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Abstract

This paper deals with the 3-D reconstruction of the coronary tree from a rotational X-ray projection sequence. It describes the

following three stages: the reconstruction of the 3-D coronary tree at different phases of the cardiac cycle, the motion estimation, and

the motion-compensated tomographic reconstruction of the 3-D coronary tree at one given phase using all the available projections.

Our method is tested on a series of simulated images computed from the projection of a segmented dynamic volume sequence

acquired in multislice computed tomography imaging. Performances are comparable to those obtained by reconstruction of a statical

coronary tree using an algebraic reconstruction technique algorithm.
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Introduction

Today, rotational X-ray angiography is commonly used for the diagnosis and treatment of coronary artery diseases. Analyzing 2-D

X-ray projections, specialists can localize pathologies such as stenosis. For obvious reasons, 3-D reconstruction of the coronary tree is of

major interest. This task falls within the field of 3-D tomographic reconstruction: from a projection data vector , we wish to recover ag

volume image  such thatf

where

denotes the tomographic cone-beam projector. Unfortunately, due to heart motion, the full set of projections cannot be used directly:

each projection corresponds to a different volume  and the direct reconstruction leads to inconsistencies in the inverse problem ( ).f  t 1

Therefore, inverse problem ( ) must be rewritten as1

where

is the projection operator at time , is a motion operator that maps the first volume   to  , and t t W  t f 1 f  t
is the set of considered time states.

If is unknown, this difficulty can be overcome by considering a smaller part of the projections that correspond to the same heartW  t
phase (around four to six projections). In this situation, inverse problem ( ) becomes strongly ill-posed, due to the small size of . To1 g

compensate this, a suitable image prior must be included in the reconstruction algorithm , . Another solution is to estimate the motion[8] [4]
and the volume image simultaneously in a joint estimation algorithm. This approach has been applied in  in the case of positron[5]
emission tomography (which is time-consuming), and in  for filtered backprojection.[3]

A third approach described here is to estimate motion prior to image volume reconstruction. Our aim is to demonstrate, through an

idealized situation, which optimal performances can be expected. Our paper starts with the same assumptions used in : we assume that a[1]
3-D model of the coronary tree has been reconstructed at a reference time, and that the 2-D centerlines have been extracted from each

projection.

In Section II, we present a deformable model of the coronary 3-D skeleton that yields an estimation of motion operator using aW  t
B-spline model, by performing a quadratic minimization (instead of a nonquadratic minimization ). In Section III, we propose a[1]
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penalized least-squares reconstruction method, called  (RMCVP), which uses thereconstruction with motion compensation and vessel prior

set of all tomographic projections. Section IV presents our results on simulated data.

Deformable Tree Model and Motion Estimation

In order to solve inverse problem ( ), the motion operator must be estimated. In Section II-A, we propose a deformable tree model2 W  t
to estimate the 3-D skeletons of the coronary tree at each cardiac phase. In Section II-B, the motion operator is constructed by mappingW  t
each of the reconstructed 3-D skeletons to the 3-D skeleton of the first cardiac phase.

Deformable Tree Model

Let us denote by  the volume vector at time   0, . We assume that the time-dependent volume  is  -periodical: for all   0, (f  t t ∈ [ NT] f  t T t ∈ [

  1) ,     ,  denoting the duration of a cardiac cycle and  the number of observed cardiac cycle.  is observed through a finiteN − T] f  t +  T = f  t T N f  t
number of projections at regular instants  / ,   1, , , where  is the number of projections in a cardiac cycle. Hence, thet  j = jT S j ∈ { … NS} S

sequence (  ) is -periodical, and we can rewrite    , with    mod( ).  now denotes the volume at phase  of the cardiac cycle.f  t  j   j S f  t  j= f  s s = j S f  s s

