingston [19] 
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where I(x, y) is the image function, N×N is the image size, and N is assumed to be a prime number; 

δ(x) is the delta function, k∈{0, 1, 2… Nθ – 1}, Nθ = N(|xθ|+ yθ), xθ and yθ are respectively the 

horizontal and vertical distances with the nearest pixels. 

Using the Fourier slice theorem, the mapping from a continuous projection to a discrete projection 

can be implemented by interpolation. It means that each individual discrete projection R(k, θ) at a 

given view θ, denoted hereafter by Rθ(k), can be calculated by interpolation using the FFT data of all 

continuous projections gθ(s), which can be referred to Kingston [19]. The image can be reconstructed 

using the inverse DRT (IDRT) 
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where R(λ, m) is another version of DRT which is given by [18] 
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Here <A>mod(N) denotes the residue of A modulo N, t∈{0, 1, 2, …, N–1}. 

If only the projections R(k, θ) defined by Eq. (1) are available, we need to transform them into the 

corresponding R(λ, m) before reconstruction. The detailed description of transformation from R(λ, m) 

to R(k, θ) can be found in [18] and [19]. 

 

3. Method 

3.1 Discrete projection moment and image moment 

The moments of discrete projection Rθ(k) are called the discrete projection moments. In this paper, 

we use a set of discrete orthonormal polynomials to define the projection moments. Let tp(k), p = 0, 1, 

…, L, be a set of discrete orthonormal polynomials defined on the interval [0, Nθ–1], the pth order 

orthonormal projection moments of Rθ(k) is defined as 
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Substituting (1) into (4) and using the property of delta function, we have 
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Let Tnm be the (n+m)th order discrete orthonormal moment of the image intensity function I(x, y) 

defined as 
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The orthogonality property of polynomials leads to the following approximate inverse moment 
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where M denotes the maximum order of moments used in the reconstruction. 

The objective of the next subsection is to establish a relationship between the orthonormal 

projection moments defined by (5) and the discrete orthonormal moments of I(x, y) defined by (6). 

 

3.2 Relationship between Discrete projection moment and image moment 

Let us first introduce some basic definitions. Define the pth order discrete orthonormal polynomial 

tp(x) as 
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where (–x)q is the Pochhammer symbol defined by 
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It can be deduced from (8) that 
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where Dp = (dlq), with 0 ≤ q ≤ l ≤ p, is the inverse matrix of the lower triangular matrix Cp = (clq). 

Now we can establish the relationship between the projection moments and image moments. 

Theorem 1. The discrete orthogonal projection moment of order p at given view θ, Hp(θ), can be 

expressed as a linear combination of discrete orthogonal image moments, Tnm, of same order and 

lower, i.e., 
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Here S1(i, j) and S2(i, j) are respectively the first kind and second kind of Stirling numbers [20]. 

The proof of Theorem 1 is given in Appendix. 

Equation (10) can be expressed in matrix form. Let HM(θ) = [H0(θ), H1(θ), …, HM(θ)]T, T(k) = [Tk0, 

Tk-1, 1, Tk-2, 2, …, T1,k-1, T0k ], ΦM = [T(0), T(1), T(2), …, T(M)]T where M is the maximum order of 

moments to be used, then we have 

MMMH ΦΨ= )()( θθ ,                            (12) 

where ΨM(θ) denotes a matrix of size (M+1) × (M+1)(M+2)/2 which is defined by 
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Here the elements μnm(p, θ), with 0 ≤ n, m, p ≤ M, are given by (11). 

Proposition 1. Given the discrete projections of I(x, y) at L different sampling angles θi, 1 ≤ i ≤ L, one 

can uniquely determine the first L moment vectors T(k) of I(x, y), 0 ≤ k < L. This can be done using 

only the first L orthogonal discrete projection moments. 

For the proof of Proposition 1, we refer to Milanfar et al. [6]. 

