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Abstract 

Upon recognition of influenza virus (Flu) via TLR7, plasmacytoid dendritic cells 

(pDCs) produce type I IFN in significant amounts. Synthetic TLR7 ligands induce the 

maturation of pDCs, as evidenced by the expression of costimulatory molecules and 

the production of pro-inflammatory cytokines; however, they only induce low-level 

production of IFN-α. In order to dissect the TLR7 signaling in pDCs and how these 

different profiles are induced, we studied the effects of two TLR7 ligands (Flu and 

CL097) on the activation of blood-isolated pDCs and the human GEN2.2 pDC cell 

line. 

Type I IFN production by pDCs correlates with differential Interferon Regulatory 

Factor (IRF) 7 translocation into the nucleus induced by the two TLR7 ligands. 

Surprisingly, with both activators we nevertheless observed the rapid expression of 

the IFN-inducible genes MxA, CXCL10 and TRAIL within 4 h of stimulation. This 

expression, controlled by STAT1 phosphorylation, was independent of type I IFN. 

STAT1 activation was found to be strictly dependent on the PI3K-p38MAPK pathway, 

demonstrating a new signaling pathway leading to rapid expression of IFN-inducible 

genes after TLR7 triggering. Thus pDCs, through this unusual TLR7 signaling, have 

the capacity to promptly respond to viral infection during the early phases of the 

innate immune response. 
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Introduction 

Toll-like receptors (TLRs) contain a leucine-rich repeat ectodomain which enables the 

recognition of pathogen-associated molecular patterns1. Among the 10 TLRs 

identified in humans, TLR7 is the least studied. This TLR binds single-stranded viral 

RNA, it localises to endosomal compartments and is particularly expressed by 

plasmacytoid dendritic cells (pDCs)2. Ligand binding to TLR7 activates human pDCs 

which respond by producing either pro-inflammatory cytokines or substantial levels of 

type I IFN and activating specific T cells3-5. In addition, we have recently 

demonstrated that Flu- and TLR7 agonist- activated pDCs express TNF-related 

apoptosis-inducing ligand (TRAIL). This renders them capable of direct cytotoxic 

activity towards infected and tumor cells6. This has been observed in vivo: Stary et al. 

describe the presence of TRAIL-expressing and IFN-α producing pDCs in tumors 

after topical use of the TLR7 ligand imiquimod in basal cell carcinoma (BCC) 

treatment7. Taken together, these data suggest that pDCs represent key target cells 

in the striking anti-tumor effects observed with synthetic TLR7 agonists, such as 

imidazoquinolines, in the treatment of cutaneous virus-induced neoplasia (e.g., 

condyloma-HPV)8 and other skin tumors, such as BCC9.  

The signaling pathways triggered by TLR7 activation have been partially described. 

Following ligand recognition, endosomal TLR7 interacts with the key adaptor 

molecule MyD88 (myeloid differentiation primary-response gene 88) which recruits a 

signal complex comprised of IRAK1 (interleukin- 1- receptor- associated kinase 1), 

IRAK4 and TRAF6 (tumor- necrosis factor- receptor- associated factor 6). TLR7 

triggering leads to the activation of NF-κB (nuclear factor-κB) and MAPKs (mitogen-

activated protein kinases) inducing the expression of pro-inflammatory cytokines and 

co-stimulatory molecules and the translocation of IRF7 (interferon-regulatory factor 7) 
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into the nucleus where it can induce the transcription of type I IFN genes10. Agonistic 

engagement of TLR7 also leads to the expression of the IFN-inducible genes MxA, 

CXCL10 and TRAIL11. A type I IFN autocrine loop is thought to explain expression of 

these genes, as has been described in mouse bone-marrow derived DCs12. 

However, the precise pathway downstream of TLR7 leading to human pDC activation 

remains to be determined.  