Let     be the device positions (angles) corresponding to a given phase  of the cycle and (   ), ,  ( ) be theΘ  s = {ϑ 1 ,,s …,  ϑN,s } s P ϑ 1  ,s … P  ϑN,s

corresponding projection planes containing the extracted vessels. The proposed method considers that a first 3-D skeleton of the coronary

tree has been reconstructed at phase   1 . Let us denote , the first 3-D coronary skeleton, where  is a boundeds = [1] Ω
subset of . Our purpose is to estimate the 3-D skeleton of each volume  from deformations of  . A topological structure on isℝ3 V  s f  s V 1 V  s
required to define a regularity cost to prevent its successive deformations to result in a degenerate tree. Two points are said to be neighbors

if and only if they are consecutive points on a same branch. The estimation of from  is performed via the minimization of a costV  s V  s 1−
function that is composed of a data fidelity term and a regularization term. For each projection angle , let  be the geometricϑ
cone-beam projection of the 3-D point  on the projection plane ( ):v P ϑ

where  (respectively, ) is the distance of the X-ray source to the detector (respectively, the volume center). We can now define thea b

data cost of a 3-D skeleton  with respect to the projections at phase V s

where | | denotes the cardinal of the set , and  is a function calculating the distance to the extracted vessels, defined asV V

follows. If  is a vessel endpoint, then  is equal to the square distance between  and the corresponding endpoint in thev

extracted vessel in ( ). If  is not an endpoint, then we calculate , where ,     are the  P ϑ υ c 1 ,… c   n min
n

 closest points to  in the extracted vessel in ( ), and the ( ) coefficients are weights that take into consideration localmin P ϑ  γi ϑ

properties of , like the difference of directions between the projected vessel at point  and the segmented vessel at point .c  i
The regularization term ( ) corresponds to a deformation energy and is equal to the normalized sum of the square distances between twoF V

neighboring points (in the sense of the topological structure defined earlier):

where ( ) denotes the number of cliques in . Finally, for all   2 , the deformation energy  ( ) for the estimation of isϒ V V s ∈ { ,…, S} D  s V V  s

where  is a parameter that controls the elasticity of . For   2 , the estimation of from  is performed as follows: atκ V s = ,…, S V  s V  s 1−
iteration ( ), points  are displaced one by one in the gradient direction   (   ) (  denotes the gradient with respect to  ), with aq ∇ℓ E  s V (  q ) ∇ℓ υ ℓ
time step  equal to , in order to slow down the motion as    approaches the solution. δq, ℓ V (  q )

Motion Parameters Estimation

Once we have an estimation of each 3-D coronary tree model , the next step is to estimate the registration functions thatV  s

compensate the motion in the tomographic reconstruction: for each   2 , we wish to build a function :    such that for each s ∈ { ,…, S}  ϕs ℝ3 → ℝ3

  1 , . Letℓ ∈ { ,…, L}
be a grid of  centered on the voxels and  be a subgrid ofΩ ℳ
. A B-spline parametric model is chosen to represent : for all ( , )    ,c C ∈ {x, y, z} × {X, Y, Z}
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where ( )  (   ) (   ) (   ) is a cubic B-spline function centered on ( )  . The estimation of b  m x, y, z = b x − x  m b y − y  m b z − z  m x , y , z  m m m ∈ ℳ

 is carried out by minimizing a least-squares cost function

where the second sum is taken over the neighboring points of , and  and  are regularization parameters. By convention,    0.ℳ μ ν α 1 =

Tomographic Reconstruction

In order to import the motion in an algebraic formula, we must compute a motion matrix ( ) that maps the volume vector at phase W  αs s

 1 to the volume vector at phase , for each   2 . The volume vectors     must be redefined: let  :      be the 3-D= s s ∈ { ,…, S} f 1 ,…, f  S f 1 Ω ⊂ ℝ3 → ℝ

volume function at phase   1. We assume that   can be written as the sum of B-spline functions ( )  (   ) (   ) (  s = f 1 w  p x, y, z = w x − x  p w y − y  p w z −

) centered on the voxel gridz  p

: . The transformation of the image   from the motion is a result of the composition  f  s f 1 ϕ  αs
1