Theorem 1 describes a general result which is valid for all the sets of discrete orthonormal 

polynomials. In the rest of the paper, we focus on the use of discrete orthonormal Tchebichef 

polynomials. Note that other discrete orthogonal polynomials such as Krawtchouk [12], Racah [13] or 

dual Hahn polynomials [14] can be considered. The pth order discrete orthonormal Tchebichef 

polynomial is defined by [11] 
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where  is the generalized hypergeometric function, β(p, N) is a constant independent of x. A )(23 ⋅F

 7



 
 

8

suitable choice of β(p, N) is [11] 
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An essential step when applying a given polynomial to the reconstruction problem is to find the 

inverse matrix Dp. For the discrete orthonormal Tchebichef polynomials, we have the following 

result. 

Proposition 2. For the lower triangular matrix Cp whose elements clq are defined by (16), the 

elements of the inverse matrix Dp are given by 
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e proof of Proposition 2 is given in Appendix. 
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Substitution of (16) and (17) into (19) leads to 
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The coefficients Uq(p, N) and Wij(n, m, N) can be computed through 
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i econd kinds of Stirling numbers, S1(r, k) and S2(k, m), can be pre-calculated 

nd stored in a look-up table. The above recurrence formulas allow reducing the computational 

 

relationship between the given projection moments and the image moments 

established above, the following shows how to compute the unknown discrete projections from the 

a

complexity of μnm(p, θ). 

3.3 Estimation of the discrete projection moments at any view 

Based on the 
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orthogonality of Tchebichef polynomials leads to the following approximate inverse transform 
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where M denotes the maximum order of moments used in the reconstruction. 
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onstruct the original 

 corresponding known continuous projections according 

pute the discrete projection moments up to order M from given discrete projections using 

ete 

se the technique 

escribed above. The reason for such a choice will be explained in the next section. 

iscussions 

4.

Equation (33) provides the basis to estimate the unknown discrete projections from the known image 

moments. When all the projection data are available, they can be used to rec

image. The main steps of the reconstruction process are summarized as follows. 

1) Acquire the discrete projections from

to the method described in Section 2; 

2) Com

(4); 

3) Calculate the image moments of order up to M based on (12); 

4) Estimate the unknown discrete projections from image moments using (33); 

5) Once the unknown projections are estimated, use either the FBP method or the inverse discr

Radon transform (IDRT) defined by (2) to reconstruct the original discretized image I(x, y). 

It is worth noting that the image reconstruction can also be done by using the approximate inverse 

moment transform defined by (7) when the image moments of order up to M are calculated. If such a 

strategy is adopted, the steps 4) and 5) can be omitted. However, we prefer to u

d

 

4. Results and d

1 Simulation 

A simulated image of size 127×127 pixels (Fig. 1) has been built for performance evaluation and 
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comparison purpose. The main object is an ellipse with size 42×39 pixels and the two internal ellipses 

have 6×5 and 9.5×9 axes (The three ellipses will be denoted by E1, E2 and E3 whose density values 

are 1, 3 and 4 respectively). We use this phantom to compare the two methods for computing the 

image moments. The first method is directly based on (7) since the image is known and the second 

one is performed through the computation of discrete projection moments with the help of (12). In 

both methods, the discrete orthonormal moments, Tnm, of order up to 16 are calculated. The 

differences between the moment values using these two methods are shown in Table 1. It can be 

observed from this table that the difference between the real image moments and estimated image 

moments is very small. This result points out that the image moments can be well estimated from the 

discrete projection moments. 

To test the robustness of the proposed method, we first consider the case where the projections are 

known over the whole interval [0,π], the reference axis being horizontal. The image moments of order 

up to M = 20 are calculated, and (33) is used to estimate the projection, )(kRθ , at any specified view θ. 

