
HAL Id: inserm-00420576
https://inserm.hal.science/inserm-00420576v1

Submitted on 29 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Construction of a complete set of orthogonal
Fourier-Mellin moment invariants for pattern

recognition applications
Hui Zhang, Huazhong Shu, Pascal Haigron, Limin M. Luo, Baosheng Li

To cite this version:
Hui Zhang, Huazhong Shu, Pascal Haigron, Limin M. Luo, Baosheng Li. Construction of a complete
set of orthogonal Fourier-Mellin moment invariants for pattern recognition applications. Image and
Vision Computing, 2010, 28 (1), pp.38-44. �10.1016/j.imavis.2009.04.004�. �inserm-00420576�

https://inserm.hal.science/inserm-00420576v1
https://hal.archives-ouvertes.fr


Construction of a complete set of orthogonal Fourier-Mellin moment 

invariants for pattern recognition applications 

H. Zhang1, H. Z. Shu1, 5, P. Haigron2, 3, 5, B.S. Li4, L. M. Luo1, 5 

1Laboratory of Image Science and Technology, School of Computer Science and Engineering, 

Southeast University, 210096 Nanjing, China 

2INSERM, U642, 35042 Rennes, France 

3Laboratoire Traitement du Signal et de l’Image, Université de Rennes I, 35042 Rennes, 

France 

4Department of Radiation Oncology, Shandong Cancer Hospital, 250117 Jinan, China 

5Centre de Recherche en Information Biomédicale Sino-français (CRIBs) 

 

 

Information about the corresponding author 

Huazhong Shu, Ph.D 

Laboratory of Image Science and Technology 

School of Computer Science and Engineering 

Southeast University, 210096, Nanjing, China 

Tel: 00-86-25-83 79 42 49 

Fax: 00-86-25-83 79 26 98 

Email: shu.list@seu.edu.cn 

 1



Abstract The completeness property of a set of invariant descriptors is of fundamental 

importance from the theoretical as well as the practical points of view. In this paper, we 

propose a general approach to construct a complete set of orthogonal Fourier-Mellin moment 

(OFMM) invariants. By establishing a relationship between the OFMMs of the original image 

and those of the image having the same shape but distinct orientation and scale, a complete 

set of scale and rotation invariants is derived. The efficiency and the robustness to noise of the 

method for recognition tasks are shown by comparing it with some existing methods on 

several data sets. 

Key Words: Orthogonal Fourier-Mellin moments, Completeness, Similarity invariants, 

Moment invariants, Pattern recognition 

 

1. Introduction 

Description of objects invariant to geometric transformations such as translation, scale 

and rotation is a basic tool in pattern recognition. The performance of pattern recognition 

systems depends on the specific feature extraction technique used to represent a pattern. A 

popular class of invariant features is based on the moment techniques including geometric 

moment, complex moments and orthogonal moments [1-9]. Among them, moments with 

orthogonal basis functions can represent the image by a set of mutually independent 

descriptors and thus have a minimal amount of information redundancy. As noted by Ghorbel 

et al. [10, 11], the most important properties to assess by the image descriptors are: (1) 

invariance against some geometrical transformations (translation, rotation, scaling); (2) 

stability to noise, to blur, to non-rigid and small local deformations; and (3) completeness. 
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In the past decades, the construction of moment invariants and their application to pattern 

recognition have been extensively investigated [12-15]. Since the Zernike moments, 

pseudo-Zernike moments and orthogonal Fourier-Mellin moments (OFMMs) are all invariant 

under image rotation, they have been successfully used in the fields of image analysis and 

pattern recognition [16-24]. A comparative study of the Zernike moments and OFMMs in 

terms of recognition accuracy has been recently provided by Kan and Srinath [25]. It was 

shown that the OFMMs are better suited for character recognition tasks. The major drawback 

however, when using the orthogonal moments, is the lack of native scale invariance. To solve 

this problem, the normalization process [18] is often used to achieve the scale invariance. 