. Let us denote   ( (      ) (  f  s = f  s x 1 , y 1 , z 1 ,…, f  s x |

  | , y |

  | , z |

)) , with ( ) |   T x , y , z  j j j ∈

for all   1 , |j ∈ { ,…
| . Thus, we have the matrix formulation   ( ) , where   (    } f  s = W  αs u u = u 1 ,…, u |

) and ( ( ))  ( ( )). Our aim is now to estimate  by solving the least-squares problem|   T W  αs   j, p = w  p ϕ  αs
x , y , z  j j j u

such that   1  |∀p ∈ { ,…,

|  0. Here,}, u  p ≥

denotes the tomographic cone beam projector at angles     (please note thatΘ  s Θ  s = {ϑ 1 ,,s …,  ϑN, s }

is different fromΘ  s
) and  the corresponding observed projections. Pr( ) is a vessel prior cost on  defined as follows: for all   1  |geom g  s u u p = ,…,

|, let  be the square distance of voxel  to  . We define ( ) asp V 1 Pr u

where  > 0. This function penalizes high values for voxels that are located far from the centrelines. A similar prior has been used in β [4
.]

Results

We simulated 3-D volumes of a coronary tree at 20 different cardiac phases, using 3-D centrelines     that had been extractedV 1 ,…, V 20

previously from a 3-D dynamic sequence acquired on a 64 slice general electric (GE) light-speed computed tomography (CT) coronary

angiography . This sequence included 20 volumes reconstructed at every 5  of the RR interval. The simulated dynamic volume is a[7] %
sequence of binary functions  :f  s

 0, 1 , such that  ( )  1 if  is located in a tube centered on the 3-D centerlines and  ( )  0 in the opposite case. A Gaussian→ { } f  s υ = υ V  s f  s υ =

white noise with a standard deviation   0.05 was added to the 2-D extracted centrelines coordinates, in order to simulate gating and 2-Dσ =
centrelines extraction errors. The dimension of the voxel grid

is 192  192  192.× ×
is included in a cube  whose vertex coordinates are ( 0.5, 0.5, 0.5). The number of cycles is 4 with a total of 80 projectionsΩ ± ± ±

uniformly distributed from 0  to 120 . Each volume  is projected four times during the acquisition. The projection operator° ° f  s
has been computed following .Θ  s [6]

3-D Centerlines and Motion Estimation
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The motion grid  is an 8  8  8 uniform grid of . The 2-D centrelines at each phase  have been drawn by performing geometricℳ × × Ω s

projections of each 3-D centrelines     on the projection planes (   ), ( ). We chose   1.5 for the model deformationV 2 ,…, V 20 P ϑ 1,  s …, P  ϑN,s κ =

algorithm,   0.1 and   0.005 for the estimation of . In , the two selected cardiac states correspond to the end diastolic andμ = ν =  αs Fig. 1

systolic phases, respectively, in order to test the robustness of the method for the largest movements. In most cases, the algorithm for the

construction of a coronary tree at a given cardiac phase has converged after less than 30 iterations.

Tomographic Reconstruction

Because we strive to obtain the 3-D spatial support of the vessels (and not the density distribution inside the vessels that reflects only

the contrast medium), we decided to threshold the reconstructed data in order to get a binary object equivalent to the original set and then

to compare their binary supports. The threshold value has been varied to demonstrate its influence. We calculated the reconstruction error

as follows: the reconstructed volume  was binarized using a threshold  and compared with the original binary volume   at phase   1,f ̄ ς f 1 s =

according to the formula

where bin ( ) denotes the binarized transformation of  with threshold  and Supp(bin ( )) (respectively, Supp(  )) denotes the set  ς f ̄ f ̄ ς   ς f ̄ f 1

of voxels, such that bin ( ) (respectively,  ) is equal to 1. Two projections of the simulated volume   at the first cardiac phase can be  ς f ̄ f 1 f 1

seen in . We used a gradient-based method to solve the least-squares problem ( ) with   1.5 and   1. Results obtained with ourFig. 2 4 ϱ = β =
method (RMCVP) are displayed in . We compared our results with two other methods: the Fig. 2 reconstruction with no MCVP