The initially acquired projections gθ.(s)  the projections estimated with the methods based on both 

the Legendre moments (denoted by )(

and

~ sgθ ) and the Tchebichef moments of order up to M = 20 at 

angles 00, 400, 600, 900, 1300 an 0d 14 0 are depicted in Fig. 2. Note that for comparison purpose, the 

estimated discrete projections )(kRθ  have been converted to ( )g sθ  using the interpolation in 

Fourier space [19]. They show a good fit between the estimated and the original projections, with a 

slightly better performance of the proposed method when compared to the Legendre moment based 

method, as exemplified for the angles 400 and 1400. We then assume that projections are available in 

the range of 250 ≤ θ ≤ 1550, and unknown over 00 ≤ θ < 250 and 1550 < θ ≤ 1800. Fig. 3 shows the 

estimated projections using both the proposed method and Legendre moment-based method at views 

of 00, 100, 300, 1500, 1700 and 1800. Here also, the discrete Tchebichef moments perform better than 

the continuous Legendre moments. 

We now consider the problem of image reconstruction from limited range projections. The 

following configuration of continuous projections is used: (a) the total view varies from 250 to 1550; 

(b) the angular sampling rate is 10; (c) the spatial ray sampling rate is 127 rays per view. Fig. 4(b) 
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shows the reconstructed image from incomplete projections (250–1550) using the filtered 

back-projection (FBP) algorithm. Because the FBP algorithm requires the continuous projections, g(s, 

θ), for all s and θ, the value of g(s, θ) is set to zero at the unknown views. The projection data 

re are assumed to be noiseless and a Ram-Lak filter with cutoff frequency 

)2/(1max sΔ≥

considered he

ξ  has been applied for the FBP in order to avoid the overlapping ph omenon (Δs 

denotes the sampling interval of s) [2]. Note also that for noiseless data, the value of ξ

en

) between the original image I and the reconstructed 

max is chosen in 

such a way that the mean square error (MSE

image Î  is minimal. The MSE is defined by 

2

2

ˆ
(%) 100%

I I
MSE

I

We now apply our method as well as the continuous orthogonal moment based method described in 

[10] to compute the image moments from the projection moments with maximum order M equal to 5, 

10, 15 and 20. These moment values are used to estimate the unknown projections. Then, the FBP 

method is applied to reconstruct the image from all the projections in which the missing angle 

projections are estimated by the method based on Legendre moments (Fig. 4(e)) and IDRT method is 

used to reconstruct the image where the unknown projections are estimated by Tchebichef moments 

(Fig. 4(f)). We also apply the FBP algorithm instead of the IDRT to reconstruct the image: the 

corresponding reconstructed images are depicted in Fig. 4(g). For comparison purpose, the 

reconstructed results using MLEM (Maximum Likelihood Expectation Maximum) [21], MXE 

(Minimum Cross-Entropy) [22] and SART (Simultaneous Algebraic Reconstruction Technique) [23] 

are displayed in Fig. 4 (b)-(d) where the results have been obtained after 100 iterations (20 iterations 

for SART). As previously indicated, when the image moments are available, it is also possible to use 

the inverse moment transform defined by (7) to reconstruct the origi

−
= × .                                (34) 

nal image. Fig. 4(h) shows the 

reconstructed images using (7) for M = 5, 10, 15, and 20 respectively. 

Table 2 shows the MSEs for the images displayed in Fig. 4 and Table 3 provides the mean grey 

levels of three reconstructed ellipses E1, E2 and E3. From Fig. 4, Tables 2 and 3, we can see that the 

statistical methods achieve better performance compared to FBP method except for ART method 
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when parts of projection data are missing. That is because the comparison and correction steps in 

iterative statistical methods can modify the incomplete projections during each iteration. While they 

significantly decrease with the moment order, all the reconstructed results remain very close when 

using the different methods, even if the Tchebichef moments lead to lower MSEs. However, when 

looking at the images, different behaviors can be observed. If we find the classical artifacts of the FBP 

and statistical algorithms in (a)-(d), (e) and also in (g), they are not observed in (f) where the IDRT is 

applied. The contours of the phantom ellipses are better defined and their original shapes are 

preserved. Conversely, we can see a loss in homogeneity of the regions, with a random like pattern, 

without any obvious link with the acquisition geometry. The Legendre and Tchebichef based images 

do not visually show significant differences when they are associated with the FBP. It can also be 

seen from this figure that, for the same value of M, the quality of the reconstructed image based on (7) 