Such a process may lead to inaccuracy since the normalization of the images requires 

re-sampling and re-quantifying. In order to improve the accuracy, Chong et al. [26] recently 

proposed a method based on the properties of pseudo-Zernike polynomial to derive the scale 

invariants of pseudo-Zernike moments. A similar approach was then used to construct both 

translation and scale invariants of Legendre moments [27]. The problem of scale and 

translation invariants of Tchebichef moments has been investigated by Zhu et al. [28]. 

Discrete orthogonal moments such as Tchebichef moments yield better performance than the 

continuous orthogonal moments, but it is difficult to derive the rotation invariants. It was 

shown that the methods developed in [26-28] perform better than the classical approaches 

such as the image normalization method and indirect method. However, it seems difficult to 

obtain the completeness property by the above mentioned methods since no explicit 

formulation is derived for moment invariants. 

A set of invariant descriptors is said to be complete if it satisfies the following property: 
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two objects have the same shape if and only if they have the same set of invariants [29]. A 

number of studies have been conducted on completeness. Flusser et al. proposed a complete 

set of rotation invariants by normalizing the complex moments [30, 31]. The construction of a 

complete set of similarity (translation, scale and rotation) invariant descriptors by means of 

some linear combinations of complex moments has been addressed by Ghorbel et al. [10]. 

In this paper, we propose a new method to construct a complete set of scale and rotation 

invariants extracted from OFMMs. We first establish a relationship between the OFMMs of 

the original image and those of the transformed image. Based on this relationship, the 

complete set of scale and rotation invariants can thus be achieved. 

The organization of this paper is as follows. In Section 2, we review the definition of 

OFMMs and the approach proposed by Ghorbel et al. for constructing the complex moment 

invariants. Section 3 presents the way to derive a complete set of scale and rotation invariants 

of OFMMs. The experimental results for evaluating the performance of the proposed 

descriptors are provided in Section 4. 

2. Orthogonal Fourier-Mellin moments 

This section recalls the definition of OFMMs and briefly describes the method reported 

in Ref. [10]. 

2.1 Orthogonal Fourier-Mellin moments 

The two-dimensional (2D) OFMM, f
pqZ , of order p with repetition q of an image intensity 

function f(r, θ) is defined as [7] 
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Since OFMMs are defined in terms of polar coordinates (r, θ) with |r| ≤ 1, the computation 

of OFMMS requires a linear transformation of the image coordinates to a suitable domain 

inside a unit circle. Here we use the mapping transformation proposed by Chong et al. [26], 

which is shown in Fig. 1. Based on this transformation, we have the following discrete 

approximation of equation (1): 
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where the image coordinate transformation to the interior of the unit circle is given by 
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2.2 A complete set of invariants extracted from complex moments 

Ghorbel et al. proposed a complete set of scale and rotation invariants of complex 

moments given by [10] 

( )( 2)( , ) ( , )fi p qp q
f f fJ p q e c p qθ− −− + += Γ                                 (6) 

where ))0,1(arg( ff c=θ , )0,0(ff c=Γ , and  is the complex moment of an 

image function f(x, y) defined as 
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It can be easily verified that the set of invariants is complete since 

( )( 2)( , ) ( , )fi p qp q
f f fc p q e J p qθ−+ += Γ .                                (8) 

Note that in [10], the translation invariance was achieved by transforming the origin of 

the image to the geometric center before the calculation of the moments. 

3. Method 

In this section, a general approach is described to derive a complete set of OFMM 

invariants. We use here the same method to achieve the translation invariance as described in 

[10]. That is, the origin of the coordinate system is taken at the center of mass of the object to 

achieve the translation invariance. This center of mass, (xc, yc), can be computed from the 

first geometric moments of the object as follows. 

10 01

00 00
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where mpq are the (p+q)th order geometric moments defined by 
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where Cm = (ci, j), with 0 ≤ j ≤ i ≤ m, is a (m+1)×(m+1) lower triangular matrix whose element 

ci, j is given by Eq. (3). 