(RNMCVP) method and the  (GRVP) method. The RNMCVP method is a penalized least-squaresgated reconstruction with vessel prior

reconstruction method using all of the 80 projections by minimizing ( ) with no motion compensation (i.e., ( )  is replaced by   and4 W  αs u f 1

the minimization is performed with respect to  ). The GRVP is a penalized least-squares reconstruction method also based on thef 1

minimization of ( ) where the projection operator4

performs only four projections that are taken at the same cardiac phase. This method also includes the image prior ( ). A reference5

score is obtained by solving the inverse problem ( ) where volume  remains static throughout the 80 projections, using an algebraic1 f

reconstruction technique (ART) algorithm . This method is supposed to represent an ideal case. All algorithms have converged within[2]
less than 50 iterations. Results are presented in . In terms of performances, RMCVP is comparable to statical ART reconstruction.Table I

In terms of results, RMCVP is better than GRVP, suggesting that as long as motion is well compensated, reconstruction is more efficient

when all projections are used instead of only four gated projections.

Discussion and Conclusion

We briefly introduced in this paper in progress an algebraic reconstruction method for the reconstruction of coronary arteries from a

full sequence of X-ray rotational projections. The evaluation of the method has been carried out on simulated data. The aim of our

simulation was to demonstrate which performance can be expected when the motion (or deformation) is estimated prior to the

reconstruction, using assumptions done in . The parameter spaces, intrinsic to the method, were systematically explored in order to[1]
evaluate their impact on result quality. Thus, a too large  value will lead to an incorrect estimation since it will introduce a large variationκ
in the shape of the vessel. Conversely, if  is too small, irregular matching may appear along the vessels. Its value has been chosen toκ
involve a smooth deformation of the 3-D coronary model. The respective values of , , and  have a much smaller impact, allowingμ ν ϱ
relatively large ranges: 0.01, 1  for , 0.0001, 1  for , and 0.5, 20  for . A -value larger than 2 tends to favor a smooth reconstruction.[ ] μ [ ] ν [ ] ϱ β

Several key issues remain to be analyzed. Any volume reconstruction method including a motion prior is submitted to time

computation and memory constraints, which requires special attention. We have used a volume of 192  192  192, and our method× ×
requires 15 min on a standard computer (Processor Intel Core2 CPU, clock speed: 2.66 GHz, Memory size: 4 GB) (67  for the centreline%
estimation, 33  for reconstruction). It is also critical to take into account all the errors that can be made during the process in clinical%
setting. Vessel segmentation in the projections (no detection or false detection), background effects, and inaccuracies in motion estimation

are among the major ones and must be further examined. The complexity (i.e., number of branches) of the object and the presence of

abnormal patterns (stenoses and thin or tortuous vessels for instance) are another important issue.

Ackowledgements:

The authors are indebted to J.-L. Coatrieux for having constantly advised us on this research project.

Footnotes:
1

In theory, we should use a diffeomorphism that maps   to and perform the compositionϕ  αs
V 1 V  s



IEEE Trans Biomed Eng. Author manuscript

Page /5 7

. Because our B-spline model is not exactly  invertible, we used a function that approximately maps to  .“ ”  ϕ  αs
V  s V 1
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Fig. 1
Result of the deformation algorithm between end of systole and end of diastole.



IEEE Trans Biomed Eng. Author manuscript

Page /6 7

Fig. 2
First row: projection data of the coronary tree at phase   1. Second row: projections of the reconstructed volume using the RMCVP method.s =
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TABLE I
Reconstruction Error of the Four Methods

Method RNMCVP GRVP RMCVP (   0 /   0.05)σ = σ = Static ART

ς  0.1= 79% 25% 11/14% 8%
ς  0.3= 66% 21% 6/7% 5%
ς  0.7= 81% 24% 10//12% 8%