(shown in (h)) is poorer than those obtained with either FBP or IDRT algorithm. One way to improve 

the quality of the reconstructed image based on the inverse moment transform is to increase the value 

of M. However, such a strategy would lead to higher computational complexity since the dimension of 

the matrix ΨM(θ) defined in (13) is (M+1)×(M+1)(M+2)/2. Moreover, high order moments are more 

sensitive to noise than the low order moments [24] (this point will be discussed later). For these 

reasons, the inverse moment transform in the reconstruction process was not further considered. In 

this experiment, the whole procedure costs 35.9s (35.11s when using FBP method for reconstruction), 

and the computation time required for each step (from step 2 to step 5) is respectively 2.6%, 51.8%, 

24.5%, 12.1% of the total time. Note that the program was implemented in Matlab 7.0.1 on a PC 

CORE 2 3.0GHz, 2.0 GB RAM. It is worth noting that the computation of the matrix ΨM(θ) for both 

known and unknown views in this experiment is approximately 73% of the whole computation time, 

thus, it is the most time consuming process in our method. Generally speaking, the greater value of M, 

th

ed for Legendre 

e higher computation time will be. 

To bring additional cues, we compare our method with the Legendre moment based method, using 

the maximum order of moments required to get similar values of MSE. In all cases (Table 4), the 

maximum order of moments used in the proposed method is lower than that need
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moments. Thus, a significant reduction in computational complexity can be reached. 

To test the robustness of the methods to noise, the same example (the projections are always 

assumed to be available in the range of 250 ≤ θ ≤ 1550) is used where Poisson noise, with the mean 

value equal to the projection intensity, was added to the projection data. When the input data are 

corrupted by noise, the choice of the cut-off frequency may be more complicated. According to [25], a 

filter with a cut-off frequency that is too high may maintain resolution and contrast, but allow noise to 

degrade the reconstructed image quality. Conversely, a filter with a too low cut-off frequency will 

suppress image noise, but may oversmooth the image, decrease contrast and eventually introduce 

ringing artifacts. Different values of ξmax have been tested in this experiment, the MSEs 

corresponding to the FBP method, the Legendre moment method associated with FBP algorithm, and 

the proposed method combined with both IDRT and FBP, are illustrated in Table 5. It can be observed 

from this table that for a fixed value of M, the MSEs depend on the cut-off frequency except for the 

case where the IDRT is used in the reconstruction process (i.e. no filtering is required for IDRT). Fig. 

5 depicts the reconstructed images corresponding to different approaches for ξmax = 0.7 and M = 5, 10, 

15 and 17, respectively (in (e)-(g)), as well as the results obtained with the statistical methods after 50 

iterations (in (b)-(d)). The corresponding MSE values are shown in Table 6. We can see from Figure 5 

and Table 6 that for M = 17, the quality of the reconstructed images degrade for both Legendre 

moment method and the proposed method. This effect is due to the fact that the higher order moments 

are sensitive to noise. These results point out that for higher noise level, lower moment order should 

e used. To improve the quality of the reconstruction in case of noise, one way consists to utilize the 

its impact as suggested by Schaeffter et al. in [26]. 

 

ometry (723 rays per view) 

ha

b

projection based filter technique to reduce 

4.2 Evaluation on “pseudo-real” data 

Since real projection data are not available from imaging devices, the evaluation has been 

conducted on previously reconstructed images, acquired on standard CT devices (Fig. 6(a)) whose 

sizes are all 509*509, hence the so-called “pseudo-real” data. A parallel ge

s been used to generate the projections over [00, 1800] with 10 angular sampling. Poisson noise with 
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mean value equal to the projection intensity was added to the projections. 