 Since all the diagonal elements of Cm, 
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, +
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non-singular, thus 
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where Dm = (di, j), with 0 ≤ j ≤ i ≤ m, is the inverse matrix of Cm. It is also a (m+1)×(m+1) 

lower triangular matrix. The computation of the elements of Dm is given in the following 

Proposition. 

Proposition 1. For the lower triangular matrix Cm whose elements ci, j are defined by Eq. (3), 

the elements of the inverse matrix Dm are given as follows 

,
(2 2) !( 1)!

( )!( 2)i j
j i id

i j i j
+ +

=
− + + !

.                                        (13) 

The proof of Proposition 1 is given in Appendix. 

Let f and g be two images display the same pattern but with distinct orientation (β) and 

scale (λ), i.e., g(r, θ) = f(r/λ, θ–β). The OFMM of the image intensity function g(r, θ) is 

defined as 
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Letting and M it 

can be seen from Eq. (11) that 
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On the other hand, 

1 1

1

( ) (1, , , )(1, , , )

(1, , , ) ( ).

m m
m

m
m

TM r diag r r

diag M r

λ λ λ

λ λ

=

=

" "
"

                           (16) 

Substituting Eqs. (16) and (12) into Eq. (15), we obtain 

1( ) (1, , , ) ( )m
m m m mU r C diag D U rλ λ λ= " .                              (17) 

By expanding Eq. (17), we have 
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With the help of Eq. (18), Eq. (14) can be rewritten as 
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 The above equation shows that the 2D scaled and rotated OFMMs, , can be 

expressed as a linear combination of the original OFMMs  with 0 ≤ k ≤ p. Based on this 

relationship, we can construct a complete set of both rotation and scale invariants  which 

is described in the following theorem. 

g
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f
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f Z00=Γ . Then,  is invariant to both image rotation and 

scaling. 

f
pqI

The proof of Theorem 1 is given in Appendix. 

Eq. (20) can be expressed in matrix form as 
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It is easy to verify that the set of invariants is complete by rewriting Eq. (21) as 
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The above equation shows that the set of invariants is complete. 

4. Experimental results 

This section is intended to test the performance of the complete family of similarity 

invariants introduced in this paper using a set of gray-level images. 

In the first experiment, a toy cat image whose size is 128×128 pixels is chosen from the 

well-known Columbia database [32] (Fig. 2). The proposed invariant descriptors are 

compared to the complete set of complex moment invariants (CMI) reported in [10]. To make 

the comparison possible between all families of invariants, we rearrange the complex moment 

invariants following the scheme presented in Ref. [10] through the path (1, 0)→1, (0, 1)→2, 

(2, 0)→3, (1, 1)→4, (0, 2)→5, (3, 0)→6, and so on. Let M be the maximum order of complex 

moment invariant, and let , where 

J

( ) ( (1,0), (0,1), , ( ,0), , (0, ))f
C f f f fC M J J J M J M= … …

( )f
CC M

1), , ( ,0), , ( , ))f fI M I M M… …

)M

f(p, q) are defined by Eq. (6). The dimension of  is (M+1)(M+2)/2–1. For 

comparison purpose, we also define the vector 

 for OFMM invariants (OFMMI). 

The dimension of  is also (M+1)(M+2)/2–1. In this experiment M = 4 is chosen, 

that is, 14 invariants from first to fourth order are used. 

( ) ( (1,0), (1,f
FM f fC M I I=

(f
FMC

 We define the relative error between the two sets of moment invariants corresponding to 
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the original image f(x, y) and the transformed image g(x, y) as 

|| ( ) ( ) ||( , )
|| ( ) ||

f g

M f

C M C ME f g
C M

−
= ,                                      (24) 

where ||.|| is the Euclidean norm. 