In this article we analyze the activation profile and signaling events triggered by two 

TLR7 ligands: Influenza virus (Flu, natural ligand) and CL097 (synthetic agonist). We 

studied the effects of these two ligands on both blood-isolated pDCs and the pDC 

model cell line GEN2.2. Results of these studies demonstrate the existence of a 

novel pathway downstream of TLR7 involving early STAT1 phosphorylation and 

expression of IFN-inducible genes in the absence of type I IFN. 
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Materials and methods 

Antibodies, Flow cytometry 

Surface or intracellular phenotype was determined by flow cytometry on a FACS 

Canto II (Becton-Dickinson, Mountain View, CA, USA), using specific antibodies, by 

direct or indirect labelling. The following antibodies were from Immunotech (Beckman 

Coulter, Marseille, France): PE-conjugated anti-CD40 (mAb89), PE-conjugated anti-

CD80 (mAb104) and PE-conjugated goat anti-mouse IgG (H + L). PE-conjugated 

anti-CD123 (9F5) was purchased from Pharmingen (San Diego, CA, USA). PE-

conjugated anti-phospho-STAT1 (4a/ pY701-stat1) was from BD (Becton-Dickinson). 

FITC-conjugated anti-BDCA-2 (AC144) and FITC-conjugated anti-IFN-α (LT27:295) 

were from Miltenyi Biotec (Paris, France) and purified anti-TRAIL (2E5) from Alexis 

(Lausen, Switzerland). 

 

Cells 

Normal pDCs were isolated from PBMC of healthy volunteers with a BDCA-4 cell 

isolation kit (Miltenyi Biotec). Their purity, as determined with anti-BDCA-2 and anti-

CD123 mAbs, was about 80% (Figure 1.A). 

The pDC cell line GEN2.2 was grown in complete medium (RPMI 1640 Glutamax 

(GibcoBRL, Cergy-Pontoise, France) supplemented with 1 mM sodium pyruvate, 20 

µg/ml gentamicin, nonessential amino acids) to which 10 % heat inactivated Fetal 

Calf Serum was added (FCS, Gibco).  

 

Generation of lentiviral shRNA TLR7 transfected GEN2.2 cells 

GEN2.2 cells were transfected with MISSION Lentiviral transduction particles 

targeting TLR7 (NM_016562) Clone ID: TRCN0000056975 (Sigma Aldrich, St 
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Quentin Fallavier, France) at MOI 2. Transfected cells were maintained in the 

presence of 10 µg/ml puromycin for 2 weeks to allow the selection of resistant clones 

which we called GENshTLR7 cells. The level of TLR7 mRNA expression in 

GENshTLR7 cells was assessed by real-time PCR. Silencing was found to diminish 

TLR7 mRNA expression by 80 %. 

 

Activation of GEN2.2 cells 

Cells were cultured at 106 cells/ml in complete medium with 10 % FCS. Cells were 

stimulated with either 640 UHA/ml UV-formol-inactivated influenza virus strain 

A/H3N2/Wisconsin/67/05 (Sanofi Pasteur), or 1 µg/ml CL097 (TLR7/8 ligand, 

Invivogen, Toulouse, France), or 10 µg/ml CpG-A ODN 2336 (TLR9 ligand, Coley 

Pharmaceuticals, Ottawa, Canada), or 10 µg/ml CpG-B ODN 2216 (TLR9 ligand, 

Invivogen) or 50,000 U/ml human recombinant IFN-α (PeproTech, Neuilly sur Seine, 

France). For some experiments, blocking anti-IFN-α (50,000 U/ml, PBL medical 

laboratories), anti-IFN-β (25,000 U/ml, PBL) and anti-IFN-α/βR2 (5 µg/ml, PBL) or 

inhibitors from Calbiochem (Nottingham, UK) were added : 5 µM BAY11-7082, 5µM 

BMS-345541, 10 µM LY-294002 or 50 µM SB203580.  After stimulation, phenotypic 

analyses were performed by flow cytometry.  Culture supernatants were 

cryopreserved for cytokine measurements. These supernatants were tested for IFN-α 

content by ELISA (PBL) and for IL-6, IL-8, TNF-α and CXCL10 by Cytometric Bead 

Array multiplex (CBA, BD Biosciences). 

 

Protein extraction and signaling factor analysis 

After stimulation of GEN2.2 cells, cytosolic and nuclear fractions were extracted 

using the protein extraction kit from Active Motif (Rixensart, Belgium). Nuclear 
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extracts were probed for NFB subunits c-Rel, p50, p52, p65 and RelB content using 

the TransAM NFB family kit (Active Motif). Whole cell extracts were used for 

quantification of phospho-STAT1 and phospho-p38MAPK by CBA multiplex (BD 

Biosciences). 

