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Motion Compensated Tomography Reconstruction
of Coronary Arteries in Rotational Angiography

Alexandre Bousse∗, Jian Zhou, Guanyu Yang,
Jean-Jacques Bellanger, and Christine Toumoulin

Abstract—This paper deals with the 3-D reconstruction of the coronary
tree from a rotational X-ray projection sequence. It describes the following
three stages: the reconstruction of the 3-D coronary tree at different phases
of the cardiac cycle, the motion estimation, and the motion-compensated to-
mographic reconstruction of the 3-D coronary tree at one given phase using
all the available projections. Our method is tested on a series of simulated
images computed from the projection of a segmented dynamic volume
sequence acquired in multislice computed tomography imaging. Perfor-
mances are comparable to those obtained by reconstruction of a statical
coronary tree using an algebraic reconstruction technique algorithm.

Index Terms—Angiography, B-spline interpolation, deformable model,
inverse problem, penalized least squares, rotational X-ray.

I. INTRODUCTION

Today, rotational X-ray angiography is commonly used for the diag-
nosis and treatment of coronary artery diseases. Analyzing 2-D X-ray
projections, specialists can localize pathologies such as stenosis. For
obvious reasons, 3-D reconstruction of the coronary tree is of major
interest. This task falls within the field of 3-D tomographic reconstruc-
tion: from a projection data vector g, we wish to recover a volume
image f such that

g = Pf (1)

where P denotes the tomographic cone-beam projector. Unfortunately,
due to heart motion, the full set of projections cannot be used di-
rectly: each projection corresponds to a different volume ft and the
direct reconstruction leads to inconsistencies in the inverse problem
(1). Therefore, inverse problem (1) must be rewritten as

gt = PtWt f1 ∀t ∈ T (2) 
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where Pt is the projection operator at time t, Wt is a motion operator
that maps the first volume f1 to ft , and T is the set of considered time
states.

If Wt is unknown, this difficulty can be overcome by considering a
smaller part of the projections that correspond to the same heart phase
(around four to six projections). In this situation, inverse problem (1)
becomes strongly ill-posed, due to the small size of g. To compensate
this, a suitable image prior must be included in the reconstruction algo-
rithm [8], [4]. Another solution is to estimate the motion and the volume
image simultaneously in a joint estimation algorithm. This approach
has been applied in [5] in the case of positron emission tomography
(which is time-consuming), and in [3] for filtered backprojection.

A third approach described here is to estimate motion prior to image
volume reconstruction. Our aim is to demonstrate, through an idealized
situation, which optimal performances can be expected. Our paper starts
with the same assumptions used in [1]: we assume that a 3-D model of
the coronary tree has been reconstructed at a reference time, and that
the 2-D centerlines have been extracted from each projection.

In Section II, we present a deformable model of the coronary 3-D
skeleton that yields an estimation of motion operator Wt using a B-
spline model, by performing a quadratic minimization (instead of a
nonquadratic minimization [1]). In Section III, we propose a penalized
least-squares reconstruction method, called reconstruction with motion
compensation and vessel prior (RMCVP), which uses the set of all
tomographic projections. Section IV presents our results on simulated
data.

II. DEFORMABLE TREE MODEL AND MOTION ESTIMATION

In order to solve inverse problem (2), the motion operator Wt must
be estimated. In Section II-A, we propose a deformable tree model to
estimate the 3-D skeletons of the coronary tree at each cardiac phase.
In Section II-B, the motion operator Wt is constructed by mapping
each of the reconstructed 3-D skeletons to the 3-D skeleton of the first
cardiac phase.

A. Deformable Tree Model

Let us denote by ft the volume vector at time t ∈ [0, NT ]. We
assume that the time-dependent volume ft is T -periodical: for all
t ∈ [0, (N − 1)T ], ft+T = ft , T denoting the duration of a cardiac
cycle and N the number of observed cardiac cycle. ft is observed
through a finite number of projections at regular instants tj = jT/S,
j ∈ {1, . . . , NS}, where S is the number of projections in a cardiac
cycle. Hence, the sequence (ft j

)j is S-periodical, and we can rewrite
ft j

= fs , with s = j mod(S). fs now denotes the volume at phase s
of the cardiac cycle.