 To test the invariance against rotation, we have rotated the original image from 0° to 

180° with interval 5°. Because the magnitude of the OFMM is invariant to image rotation, we 

also take it as rotation invariant feature of the underlying image function. Fig. 3 compares the 

relative errors between the proposed method, CMI and the magnitude of the OFMMs 

(MOFMM) using Eq. (24). It can be seen from this figure that the OFMMI outperforms the 

other two methods, whatever the rotational angle. We then evaluate the invariance of the 

proposed descriptors with regard to image scaling. The toy cat image is scaled by a factor 

varying from 0.1 to 2 with interval 0.05. Fig. 4 shows the relative errors of the OFMMI, CMI, 

the normalization method presented in [18] and the scale invariants of OFMM derived by the 

method presented in Ref. [26] (we call it Chong’s method for abbreviation). Plots show that, 

in most cases, the relative errors of OFMMI and Chong’s method are lower than those of the 

CMI and normalization method. To test the robustness to noise, we have respectively added a 

white Gaussian noise (with mean μ = 0 and different variances) and the salt-and-pepper noise 

(with different noise densities). Results are respectively depicted in Fig. 5 and Fig. 6. It can 

be seen that, if the relative error increases with the noise level, the proposed descriptors are 

more robust to noise than the CMI and Chong’s method. 

We also compare the computational speed of the OFMMI with that of the CMI and other 

methods. The computation time required in the above experiments for different methods is 

listed in Table 1 where the moment invariants of order up to M = 4 are calculated. Note that 
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the program was implemented in MATLAB 6.5 on a PC P4 2.4 GHZ, 512M RAM, and the 

computation of the OFMMIs was performed from Eq. (21). It can be seen that the OFMMI is 

faster than most of the other methods, this is due to the following two facts: (1) the fast 

algorithm presented in Ref. [23] was applied; (2) the matrix representation is very useful and 

efficient for software packages such as MATLAB. 

We now test the classification accuracy of the proposed method, CMI and Chong’s method 

with scaled and rotated image in both noise-free and noisy conditions. For the recognition 

task, we use the following feature vector 

V = [I1, I2, I3, I4, I5, I6, I7],                                      (25) 

where Ij, j = 1, 2, …, 7, denote the second and third order of CMI or OFMM invariants. The 

objective of a classifier is to identify the class of the unknown input object. During the 

classification, features of the unknown object are compared to a set of testing samples. The 

Euclidean distance is used as the classification measure and is defined by 

∑
=

−=
7

1

2)( )(),(
j

t
j

s
j

k
ts IIVVd ,                                        (26) 

where  is the 7-dimensional feature vector of unknown sample, and  is the testing 

vector of class k. The classification accuracy is defined as 

sV )(k
tV

100%Number of correctly classified images
The total number of images used in the test

η     
= ×

        
.                    (27) 

Fig. 7 shows a set of object images selected from the Coil-100 image database of 

Columbia University [32]. The reason for choosing such a set is that the objects (three toy 

cars, three blocks, ANACIN and TYLENOL packs) can be easily misclassified due to their 

similarity. This set is then transformed by scaling and rotating the original set with scale 

 11



factor λ ∈{0.5, 0.75, 1, 1.5, 2} and rotation angle β∈{30°, 60°, ……, 330°, 360°}, forming a 

set of 480 images. This is followed by adding the salt-and-pepper noise with different noise 

densities. The feature vector based on our method is used to classify these images and its 

recognition accuracy is compared to CMI as well as Chong’s method. Table 2 shows the 

classification results using the full set of features. One can observe from this table that the 

high recognition rates are obtained in noise-free case. The recognition accuracy decreases 

with increasing noise level. However, the proposed method performs better than the CMI and 

Chong’s method in terms of the recognition accuracy for noisy images. 

In the last experiment, a set of alphanumeric characters whose size are 50×50 pixels 

shown in Fig. 8 is used for recognition task. The images are transformed by scaling and 

rotating the original set with scale factor λ ∈{0.5, 1, 2} and rotation angle β∈{15°, 30°, ……, 

345°, 360°}, forming a set of 576 images. The salt-and-pepper noise with different noise 

densities has been added. Some examples of the test images are illustrated in Fig. 9. The 

classification results are listed in Table 3. It can be seen that our method is more robust than 

other methods for noisy images. 