 

Western-blot analysis 

Following activation, GEN2.2 cells were washed in phosphate-buffered saline (PBS), 

lysed in 100 ml of sample buffer, and heated at 100 °C for 5 minutes. Whole-cell 

extract (20 µg) was loaded onto a 12 % SDS-polyacrylamide gel. After 

electrophoresis, proteins were transferred to a PVDF membrane (BIORAD, Marne la 

Coquette, France). Non-specific binding sites were blocked with 5 % nonfat milk in 

PBS Tween20 0.1 %. Membranes were then incubated with primary antibodies : anti-

phospho-STAT1 (4a/pY701), anti-phospho-STAT2 (7a/pY) (Pharmingen) and anti-

actin (Sigma). Antibody labeling was revealed using horseradish peroxidase (HRP)-

conjugated secondary antibodies (Dako, Glostrup, Denmark) and was visualized 

using enhanced chemiluminescence (ECL, Amersham Life Science, Les Ulis, 

France). 

 

Immunofluorescence 

Twenty one well Teflon printed slides (Immuno-Cell International, Mechelen, 

Belgium) were coated with 1 µg/ml poly-L-lysine (Sigma). 104 GEN2.2 cells were 

added to each well and allowed to adhere for 1 h. Cells were then stimulated for 2 

and 3 h with 640 UHA/ml UV-formol-inactivated influenza virus strain 

A/H3N2/Wisconsin/67/05, 1 µg/ml CL097 or 5,000 U/ml human recombinant IFN-α. 

After activation, medium was removed, slides were fixed in -20 °C methanol for 10 
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min and dried at room temperature for 1 h. Slides were rehydrated in PBS for 10 min 

and then incubated with primary antibody anti-IRF7 (H-246, Santa Cruz 

Biotechnology, San Diego, CA, USA). Antibody labeling was revealed using FITC-

conjugated goat anti-rabbit secondary antibody (Pharmingen). Cells were also 

colored with 1 mg/ml Evans blue (Sigma) before visualization by fluorescence 

microscopy. 

 

Quantitative RT-PCR 

Total RNA was isolated from stimulated GEN2.2 cells using RNeasy kit (Qiagen, 

Courtaboeuf, France). Reverse transcription to cDNA was carried out by standard 

methods using reverse transcriptase (Roche Diagnostics, Meylan, France) and dNTP 

(Roche). These cDNA were amplified using naked primers, LightCycler TaqMan 

Master mix and Universal ProbeLibrary probe (Roche). Polymerase Chain Reactions 

(PCR) were conducted in a LightCycler instrument (Roche). Primers were 

synthetised by Roche, their sequences were as follows (listed 5’-3’) : G6PDH (F: 

AACAGAGTGAGCCCTTCTTCA, R: GGAGGCTGCATCATCGTACT) ; human TLR7 

(F: GCTAGACTGTCTCAAAAGAACAAAAA, R: GCCCACACTCAATCTGCAC) ; 

human TLR9 (F: ATAGCCGTGAGCCGGAAT, R: GCAGGCAGAGGTGAGGTG); 

IFN-α1 (F: CCCTCTCTTTATCAACAAACTTGC, R: TTGTTTTCATGTTGGACCAGA) ; 

IFN-α2 (F: TCCTGCTTGAAGGACAGACA, R: TTTCAGCCTTTTGGAACTGG) ; IFN-

β1 (F: CTTTGCTATTTTCAGACAAGATTCA, R: GCCAGGAGGTTCTCAACAAT) ; 

IFN-ω1 (F: ACCAGCTATAGCCCTGTTGG, R: AAGTAGGCCATGGTTCTGAGG) ; 

MxA (F: TCCAGCCACCATTCCAAG, R: CAACAAGTTAAATGGTATCACAGAGC). 

Relative threshold cycle (Ct) values for each gene were normalized to the 

housekeeping gene G6PDH using the equation 2(-dCp) where Cp is the mean cross 
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point of duplicate runs calculated by Lightcycler software and dCp = gene Cp – 

G6PDH Cp.  
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Results 

Influenza virus and CL097 induce human pDC activation via TLR7  

This study focuses on TLR7 signaling in pDCs. The recently developed human pDC 

cell line, GEN2.2, was used as a model of pDC13,14. We evaluated 2 kinds of TLR 

ligands: CL097, an imidazoquinoline15,16 and influenza virus (Flu)17. We first verified 

their activity and their specificity for TLR7. After Flu or CL097 stimulation, both 

enriched primary pDCs (Figure 1.A) and the GEN2.2 cells (Figure 1.B) displayed the 

same activation profile with a high increase of CD40 expression, thus both ligands 

were capable of inducing pDC activation. To verify the TLR7-specificity of the effect, 

