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Abstract

Background: Tuberculosis (TB) in prisons is a major health problem in countries of high and intermediate TB endemicity
such as Brazil. For operational reasons, TB control strategies in prisons cannot be compared through population based
intervention studies.

Methodology/Principal Findings: A mathematical model is proposed to simulate the TB dynamics in prison and evaluate
the potential impact on active TB prevalence of several intervention strategies. The TB dynamics with the ongoing program
was simulated over a 10 year period in a Rio de Janeiro prison (TB prevalence 4.6 %). Then, a simulation of the DOTS strategy
reaching the objective of 70 % of bacteriologically-positive cases detected and 85 % of detected cases cured was
performed; this strategy reduced only to 2.8% the average predicted TB prevalence after 5 years. Adding TB detection at
entry point to DOTS strategy had no major effect on the predicted active TB prevalence. But, adding further a yearly X-ray
mass screening of inmates reduced the predicted active TB prevalence below 1%. Furthermore, according to this model,
after applying this strategy during 2 years (three annual screenings), the TB burden would be reduced and the active TB
prevalence could be kept at a low level by associating X-ray screening at entry point and DOTS.

Conclusions/Significance: We have shown that X-ray mass screenings should be considered to control TB in highly endemic
prison. Prisons with different levels of TB prevalence could be examined thanks to this model which provides a rational tool
for public health deciders.
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Introduction

All over the world, tuberculosis (TB) is a public health problem

in prisons due to the fact that many inmates come from

communities at high risk of TB, to their living conditions in

prisons and to the insufficiencies of prisons’ health services [1].

This problem is particularly critical in countries of high and

intermediate TB endemicity such as Brazil. In Rio de Janeiro (RJ)

state prisons, the 2005 annual TB incidence rate was as high as 3

500/100 000 [2], 35 times higher than in the general population of

the state [3]. Recent X-ray surveys performed in three RJ prisons

found prevalence rates of active TB ranging from 4.6 to 8.6%

[4,5].

In addition to the universal World Health Organization (WHO)

Directly Observed Treatment Short-course (DOTS) strategy [6],

several measures have been proposed by WHO and the Red Cross

to control TB in the prisons [7] including mass screening of

prisoners based on symptoms [8] and the systematic detection of

TB at entry point, commonly used in high income countries

[9,10]. However, the respective efficacy of these measures and of

their combinations remains to be demonstrated, particularly in

countries of high and intermediate TB endemicity [11]. But, in the

context of prisons, comparative intervention studies to measure the

efficacy of control strategies would be unfeasible and would raise

ethical questions. Therefore, in order to explore the impact of

several TB control strategies on the prevalence of active TB, we

developed a mathematical model of TB dynamics in prisons. In

the present study, parameter values were drawn from the medical

literature and from epidemiological studies previously conducted

in one of the RJ prison units [4].

Materials and Methods

Model
Based on previously published works [12–19], we developed a

stochastic compartmental model where the population is distrib-

uted into 10 groups (see figure 1). This model allows the simulation

of infection and re-infection, detection and treatment of cases,

treatment failure, death from tuberculosis, self cure and incarcer-

ation of new prisoners. Susceptible individuals (S) can be infected

by infectious TB cases (see figure 1, transitions 1–2). Infected cases

can be either fast (E) or slow (L) progressors, the rate of progression

from latency to active TB being greater for fast progressors

(transitions 3–10). Active TB cases are divided into four groups
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according to whether they will be detected and treated thanks to

passive detection (D) or not (T) and whether they are infectious

(subscript i) or not (subscript n). However, non infectious cases can

become infectious (transitions 11–13). After an average duration of

1/k years, cases in D states are detected and move to the recovered

compartment (R) if the treatment is successful (transitions 14–15).

Otherwise, they move to the treatment failure compartment (Yi

and Yn, transitions 16–17) before re-entering compartments T or

D (transitions 18–21). Undetected TB cases (Ti and Tn) can be self-

cured (transitions 22–23). Recovered individuals (R) can relapse

(transitions 24–27). Latent slow progressors (L) and cured

individuals (R) can be re-infected by infectious cases (transitions

28–29). The rates of entries in compartments depend on the

prevalence of TB infection and active TB at entry point and on the

simulated TB control strategy. The rate of discharge in each

compartment is proportional to the size of this compartment.

Parameter definitions are given in table 1 and detailed transition

rates are given in table 2. We considered that smear-positive and

smear-negative/culture positive cases are infectious and that smear

negative/culture negative TB cases are not.