The limited range projections are defined over [α, 1800 –α] where α is an adjustable parameter. The 

approach using the discrete Tchebichef moments has been compared to the continuous Legendre 

moment method for α = 0, 10, 15, 20, 25. These moment values are then used to estimate the 

unknown projections. The reconstructed images using different approaches for different values of α 

are displayed in Fig. 6. Fig. 6(b)-(f) and Fig. 6(g)-(k) provide the reconstruction results for different 

values of α using FBP method and the method based on Legendre moments. The cut-off frequency of 

the Ram-Lak filter used in FBP algorithm is set to 0.7. As in the previous example, when the 

unknown projections are estimated with Eq. (32), the IDRT method was applied. The reconstruction 

results are shown in Fig. 6 (l)-(p). These pictures confirm the observations previously made on the 

phantom data. The quality of the reconstructions using FBP degrades quickly with smaller intervals of 

view, especially on the left and right sides of the head. The resulting images remain blurred and a loss 

of contrast can be seen even for the lowest value of α. However, some soft tissues features (for 

instance, the black regions at the center of the brain) are restituted. The reconstruction resulting from 

our approach provides a good contrast for the skull and an improved resolution for very fine bones 

(for instance just below the nose) with well defined contours. However, the soft tissue details 

mentioned before are lost and the regions depict a random-like texture. The corresponding MSE 

values are displayed in Table 7 and the difference of mean grey levels of region of interest (denoted 

by a rectangle in Fig. 6(a)) between the reconstructed results and the original image (Fig. 6(a)) are 

displayed in Table 8. They show the fast decrease in performance when α is increasing for FBP. If 

this trend is similar for moment-based approaches, it is less pronounced. In other words, the 

oment-based approaches seem more robust to limited range projections. Here also, both the MSE 

obtained with Tchebichef moments and IDRT are the lowest. 

 

m

and the difference of mean grey levels 

5. Conclusion and Perspectives 

A new method has been described for tomographic image reconstruction from limited range 

projections. The discrete Radon transform and the discrete Tchebichef polynomials have been used to 
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establish the relationship between the projection moments and image moments. Based on this 

relationship, the image moments were calculated from the known projections, and they were then 

used to estimate the unknown projections. The effectiveness of the method has been confirmed by the 

results obtained on simulated phantom and “pseudo-real” data. These experiments have shown some 

improvement in MSEs when using Tchebichef polynomials instead of the continuous orthogonal 

moments (e.g. Legendre moments). The visual inspection of the reconstructed images, however, 

pointed out advantages and disadvantages. On the positive side, the contours and small bone 

structures are better preserved. On the negative side, region features are less homogeneous and soft 

tissue properties can be lost. The CT scanner being mainly devoted to bone analysis, this may be 

acceptable in clinical situations. It must be emphasized that the situations experimentally simulated in 

this paper are extremely demanding (from 1600 down to 1300 for the angular view). They are 

nevertheless close to those encountered in rotational—X which, at the moment, is mainly devoted to 

vascular explorations. The search for efficient methods capable to fulfill the clinical requirements, 

while significantly reducing the irradiation, remains a true health problem and an open challenge. Our 

future work will focus on improving the present approach and extending its scope to fan-beam and 

cone-beam geometries. 
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Appendix 

Proof of Theorem 1. Using (8), (5) can be rewritten as 
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Substitution of (A3) into (A1) yields 
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Using (6) and making the change of variables r′=r−n−m, s′=s−m in the last equation of the above 

expression, we can derive the result claimed in Theorem 1. 