TLR7 shRNA lentiviral transfection of GEN2.2 cells was performed, stably-

transfected cells were selected leading to the establishment of the GENshTLR7 cell-

line. These cells showed an 80 % decrease in TLR7 mRNA expression, while levels 

of TLR9 mRNA were unchanged (Figure 1.C). Upon Flu or CL097 stimulation, 

GENshTLR7 cells were unable to up-regulate CD40 but maintained their capacity to 

respond to TLR9 ligands (CpG A and B) (Figure 1.D). Moreover, GENshTLR7 cells 

produced neither IFN-α nor inflammatory cytokines following stimulation (data not 

shown). Control-shRNA transfected cells displayed the same activation profile as 

untransfected GEN2.2 cells, confirming that the previous results were not due to an 

alteration caused by lentiviral transfection (data not shown). Thus, both Flu and 

CL097 act specifically on TLR7 to induce CD40 upregulation and cytokine 

production.  Altogether, these data show that Flu and CL097 activate human pDC by 

triggering TLR7. 

 

Influenza virus and CL097 induce differential activation of pDCs  
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PDCs are known to secrete pro-inflammatory cytokines or substantial amounts of 

type I IFN upon activation3,4. The nature of the cytokines produced by GEN2.2 cells 

following activation by the two TLR7 ligands was evaluated. CL097-stimulated 

GEN2.2 cells produced the pro-inflammatory cytokines IL-6, IL-8 and TNF-α whereas 

Flu-activated cells mainly secreted IFN-α (Figure 2.A). To further characterize this 

secretion, the transcription of 4 type I IFN genes was assessed. Only Flu activation 

induced the transcription of IFN-α1, IFN-α2, IFN-β1 and IFN-ω1 genes in GEN2.2 

cells, while CL097 activation did not result in transcription of any of the IFN genes 

tested (Figure 2.B). These results were confirmed with human blood pDCs. A higher 

number of IFN-α-secreting cells were observed after Flu-activation (56 %) than after 

CL097 stimulation (7 %) (Figure 2.C). Thus, the two TLR7 ligands chosen induced 

different activation profiles for pDCs.  

The transcription factors NFB and IRF7 play essential roles in inducing the 

expression of pro-inflammatory cytokines and type I IFN, respectively. Therefore, we 

examined the translocation of these two factors into the nucleus following TLR7 

triggering. Both Flu and CL097 induced similar nuclear translocation of p50 and p65 

subunits of the canonical NFB dimer (Figure 2.D). The quantities of p52 and RelB 

subunits of the noncanonical NFB pathway were not modified during activation. 

Interestingly, the NFB c-Rel subunit was only detectable in the nucleus of the 

CL097-stimulated GEN2.2 cells (Figure 2.D). In contrast, IRF7 nuclear translocation 

was only observed in Flu-activated GEN2.2 cells (Figure 2.E). This result 

corroborates the type I IFN production profile described above. These data suggest 

that, whereas both ligands induce inflammatory cytokine secretion via the NFB 

pathway, Flu but not CL097 induces IFN-α secretion following IRF7 translocation.  
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IFN-inducible genes are expressed after TLR7 triggering in a type I IFN-

independent manner 

Secretion of type I IFNs by pDCs leads to the expression of a group of IFN-inducible 

genes including MxA, CXCL10 and TRAIL18-20. We next examined whether the 

differential type I IFN secretion observed after TLR7 triggering could induce 

differential expression of these IFN-inducible genes. IFN-α secretion was observed 

within 4 h after TLR7 stimulation by Flu, whereas no detectable IFN-α was measured 

at any time point (up to 24 h) after CL097 activation (Figure 3.A). Surprisingly, the 

IFN-inducible genes products were nevertheless detected within 4 h after activation 

by both TLR7 ligands (Figure 3.B-D). The expression profiles were identical whatever 

the ligand applied: expression peaked at 4 h and decreased at 24 h for MxA and 

TRAIL genes products (Figure 3.C and 3.D), whereas CXCL10 production 

continuously increased up to and beyond 24 h (Figure 3.B). This suggests that, in our 

model, the induction of MxA, CXCL10 and TRAIL could be independent of IFN-α. 