Let Θs = {ϑ1 ,s , . . . , ϑN ,s} be the device positions (angles) corre-
sponding to a given phase s of the cycle and P (ϑ1 ,s ), . . . , P (ϑN ,s )
be the corresponding projection planes containing the extracted ves-
sels. The proposed method considers that a first 3-D skeleton of the
coronary tree has been reconstructed at phase s = 1 [1]. Let us denote
V1 = {v1

1 , . . . , v1
L } ⊂ Ω, the first 3-D coronary skeleton, where Ω is

a bounded subset of R
3 . Our purpose is to estimate the 3-D skeleton

Vs of each volume fs from deformations of V1 . A topological structure
on Vs is required to define a regularity cost to prevent its successive
deformations to result in a degenerate tree. Two points are said to be
neighbors if and only if they are consecutive points on a same branch.
The estimation of Vs from Vs−1 is performed via the minimization of    
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a cost function that is composed of a data fidelity term and a regular-
ization term. For each projection angle ϑ, let Pgeom

ϑ (v) ∈ P (ϑ) be the
geometric cone-beam projection of the 3-D point v on the projection
plane P (ϑ):

Pgeom
ϑ (v) =

a

b + vx cos(ϑ) + vy sin(ϑ)

[
vx sin(ϑ) − vy cos(ϑ)

vz

]
where a (respectively, b) is the distance of the X-ray source to the
detector (respectively, the volume center). We can now define the data
cost of a 3-D skeleton V with respect to the projections at phase s

Es (V ) =
1

N |V |
∑
v∈V

N∑
n =1

Dϑ n , s (Pgeom
ϑ n , s

(v))

where |V | denotes the cardinal of the set V , and Dϑ : P (ϑ) → R
∗
+

is a function calculating the distance to the extracted vessels, defined
as follows. If v is a vessel endpoint, then Dϑ (Pgeom

ϑ (v)) is equal to
the square distance between Pgeom

ϑ (v) and the corresponding end-
point in the extracted vessel in P (ϑ). If v is not an endpoint, then we
calculate Dϑ (Pgeom

ϑ (v)) = Γ(ϑ)−1
∑n m in

i=1 γi (ϑ)‖Pgeom
ϑ (v) − ci‖2 ,

where Γ(ϑ) =
∑n m in

i=1 γi (ϑ), c1 , . . . , cn m in are the nm in closest points
to Pgeom

ϑ (v) in the extracted vessel in P (ϑ), and the γi (ϑ) coefficients
are weights that take into consideration local properties of Pgeom

ϑ (V ),
like the difference of directions between the projected vessel at point
Pgeom

ϑ (v) and the segmented vessel at point ci . The regularization term
F(V ) corresponds to a deformation energy and is equal to the normal-
ized sum of the square distances between two neighboring points (in
the sense of the topological structure defined earlier):

F(V ) =
1

Υ(V )

∑
�∼� ′

‖v� − v� ′ ‖2

where Υ(V ) denotes the number of cliques in V . Finally, for all s ∈
{2, . . . , S}, the deformation energy Ds (V ) for the estimation of Vs is

Ds (V ) = Es (V ) + κF(V )

where κ is a parameter that controls the elasticity of V . For s =
2, . . . , S, the estimation of Vs from Vs−1 is performed as follows:
at iteration (q), points v

(q )
� are displaced one by one in the gradient di-

rection ∇�Es (V (q ) ) (∇� denotes the gradient with respect to v� ), with
a time step δq ,� equal to N−1

∑N

n =1 Dϑ n , s (Pgeom
ϑ n , s

(v(q )
� )), in order to

slow down the motion as V (q ) approaches the solution.

B. Motion Parameters Estimation

Once we have an estimation of each 3-D coronary tree model Vs , the
next step is to estimate the registration functions that compensate the
motion in the tomographic reconstruction: for each s ∈ {2, . . . , S},
we wish to build a function ϕs : R

3 → R
3 such that for each � ∈

{1, . . . , L}, ϕt (vs
� ) 
 v1

� . Let G be a grid of Ω centered on the voxels
and M be a subgrid of G. A B-spline parametric model is chosen to
represent ϕs = ϕα s = (ϕX

α s
, ϕY

α s
, ϕZ

α s
): for all (c, C) ∈ {x, y, z} ×

{X, Y, Z},

ϕC
α s

(x, y, z) = c +
|M|∑

m =1

αm
X ,s bm (x, y, z)

where bm (x, y, z) = b(x − xm )b(y − ym )b(z − zm ) is a cubic B-
spline function centered on (xm , ym , zm ) ∈ M. The estimation of

αs =
{
(αm

X ,s , α
m
Y ,s , α

m
Z ,s )

}|M|
m =1

is carried out by minimizing a least-
squares cost function

ψ(αs ) =
L∑

�=1

‖ϕα s (vs
� ) − v1

� ‖2 + µ
∑

m ∼m ′

‖αm
s − αm ′

s ‖2 + ν‖αs‖2

(3)
where the second sum is taken over the neighboring points of M, and
µ and ν are regularization parameters. By convention, α1 = 0.