Proof of Proposition 2. To prove the proposition, we need to verify the following relation 
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For l = r, (A6) becomes 
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To prove (A6) for r < l, let 
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The proof is now complete. 
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TABLE 1: ERRORS BETWEEN THE IMAGE MOMENT VALUES OBTAINED WITH EQ. (6) AND IMAGE 
MOMENT VALUES ESTIMATED FROM DIGITAL PROJECTION MOMENTS WITH EQ. (11) 
m 

n 0 2 4 8 

0 0.0000 -0.00008 0.00046 -0.0001 

2 -0.00027 0.0002 -0.00003 0.00005 

4 0.00031 -0.00012 -0.0001 -0.00006 

8 0.0000 -0.000003 -0.00004 -0.00005 
 

 
TABLE 2. RECONSTRUCTION MSE (%) OF FIG. 4 FOR DIFFERENT VALUES OF MAXIMUM ORDER OF 

MOMENTS M 
    M 

Method 5 10 15 20 

Legendre 11.2860 8.4279 5.9729 5.4071 
Tchebichef 

(IDRT) 9.0753 6.5466 3.6704 3.0925 

Tchebichef 
(FBP) 10.5623 7.0158 4.9478 3.9878 

FBP 17.8945 

SART 18.9854 

MLEM 5.5214 

MXE 5.4801 
 

 
TABLE 3 THE MEAN GREY LEVELS OF THREE RECONSTRUCTED ELLIPSES E1, E2 AND E3. 

    M 
Method 5 10 15 20 

FBP 0.739:2.024:2.744 
SART 0.669:2.005:2.736 

MLEM 1.003:2.725:3.689 
MXE 1.003:2.742:3.699 

Legendre 0.978:2.241:3.035 1.008:2.251:3.205 1.006:2.455:3.437 0.995:2.529:3.545 
Tchebichef(IDRT) 0.994:2.421:3.257 1.004:2.498:3.347 1.003:2.774:3.701 1.002:2.905:3.875 
Tchebichef(FBP) 0.982:2.333:3.185 1.006:2.412:3.265 1.004:2.678:3.521 0.997:2.716:3.803 
 
 

TABLE 4. MAXIMUM ORDERS OF MOMENTS REQUIRED FOR THE METHODS BASED ON LEGENDRE 
POLYNOMIALS AND TCHEBICHEF POLYNOMIALS TO GET SIMILAR VALUES OF MSE 
 MSE(%) values and corresponding maximum order of moments M 

Legendre 9.3100 (M=8) 8.4279 (M=10) 5.9729 (M=15) 5.4071 (M=20) 
Tchebichef 

(IDRT) 9.0753 (M=5) 8.4466 (M=8) 5.8704 (M=11) 5.2104 (M=12) 

Tchebichef 
(FBP) 9.1024 (M=5) 8.5277 (M=8) 6.0023 (M=11) 5.4128 (M=12) 
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TABLE 5. RECONSTRUCTION MSE (%) USING LEGENDRE MOMENTS AND TCHEBICHEF MOMENTS FOR 
DIFFERENT VALUES OF CUT-OFF FREQUENCY WITH M = 15. 

ξmax 
Method 0.5 0.7 0.9 1 

FBP 19.427 18.729 18.457 18.556 
Legendre 7.866 7.385 7.258 7.265 

Tchebichef (IDRT) 5.123 5.123 5.123 5.123 
Tchebichef (FBP ) 6.874 6.474 6.001 6.311 

 
 

TABLE 6. RECONSTRUCTION MSE (%) OF FIG. 5 FOR DIFFERENT VALUES OF MAXIMUM ORDER OF 
MOMENTS M WITH THE CUT-OFF FREQUENCY ξMAX = 0.7. 

M 
Method 

5 10 15 17 

Legendre 12.543 9.318 7.385 42.546 
Tchebichef(IDRT) 9.897 7.691 5.123 30.444 
Tchebichef(FBP ) 11.462 8.223 6.474 38.187 

FBP 18.729 
SART 19.965 

MLEM 9.542 
MXE 9.398 

 
 

TABLE 7. RECONSTRUCTION MSE (%) OF FIG. 6 USING FBP METHOD, THE METHOD BASED ON 
LEGENDRE MOMENTS AND OUR METHOD WITH MAXIMUM ORDER M = 15 FOR DIFFERENT VALUES OF 

α. 
α 

Method 0 10 15 20 25 

FBP 25.052 32.731 36.902 41.614 45.072 
Legendre 25.052 27.733 28.813 31.681 35.402 

Tchebichef (IDRT) 19.524 21.011 22.412 25.314 29.768 
 

TABLE 8 THE DIFFERENCE OF MEAN GREY LEVELS OF REGIONS OF INTEREST BETWEEN 
RECONSTRUCTED RESULTS SHOWN IN FIG.6 AND ORIGINAL IMAGE IN FIG.6 (A). 