Very low levels of type I IFN could be responsible for inducing the expression of IFN-

inducible genes following CL097 stimulation of GEN2.2 cells. To investigate this 

possibility, GEN2.2 cells were stimulated by the two TLR7 ligands in the presence or 

absence of neutralizing anti-IFN-α/β and anti-IFN-α/βR antibodies. In accordance 

with the absence of any detectable IFN-α production, the blocking of type I IFN 

signaling had no effect on TRAIL and CXCL10 expression induced by TLR7 ligands 

(Figure 3.E-F). The pre-incubation of cells with the neutralizing antibodies for 30 or 

60 min prior to ligand exposure in order to exclude the involvement of any autocrine 

intracellular type I IFN pathway had no effect on these expressions (supplemental 

figure 1). However, the neutralizing antibodies could block both TRAIL and CXCL10 

expression induced by exogenous IFN. Altogether, these data demonstrate that 
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expression of IFN-inducible genes could be triggered independently of type I IFN 

within 4 h after TLR7 triggering. 

 

Expression of IFN-inducible genes is independent of the NFB pathway and 

extracellular factors. 

In order to analyze whether NFB was involved in the observed expression of IFN-

inducible genes, we measured TRAIL expression in GEN2.2 cells 4 h post-activation 

by Flu and CL097 in the presence of the IB kinase (IKK) inhibitors BAY11-708221 

and BMS-34554122. Neither of these inhibitors altered the TRAIL expression profile 

(Figure 4.A), whereas they both abrogated NFB-dependent CD40 upregulation 

(Figure 4.B). These results indicate that the expression of IFN-inducible genes 

following TLR7 triggering is independent of NFB activation. 

Extracellular factors could also contribute to the induction of expression of IFN-

inducible genes. To rule out their involvement, TRAIL expression was measured on 

untreated GEN2.2 cells to which supernatants from TLR7-activated GEN2.2 cells 

were applied. No induction of TRAIL expression was observed in cells exposed to 

supernatants from CL097-activated cells (Figure 4.C). The expression of TRAIL 

induced by the supernatant from Flu-activated cells was due to the presence of 

secreted IFN-α in this supernatant. This expression could be blocked using 

neutralizing anti-IFN-α/β antibodies (Figure 4.D). These latter results demonstrate 

that expression of IFN-inducible genes following TLR7 triggering is due to a 

previously undescribed intracellular signaling pathway. 
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Phosphorylation of STAT1 in response to TLR7 triggering depends on the 

PI3K-p38MAPK pathway 

Expression of IFN-inducible genes is regulated by the transcription factor IFN 

stimulated gene factor 3 (ISGF3)23. ISGF3 is in fact a complex of proteins including 

STAT1, STAT2 and IRF9.  We next examined whether this complex was activated in 

response to TLR7 triggering. Activation of GEN2.2 cells by both Flu and CL097 

induced phosphorylation of STAT1 within 2 h (Figure 5.A and B) at levels comparable 

to the classic type I IFN activation (Figure 5.B).  Low-level phosphorylation of STAT2 

was also observed (Figure 5.B).  In these analyses, no variation in total STAT protein 

quantity was observed (data not shown). These results were further confirmed by 

flow cytometry analysis. Results showing that STAT1 was phosphorylated in one 

third of GEN2.2 cells within 2 h after TLR7 activation are shown in Figure 5.C. The 

presence of neutralizing anti-IFN-α/β and anti-IFN-α/βR antibodies, which prevented 

IFN-α-induced STAT1 activation, had no effect on the level of STAT1 

phosphorylation induced subsequent to TLR7 triggering (Figure 5.D). Thus STAT1 

activation could also be induced via TLR7 signaling in a type I IFN-independent 

manner. 

Other groups have suggested that STAT1 phosphorylation in response to TLR9 

triggering depends on p38MAPK activation24. To test this hypothesis in the TLR7 

model, we analyzed the activation of p38MAPK in stimulated GEN2.2 cells. 