III. TOMOGRAPHIC RECONSTRUCTION

In order to import the motion in an algebraic formula, we must com-
pute a motion matrix W (αs ) that maps the volume vector at phase
s = 1 to the volume vector at phase s, for each s ∈ {2, . . . , S}. The
volume vectors f1 , . . . , fS must be redefined: let f1 : Ω ⊂ R

3 → R

be the 3-D volume function at phase s = 1. We assume that f1 can
be written as the sum of B-spline functions wp (x, y, z) = w(x − xp )
w(y − yp )w(z − zp ) centered on the voxel grid G: f1 (x, y, z) =∑|G|

p=1 up wp (x, y, z). The transformation fs of the image f1 from
the motion ϕα s is a result of the composition1 fs (x, y, z) =
f1 (ϕα s (x, y, z)) =

∑|G|
p=1 up wp (ϕα s (x, y, z)). Let us denote fs =

(fs (x1 , y1 , z1 ), . . . , fs (x|G|, y|G|, z|G|))T , with (xj , yj , zj ) ∈ G for all
j ∈ {1, . . . , |G|}. Thus, we have the matrix formulation fs = W (αs )u,
where u = (u1 , . . . , u|G|)T and (W (αs ))j,p = wp (ϕα s (xj , yj , zj )).
Our aim is now to estimate u by solving the least-squares problem

minimize
S∑

s=1

‖PΘ s W (αs )u − gs‖2 + 
P r(u) (4)

such that ∀p ∈ {1, . . . , |G|}, up ≥ 0. Here, PΘ s denotes the tomo-
graphic cone beam projector at angles Θs = {ϑ1 ,s , . . . , ϑN ,s} (please
note that PΘ s is different from Pgeom ) and gs the corresponding ob-
served projections. Pr(u) is a vessel prior cost on u defined as fol-
lows: for all p = 1, . . . , |G|, let ∆p = min{d2 ((xp , yp , zp ), v1

� ), � =
1, . . . , L} be the square distance of voxel p to V1 . We define Pr(u) as

Pr(u) =
|G|∑

p=1

∆p |up |β (5)

where β > 0. This function penalizes high values for voxels that are
located far from the centrelines. A similar prior has been used in [4].

IV. RESULTS

We simulated 3-D volumes of a coronary tree at 20 different cardiac
phases, using 3-D centrelines V1 , . . . , V20 that had been extracted pre-
viously from a 3-D dynamic sequence acquired on a 64 slice general
electric (GE) light-speed computed tomography (CT) coronary angiog-
raphy [7]. This sequence included 20 volumes reconstructed at every
5% of the RR interval. The simulated dynamic volume is a sequence of
binary functions fs : G → {0, 1}, such that fs (v) = 1 if v is located in
a tube centered on the 3-D centerlines Vs and fs (v) = 0 in the opposite
case. A Gaussian white noise with a standard deviation σ = 0.05 was
added to the 2-D extracted centrelines coordinates, in order to simu-
late gating and 2-D centrelines extraction errors. The dimension of the
voxel grid G is 192 × 192 × 192. G is included in a cube Ω whose
vertex coordinates are (±0.5,±0.5,±0.5). The number of cycles is 4

1In theory, we should use a diffeomorphism φα s that maps V1 to Vs and
perform the composition f1 ◦ φ−1

α s
. Because our B-spline model is not “exactly”

invertible, we used a function ϕα s that approximately maps Vs to V1 .   



Fig. 1. Result of the deformation algorithm between end of systole and end
of diastole.

with a total of 80 projections uniformly distributed from 0◦ to 120◦.
Each volume fs is projected four times during the acquisition. The
projection operator PΘ s has been computed following [6].

A. 3-D Centerlines and Motion Estimation

The motion grid M is an 8 × 8 × 8 uniform grid of Ω. The 2-D
centrelines at each phase s have been drawn by performing geomet-
ric projections of each 3-D centrelines V2 , . . . , V20 on the projection
planes P (ϑ1 ,s ), . . . , P (ϑN ,s ). We chose κ = 1.5 for the model defor-
mation algorithm, µ = 0.1 and ν = 0.005 for the estimation of αs . In
Fig. 1, the two selected cardiac states correspond to the end diastolic
and systolic phases, respectively, in order to test the robustness of the
method for the largest movements. In most cases, the algorithm for the
construction of a coronary tree at a given cardiac phase has converged
after less than 30 iterations.