Simulations of the model were performed using the Gillespie’s

first reaction method [23]. A transition rate, li, depending only on

the present state of the population, is allocated to each transition

between two compartments. At each iteration of the algorithm, a

time ti is drawn from an exponential distribution with parameter

li for each transition. The next transition m is the transition that

has the minimum time to occurrence (tm). Then, counts in each

compartment are updated accordingly.

Background and source of data
The 35 RJ State prisons hold nearly 23 000 inmates. In the

present study, we investigated the TB dynamics in one of the RJ

prisons (around 1000 inmates) where the prevalence of active TB

is 4.6% [4]. As in most of RJ prisons, cells are overcrowded

(median: 33 inmates/cell) and poorly ventilated. The inmates are

sentenced for at least 8 years but, due to movements of inmates

among prisons and to incarceration/freeing, the annual turnover

of inmates is around one third. The TB control is based on the

DOTS strategy which includes case detection through quality

assured-bacteriology and standardized treatment with supervision

and patient support [6]. There is no TB detection at entry in

prison and no mass screening in the prison. Prevalence of active

TB and prevalence of TB infection in prison and at entry point

were inferred from surveys carried out in RJ prison units. The

values of other parameters were obtained from the literature (see

table 1).

Figure 1. Structure of the mathematical model for the dynamics of tuberculosis in prison. Each box represents a compartment:
Susceptible individuals (S), latent fast progressors (E), latent slow progressors (L), cured individuals (R), infectious/non-infectious cases who will be
detected and treated (Di/Dn), infectious/non-infectious cases who will not be detected and treated (Ti/Tn), infectious/non-infectious treated cases
with treatment failure (Yi/Yn). Red boxes represent a disease-infectious state, pink boxes represent a disease-non infectious state and grey boxes
represent infected individuals without disease. Entries and discharges in and out of the prison are not represented on this figure.
doi:10.1371/journal.pone.0002100.g001
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Simulation of TB control strategies
We first simulated the evolution of active TB prevalence in the

prison over a 10 year period if the current TB control strategy

remains unchanged. For simulating this current scenario, we

considered that, among prisoners entering the prison, the

prevalence of latent TB infection (defined as a positive tuberculin

skin test after excluding active TB cases) is 47.0% and that the

prevalence of active TB (evaluated through X-ray screening and

bacteriological diagnostic tests) is 1.5% (unpublished data). Among

inmates, we considered a prevalence of latent TB infection at

60.6% and a prevalence of active TB at 4.6% [4]. Furthermore, in

line with the data from the prison TB surveillance system and

prevalence surveys, we assumed that 43% of new infectious cases

are detected, that 34% of new non infectious cases are detected

and that 65% of treated cases are cured. The transmission rate was

calibrated in such a way that the average predicted prevalence of

active TB remains roughly stable over this 10 year period. The

calibration of the model was done by determining the size of each

compartment at time t = 0 and the value of the transmission rate

leading to the equilibrium of the deterministic version of the model

and fulfilling the constraints on the values of the prevalence of

infection and of disease in the prison and at the entry in prison.

Then, we explored the potential effect on active TB prevalence

of several simulated strategies (S1 to S5) based on the following

control methods, considered alone or associated, as shown in

table 3:

– DOTS strategy reaching the WHO target [6]: to detect 70% of

new bacteriologically-positive cases and to cure 85% of

detected cases

– Systematic detection of TB at entry point of symptomatic

(cough.3 weeks) smear-positive cases

Table 1. Definitions and values of model parameters

Parameter Definition Current scenario Values in S1–S7 Distribution for LHS Units References

min peak{ max

N Number of inmates at the
beginning of simulations

1000 1000 person

b Transmission rate 11.1023 11.1023 10.1023 15.1023 /person/year [15,17,19,20]

p Proportion of fast
progressors

0.14 0.14 0.08 0.14 0.25 [15,21]

m Partial immunity afforded
by previous infection

0.41 0.41 0.4 0.9 [15,21]

t1 Rate at which slow
progressors develop TB

0.00256 0.00256 0.00256 0.00527 /year [12]

t2 Rate at which fast
progressors develop TB

0.9638 0.9638 0.76 0.99 /year [21]

h Proportion of TB cases who
become infectious

0.65 0.65 0.5 0.65 0.85 [12]

v Rate of smear conversion 0.015 0.015 0 0.02 /year [15]

g Proportion of treated cases
who are cured

0.65 0.85 UD{

k Rate at which cases in Di

and Dn (see figure 1) are
detected and treated

3.43 3.43 2.4 6.0 /year PC1

d Rate of relapse 0.01 0.01 0 0.01 0.03 /year [12]

s1 Rate of self cure for non
treated infectious cases

0.058 0.058 0.021 0.058 0.086 /year [12]

s2 Rate of self cure for non
treated non infectious cases

s1 s1 /year [12]