Phosphorylation of p38MAPK was observed within 30 min after stimulation of 

GEN2.2 cells by either Flu or CL097, but not after activation by type I IFN, as was 

expected (Figure 6.A). Thus, phosphorylation of p38MAPK is induced by TLR7 

stimulation.  We next investigated the possible pathway linking TLR7 via p38MAPK to 

STAT1.  We found PI3K, which has previously been linked to the TLR7 pathway25, to 
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have a role in this pathway. The PI3K inhibitor LY294002, in addition to altering the 

p38MAPK phosphorylation profile in response to TLR7 triggering (Figure 6.B), also 

impaired STAT1 phosphorylation and TRAIL expression by GEN2.2 cells. A similar 

effect was observed in the presence of the specific26 p38MAPK inhibitor SB203580  

(Figure 6.C-D). These results were confirmed on blood-isolated pDCs after 

stimulation of cells with Flu or CL097 where the presence of LY or SB inhibited 

TRAIL expression (Figure 6.E) and CXCL10 production (Figure 6.F). Taken together, 

these data illustrate that both STAT1 activation and the expression of IFN-inducible 

genes following TLR7 triggering were dependent on the PI3K-p38MAPK pathway. 
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Discussion 

Many studies have suggested that the effects triggered by TLR7 ligands as adjuvants 

in cancer immunotherapy could be attributed to the activation of pDCs and their 

subsequent type I IFN production7,27,28.  In order to understand how agonists for the 

same receptor lead to different activated pDC phenotypes we initiated a study of the 

signaling pathways induced in pDCs by two different TLR7 ligands. In this article we 

show that, in contrast to Flu activation, CL097 stimulation of pDCs does not induce 

production of high levels of IFN-α. However, we were able to demonstrate that both 

TLR7 ligands led to rapid expression IFN-inducible genes via a type I IFN 

independent pathway.   

The data presented here reveal that Flu and CL097 both trigger human TLR7 but 

induce differential cytokine production. Using stably shRNA-transfected cells, 

GENshTLR7, we could demonstrate that human pDC activation by inactivated 

Influenza virus required TLR7, as had been previously described in a mouse model 

17. Type I IFN production after CL097 activation was found to be null or extremely low 

compared to the massive amounts of IFN-α produced in the presence of Flu. This 

result corroborated those concerning IRF7 translocation into the nucleus of pDCs 

following stimulation with the different ligands. This differential type I IFN production 

is reminiscent of results obtained with TLR9 ligands29. Kerkmann et al. demonstrate 

that TLR9 triggering with CpG A ODNs leads to a high production of type I IFN while 

CpG B ODNs, although they bind TLR9, are unable to induce IFN secretion. The 

mechanism responsible for the differential behaviour of pDCs following TLR9 

triggering has been suggested to be due to the spatiotemporal location of the ligand 

within the cell and its higher order structure30. Indeed, multimeric CpG A ODNs are 

retained within endosomes whereas monomeric CpG B ODNs traffic to lysosomal 
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compartments where they trigger the activation of different signaling factors31,32. 

Similarly, Heil et al. observed that synthetic TLR7 ligands induce higher IFN-α 

production by PBMCs when complexed to the cationic lipid DOTAP33. Thus, Flu’s 

RNAs may follow the same cell trafficking as multimeric CpG A ODNs whereas 

CL097 may rather stay in a monomeric structure like CpG B, leading to a lysosomal 

location and absence of type I IFN production.  

MxA, CXCL10 and TRAIL, through their role in the inhibition of virus replication, in the 

chemotaxis of immune cells and in the apoptosis of transformed and infected cells, 

are key players in countering infection and cancers34. Here, we demonstrate that 

these genes, which have been described to be tightly regulated by IFNs in various 

haematopoietic cells23,35, are rapidly expressed in TLR7-activated pDCs in the 

absence of type I IFN production, even when type I IFN-receptor signaling was 

blocked with neutralizing anti-IFN-α/β and anti-IFN-α/βR antibodies. While expression 

of the “IFN-inducible” genes was independent of IFN, it remained dependent on 

STAT1 phosphorylation on Tyr-701. This phosphorylation was found to be p38MAPK-

dependent in our model, a similar signaling pathway was also described in CpG A-

activated pDCs24. However, since p38MAPK is a serine kinase, known to 

phosphorylate STAT1 on Ser-72736, this tyrosine phosphorylation of STAT1 must be 

mediated by an intermediate tyrosine kinase whose activation is dependent on 

p38MAPK. Both the Janus kinases (JAK) 1 and 2 and c-Src are able to 

phosphorylate STAT1 on Tyr-70123,37 but their activation is generally associated with 

cytokine receptors38. In our model, we demonstrated that no soluble factors were 

involved. Therefore, the intermediate kinase responsible for STAT1 phosphorylation 

in response to TLR7 stimulation remains to be identified.  
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Here, we have shown that PI3K is involved in the activation of p38MAPK while other 

groups have demonstrated its implication in IRF7 translocation25,39. Moreover, the 

NFB-dependent expression of CD80 and cytokines production were also impaired in 

the presence of LY following TLR7 triggering (data not shown), suggesting that PI3K 

is a key early signaling factor in the TLR7 pathway.  