B. Tomographic Reconstruction

Because we strive to obtain the 3-D spatial support of the vessels
(and not the density distribution inside the vessels that reflects only
the contrast medium), we decided to threshold the reconstructed data
in order to get a binary object equivalent to the original set and then
to compare their binary supports. The threshold value has been varied
to demonstrate its influence. We calculated the reconstruction error as
follows: the reconstructed volume f̂ was binarized using a threshold
ς and compared with the original binary volume f1 at phase s = 1,
according to the formula

ες (̂f , f1 ) = 1 −

∣∣∣Supp(binς (̂f ))
⋂

Supp(f1 )
∣∣∣

|Supp(f1 )|

where binς (̂f ) denotes the binarized transformation of f̂ with thresh-
old ς and Supp(binς (̂f )) (respectively, Supp(f1 )) denotes the set of
voxels, such that binς (̂f ) (respectively, f1 ) is equal to 1. Two projec-
tions of the simulated volume f1 at the first cardiac phase can be seen
in Fig. 2. We used a gradient-based method to solve the least-squares
problem (4) with 
 = 1.5 and β = 1. Results obtained with our method
(RMCVP) are displayed in Fig. 2. We compared our results with two
other methods: the reconstruction with no MCVP (RNMCVP) method
and the gated reconstruction with vessel prior (GRVP) method. The
RNMCVP method is a penalized least-squares reconstruction method
using all of the 80 projections by minimizing (4) with no motion com-
pensation (i.e., W (αs )u is replaced by f1 and the minimization is
performed with respect to f1 ). The GRVP is a penalized least-squares

Fig. 2. First row: projection data of the coronary tree at phase s = 1. Second
row: projections of the reconstructed volume using the RMCVP method.

TABLE I
RECONSTRUCTION ERROR OF THE FOUR METHODS

reconstruction method also based on the minimization of (4) where
the projection operator P performs only four projections that are taken
at the same cardiac phase. This method also includes the image prior
(5). A reference score is obtained by solving the inverse problem (1)
where volume f remains static throughout the 80 projections, using an
algebraic reconstruction technique (ART) algorithm [2]. This method
is supposed to represent an ideal case. All algorithms have converged
within less than 50 iterations. Results are presented in Table I. In terms
of performances, RMCVP is comparable to statical ART reconstruc-
tion. In terms of results, RMCVP is better than GRVP, suggesting that
as long as motion is well compensated, reconstruction is more efficient
when all projections are used instead of only four gated projections.

V. DISCUSSION AND CONCLUSION

We briefly introduced in this paper in progress an algebraic recon-
struction method for the reconstruction of coronary arteries from a full
sequence of X-ray rotational projections. The evaluation of the method
has been carried out on simulated data. The aim of our simulation was
to demonstrate which performance can be expected when the motion
(or deformation) is estimated prior to the reconstruction, using assump-
tions done in [1]. The parameter spaces, intrinsic to the method, were
systematically explored in order to evaluate their impact on result qual-
ity. Thus, a too large κ value will lead to an incorrect estimation since
it will introduce a large variation in the shape of the vessel. Conversely,
if κ is too small, irregular matching may appear along the vessels. Its
value has been chosen to involve a smooth deformation of the 3-D coro-
nary model. The respective values of µ, ν , and 
 have a much smaller
impact, allowing relatively large ranges: [0.01, 1] for µ, [0.0001, 1] for
ν , and [0.5, 20] for 
. A β-value larger than 2 tends to favor a smooth
reconstruction.  
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Several key issues remain to be analyzed. Any volume reconstruc-
tion method including a motion prior is submitted to time computation
and memory constraints, which requires special attention. We have
used a volume of 192 × 192 × 192, and our method requires 15 min
on a standard computer (Processor Intel Core2 CPU, clock speed:
2.66 GHz, Memory size: 4 GB) (67% for the centreline estimation, 33%
for reconstruction). It is also critical to take into account all the errors
that can be made during the process in clinical setting. Vessel segmen-
tation in the projections (no detection or false detection), background
effects, and inaccuracies in motion estimation are among the major
ones and must be further examined. The complexity (i.e., number of
branches) of the object and the presence of abnormal patterns (stenoses
and thin or tortuous vessels for instance) are another important issue.
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reconstruction of the coronary arteries from rotational x-ray angiography,”
in Proc. SPIE Med. Imag., 2007, vol. 6510, pp. 651026-1–651026-10.

[5] M. W. Jacobson, “Approaches to motion-corrected PET image recon-
struction from respiratory gated projection data,” Ph.D. dissertation, Univ.
Michigan, Ann Arbor, MI, 2006.

[6] B. D. Man and S. Basu, “Distance-driven projection and backprojection
in three dimensions,” Phys. Med. Biol., vol. 49, pp. 2463–2475, May
2004.

[7] G. Yang, A. Bousse, C. Toumoulin, and H. Shu, “A multiscale tracking
algorithm for the coronary extraction in MSCT angiography,” in Proc.
Eng. Med. Biol. Soc. (EMBS), 2006, vol. 1, pp. 3066–3069.

[8] J. Zhou, A. Bousse, G. Yang, J. Bellanger, L. Luo, C. Toumoulin, and
J. Coatrieux, “A blob-based tomographic reconstruction of 3d coronary
tree from rotational x-ray angiography,” in Proc. SPIE Med. Imag., 2008,

pp. 69132N-1–69132N-12. 