α 
Method 0 10 15 20 25 

FBP 2.3291 18.3010 26.7710 34.6410 41.9750 
Legendre 2.3291 3.7642 5.8551 8.9654 10.1023 

Tchebichef (IDRT) 1.9283 2.4501. 4.6709 6.4441 9.0123 
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Figure 1 simulated phantom and the sample directions at 00 and 900. 
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(c)                                        (d) 
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(e)                                         (f) 

Figure 2 Results when all the projections are known. The projections are compared at different views: 
00, 400, 600, 900, 1300 and 1400. Image moments of order up to 20 are used. (solid line: original 
projections; cross: projections estimated from Tchebichef moments; point: projections estimated from 
Legendre moments) 
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(c)                                         (d) 
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(e)                                         (f) 

Figure 3 Results when only the projections in the range of 250 ≤ θ ≤ 1550 are known. The projections 
are compared at unknown views: 00, 100, 300, 1500, 1700 and 1800. Image moments of order up to 20 
are used. (solid line: original projections; cross: projections estimated from Tchebichef moments; 
point: projections estimated from Legendre moments) 
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(a)                 (b)                 (c)                 (d) 

 
(e)   M=5              M=10              M=15              M=20 

 
(f)   M=5              M=10              M=15              M=20 

 
(g)   M=5              M=10              M=15              M=20 

 
(h)   M=5              M=10              M=15              M=20 

Figure 4 Reconstruction results from incomplete projections (250-1550). (a)-(d) Reconstruction using 
FBP, SART, MLEM, MXE method respectively; (e) Reconstructions using Legendre moments with 
different values of maximum order M; (f) Reconstructions using Tchebichef moments with different 
values of M, where the inverse discrete Radon transform (IDRT) is used in the reconstruction process; 
(g) Reconstruction using Tchebichef moments with different values of M, where the FBP is used in 
reconstruction process; (h) Reconstruction using the inverse moment transform defined by (6) with 
different values of M. 
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(a)                 (b)                 (c)                 (d) 

 
(e)   M=5              M=10              M=15              M=17 

 
(f)   M=5              M=10              M=15              M=17 

 
(g)   M=5              M=10              M=15              M=17 

Figure 5 Reconstruction from incomplete projections (250-1550) with Poisson noise when cut-off 
frequency ξmax = 0.7. (a)-(d) Reconstruction using FBP, SART, MLEM, MXE method respectively;  
(e) Reconstructions using Legendre moments with different values of M; (f) Reconstructions using 
Tchebichef moments with different values of M where the inverse discrete Radon transform (IDRT) is 
used in the reconstruction process; (g) Reconstruction results using Tchebichef moments with 
different values of M where the FBP is used in reconstruction process. 
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(a)                               (b) α=0 

 
                     (c) α=10                              (d) α=15 

 
(e) α=20                            (f) α=25 
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(g) α=0                             (h) α=10 

 
(i) α=15                             (j) α=20 

 
(k) α=25                             (l) α=0 
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(m) α=10                           (n) α=15 

 
(o) α=20                             (p) α=25 

Figure 6 Reconstruction results of “pseudo-real” data with Poisson noise for α = 0, 10, 15, 20, 25 
respectively. The size of image is 509×509 and maximum order M is 15. (a) Original image; (b)-(f) 
Reconstruction results using FBP method; (g)-(k) Reconstruction results using the method based on 
Legendre moments; (l)-(p) Reconstruction results using the proposed method where the IDRT is used 
in the reconstruction process. 
 

 