Altogether, exhaustive characterization of the signaling pathway downstream of TLR7 

in pDCs led us to describe the expression of IFN-inducible genes in the absence of 

cytokine receptor engagement. This originality may confer on pDCs the capacity to 

respond more rapidly to viral infection, reinforcing their role in the early phases of the 

immune response. Finally, the work described here may help to define new 

therapeutic targets which could favor pDC activation in tumor and viral 

immunotherapy or to dampen it in pDC-driven autoimmunity. 
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Figure 1. Influenza virus and CL097 induce human pDC activation by triggering 

TLR7. (A) Left panel: Flow cytometry evaluation of purity of unstimulated pDCs 

enriched from healthy donor blood labeled with anti-BDCA2 and anti-CD123 

antibodies.  Cells were untreated (medium) or stimulated with UV-formol-inactivated 

Influenza virus (Flu) or synthetic TLR7 ligand (CL097). Expression of CD40 was 

measured by flow cytometry on CD123+ cells. Dot plots are shown, the percentage of 

CD40 positive cells is indicated on each plot. Results shown are representative of 

four independent experiments. (B) GEN2.2 cells were untreated or stimulated with 

Flu or CL097 for 24 h. CD40 expression was evaluated on forward scatter (FSC)/side 

scatter (SSC) gated live cells by flow cytometry. Percentages indicated on dot 

correspond to the proportion of CD40 positive cells. Results shown are 

representative of at least five independent experiments. (C) Expression levels of 

TLR7 and TLR9 in the GEN2.2 cell line and in lentiviral shRNA TLR7 transfected 

GEN2.2 cells (GENshTLR7) measured by real-time PCR. Expression levels are 

normalized to G6PDH. Data are shown as the mean and standard deviation from 

duplicate values of two independent experiments. (D) GEN2.2 and GENshTLR7 cells 

were untreated or stimulated with Flu, CL097 or two different synthetic TLR9 ligands 

(CpG A and CpG B) for 24 h. Expression of CD40 was measured by flow cytometry. 

The mean percentages and standard deviation from duplicate values of three 

independent experiments are shown. 

 

Figure 2. Differential pDC maturation is triggered by different TLR7 ligands. 

GEN2.2 cells were untreated or stimulated with Flu or CL097 for 24 h. (A) Production 

of pro-inflammatory cytokines was measured in culture supernatants by ELISA and 

CBA. The mean and standard deviation from duplicate values of three independent 
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experiments are shown. (B) After 24 h of culture, RNA was extracted and RNA 

expression levels of type I IFNs: IFN-α1, -α2, -β1 and -ω1 were measured by 

quantitative PCR. Data shown are normalized to G6PDH and are representative of 

two independent experiments. (C) PBMCs from healthy donors were cultured in the 

absence or presence of Flu or CL097 for 3 h. Secretion was blocked by adding 

brefeldin A for a further 4 h. Intracellular IFN-α production was measured in HLA-DR+ 

BDCA4+ pDCs by flow cytometry. Dot plots show the percentage of IFN-α-producing 

cells among pDCs. Representative results from three different donors are shown. (D) 

GEN2.2 cells were cultured in the absence or presence of Flu or CL097 for 3 h. Cells 

were lyzed and proteins extracted. The different NFB subunits were quantified in 

nuclear fractions using the TransAM kit. The mean OD and standard deviation from 

duplicate values of three independent experiments are shown. (E) GEN2.2 cells were 

cultured in the absence or presence of Flu or CL097 for 3 h. Cells were 

immunostained for IRF7 and evans blue colored. Immunofluorescence was assessed 

by microscopy. Representative images from three independent experiments are 

shown. 

 

Figure 3. TLR7 triggers expression of IFN-inducible genes in a type I IFN-

independent manner. GEN2.2 cells were untreated or stimulated with Flu or CL097 

for different times. Supernatants were collected for evaluation of (A) IFN-α and (B) 

CXCL10 production. (C) RNA was extracted for measurement of MxA transcription 

levels by real-time PCR. (D) TRAIL expression was evaluated by flow cytometry. 