5. Conclusion 

In this paper, we have presented a novel method to derive a complete set of OFMM 

invariants. Since the proposed method extracts the invariant feature from the orthogonal 

Fourier-Mellin moments of the original image, no image normalization process is required. 

Experimental results show that our method has a better classification accuracy and is more 

robust to noise when compared to the existing moment-based methods. 
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Appendix 

Proof of Proposition 1. To prove the proposition, we need to demonstrate the following 

relation 

lk

k

ls
lssk dc ,,, δ=∑

=

.                                                     (A1) 

For k = l, we have 

1
)!22(

)!1(!)22(
)!1(!
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For l < k, we have 
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where 
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=
lslssk
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.                                     (A4) 

Letting 
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s k s k s sG k l s
k s s l s l k l k l
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it can then be easily verified that 

),,()1,,(),,( slkGslkGslkF −+= .                                       (A6) 

Thus 

( , , ) [ ( , , 1) ( , , )]

( , , 1) ( , , ) 0,

k k
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G k l k G k l l
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we deduce from Eq. (A3) that  
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0,, =∑
=

k

ls
lssk dc   for l < k. 

The proof is now complete. 

Note that the proof of Proposition 1 was inspired by a technique proposed by Petkovsek et al 

[33]. 

 

Proof of Theorem 1. Eq. (20) can be rewritten in matrix form as 
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Using the same representation, Eq. (19) can be expressed by 
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In particular, we have 
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Substitution of Eqs. (A9) and (A10) into Eq. (A8) yields 
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where Ip is the pth order identity matrix, Eq. (A11) becomes 
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Thus, we have 

   .                                                          (A14) f
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g
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The proof is now complete.
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Fig. 2. The gray image of toy cat 
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Fig. 3. Performance of the invariants to rotation. Horizontal axis: rotational angle; 

Vertical axis: relative error between the rotated image and the original image 
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Fig. 4. Performance of the invariants to scale. Horizontal axis: scale factor; Vertical axis: 
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relative error between the scaled image and the original image 

0 10 20 30 40 50
10

−4

10
−3

10
−2

10
−1

Standard Deviation Of Noise

R
el

at
iv

e 
E

rr
or

 

 

CMI
Chong’s method
OFMMI

 

Fig. 5. Performance of the invariants with respect to additive Gaussian zero-mean 

random noise. Horizontal axis: standard deviation of noise; Vertical axis: relative error 

between the corrupted image and original image 
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Fig. 6. Performance of the invariants with respect to additive salt-and-pepper noise. 

Horizontal axis: noise density; Vertical axis: relative error between the corrupted image 

and original image 

  

    

Fig. 7. Original images for invariant object recognition in the experiment 
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Fig. 8. Original images of alphanumeric characters for invariant character recognition 

        

Fig. 9. Part of the images of the testing set 
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Table 1 The comparison of CPU elapsed time (s) for the proposed method, complex moment 

based method and normalization process 

 CMI OFMMI MOFMM NMI Chong’s method 

Experiment1 (Fig. 3) 21.78 4.97 4.92 － － 

Experiment2 (Fig. 4) 35.53 9.39 － 7.87 10.56 

Experiment3 (Fig. 5) 28.42 5.48 － － 5.5 

Experiment4 (Fig. 6) 28.86 5.39 － － 5.42 

 

Table 2 Classification results of the object images with scale and rotation 

 Noise-free 1% 2% 3% 4% 

CMI 95.83% 58.75% 50.63% 47.08% 45.63% 

Chong’s method 98.1％ 74.79％ 62.08％ 54.17％ 51.25％ 

OFMMI 97.50% 85.21% 76.46% 68.96% 58.75% 

 

Table 3 Classification results of the alphanumeric character images with scale and rotation  

 Noise-free 1% 2% 3% 4% 

CMI 97.40％ 58.20％ 44.62％ 38.54％ 32.47％ 

Chong’s method 98％ 73.61％ 60.24％ 50.17％ 39.76％ 

OFMMI 97.40％ 80.21％ 68.75％ 56.60％ 44.62％ 

 