GEN2.2 cells were untreated or stimulated with Flu or CL097 in the absence or 

presence of anti-IFN-α/β and anti-IFN-α/βR neutralizing antibodies for 4 h. (E) TRAIL 

expression was evaluated by flow cytometry and (F) CXCL10 production was 
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measured in culture supernatants by CBA. Data shown are the means and standard 

deviation from duplicate values from two independent experiments except data in (C) 

which are representative of two independent experiments. 

 

Figure 4. Expression of IFN-inducible genes is independent of the NFB 

pathway and of extracellular factors. GEN2.2 cells were untreated or stimulated 

with Flu or CL097 in the absence or presence of the NFB inhibitors BAY and BMS. 

TRAIL (A) and CD40 (B) expression were evaluated by flow cytometry after 4 h and 

24 h of culture, respectively. The mean percentages and standard deviation from 

duplicate values of four independent experiments are shown. (C) GEN2.2 cells were 

untreated or stimulated for 2 h. After washing, cells were placed in 24-well plates; 

untreated cells were added in transwells. After 4 h of culture, TRAIL expression was 

evaluated by flow cytometry on cells in wells and transwells. Data shown are the 

means and standard deviation from duplicate values of three independent 

experiments. (D) GEN2.2 cells were untreated or stimulated for 2 h in the absence or 

presence of anti-IFN-α/β and anti-IFN-α/βR neutralizing antibodies. After washing, 

cells were placed in 24-well plates; untreated cells were added in transwells. After 4 h 

of culture, TRAIL expression was evaluated by flow cytometry on cells in wells and 

transwells. Data from one representative experiment are shown. 

 

Figure 5. STAT1 is phosphorylated independently of type I IFN after TLR7 

triggering with either ligand. GEN2.2 cells were untreated or stimulated with Flu, 

CL097 or IFN-α for 30 min, 2 h and 3 h. Whole cell protein extracts were prepared. 

(A) Phospho-STAT1 (pY701) was quantified in the protein extracts by CBA. Data 

shown are representative of two independent experiments. (B) Western-blot analysis 
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of phospho-STAT1 (pY701) and phospho-STAT2 (pY690) following activation of 

GEN2.2 cells. Data shown are representative of two independent experiments (C) 

After 2 h of stimulation, cells were fixed and permeabilised for phospho-STAT1 

(pY701) analysis by flow cytometry. Representative dot plots of four independent 

experiments are shown. (D) Activation of GEN2.2 cells in the absence or presence of 

anti-IFN-α/β and anti-IFN-α/βR neutralizing antibodies for 2 h. phospho-STAT1 

(pY701) was analysed by flow cytometry. Data shown are the means and standard 

deviation from duplicate values of two independent experiments. 

 

Figure 6. STAT1 phosphorylation and expression of IFN-inducible genes 

following TLR7 triggering depends on the PI3K-p38MAPK pathway. GEN2.2 

cells were untreated or stimulated with Flu, CL097 or IFN-α for 30 min or 3 h. (A) 

phospho-p38MAPK (pT180/pY182) was quantified on whole-cell lysates by CBA. 

Data shown are representative of two independent experiments. (B) GEN2.2 cells 

were untreated or stimulated with Flu, CL097 or IFN-α for 30 min in the absence or 

presence of the PI3K inhibitor LY. Cells were fixed and permeabilised for phospho-

p38MAPK (pT180/pY182) analysis by flow cytometry. The mean percentages and 

standard deviation from duplicate values of two independent experiments are shown. 

(C) phospho-STAT1 (pY701) and (D) TRAIL expression were analysed by flow 

cytometry after 2 h or 4 h of stimulation of GEN2.2 cells with Flu, CL097 or IFN-α in 

the absence or presence of LY and the specific p38MAPK inhibitor SB203580 (SB). 

The mean percentages and standard deviation from duplicate values of three 

independent experiments are shown. Blood-isolated pDCs were unstimulated or 

stimulated with Flu or CL097 for 4 h in the absence or presence of LY and SB. (E) 

Expression of TRAIL was evaluated by flow cytometry. Dot plots representative of 
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two experiments are shown. The percentage of TRAIL positive cells is indicated on 

each plot. (F) CXCL10 production was measured in cell culture supernatants by CBA. 

The mean and standard deviation from duplicate values of two experiments 

performed with two different donors are shown. 
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