Q Untreated TB death rate 0.14 0.14 0.058 0.139 0.461 /year [12]

f1 Proportion of infectious
cases detected

0.43 0.7 PC

f2 Proportion of non infectious
cases detected

0.34 0 PC

p Inmates turnover 1/3 1/3 /year UD

Detection at entry point No See table 3

Se Sensitivity of the detection
of smear+symptomatic
cases at entry point

0.21 0.2 0.4 [4,22]

*LHS: Latin Hypercube Sampling
{The parameter distribution for the Latin Hypercube Sampling is triangular when «peak» is specified and is uniform otherwise
{UD: Unpublished data obtained in the prison we studied. The proportion of treated cases who are cured was obtained from the follow up records of TB cases. The
inmates’ turnover was based on the administrative records.

1PC: Personal communication A.Sanchez. Parameter k corresponds to the inverse of the average duration of the time from progression to active TB to detection. We set
this average duration at 3 months and a half (k = 3.43) with a range 2 months-5 months in the Latin Hypercube Sample.

doi:10.1371/journal.pone.0002100.t001
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Table 2. Description of the transition rates in the model

Transition number Transition Transition rate

1 (S-1; L+1) (1-p)bS(Ti+Yi+Di)

2 (S-1; E+1) pbS(Ti+Yi+Di)

3 (L-1; Ti+1) t1h(1-f1)L

4 (L-1; Tn+1) t1(1-h)(1-f2)L

5 (E-1; Ti+1) t2h(1-f1)E

6 (E-1; Tn+1) t2(1-h)(1-f2)E

7 (L-1; Di+1) t1hf1L

8 (L-1; Dn+1) t1(1-h)f2L

9 (E-1; Di+1) t2hf1E

10 (E-1; Dn+1) t2(1-h)f2E

11 (Tn-1; Ti+1) wTn

12 (Dn-1; Di+1) wDn

13 (Yn-1; Yi+1) wYn

14 (Di-1; R+1) gkDi

15 (Dn-1; R+1) gkDn

16 (Di-1; Yi+1) (1-g)kDi

17 (Dn-1; Yn+1) (1-g)kDn

18 (Yi-1; Ti+1) (1-f1)Yi

19 (Yn-1; Tn+1) (1-f2)Yn

20 (Yi-1; Di+1) f1Yi

21 (Yn-1; Dn+1) f2Yn

22 (Ti-1; R+1) s1Ti

23 (Tn-1; R+1) s2Tn

24 (R-1; Ti+1) (1-f1)dhR

25 (R-1; Tn+1) (1-f2)d(1-h)R

26 (R-1; Di+1) hdf1R

27 (R-1; Dn+1) (1-h)df2R

28 (L-1; E+1) p(1-m)b(Ti+Yi+Di)L

29 (R-1; E+1) p(1-m)b(Ti+Yi+Di)R

(S+1) (eS)V

(S-1) PS

(L+1) (eL)V

(L-1) PL

(E+1) (eE)V

(E-1) PE

(Ti+1) (eTi)V

(Ti-1) PTi+QTi

(Tn+1) (eTn)V

(Tn-1) PTn+QTn

(Di+1) (eDi)V

(Di-1) PDi

(Dn+1) (eDn)V

(Dn-1) PDn

(Yi+1) (eYi)V

(Yi-1) PYi

(Yn+1) (eYn)V

(Yn-1) PYn

(R+1) (eR)V

(R-1) PR

We denote V the annual number of inmates entering the prison and eX the
proportion of prisoners who enter the X compartment. Other parameters
definitions are given in table 1. Transition numbers correspond to the numbers
on figure 1.
doi:10.1371/journal.pone.0002100.t002
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– Systematic detection of TB at entry point using chest X-ray

– Annual X-ray mass screening of inmates.

Considering the cost and the operational complexity of annual

X-ray mass screening included in strategies 4 and 5 described in

table 3, we simulated strategies (S6 and S7) including a first 2 years

phase of the DOTS associated with X-ray detection at entry and

annual X-ray mass screening (3 X-ray mass screenings) followed

by a second phase limited to DOTS plus X-ray detection at entry

(S6) or to DOTS alone (S7).

To implement the DOTS strategy, we modified the values of

the proportions of new cases detected (f1, f2) and the value of the

proportion of detected cases cured by treatment (g) as shown in

table 1. We considered that smear-negative/culture-negative cases

are not detected.

To simulate the systematic detection of TB at entry point (based

on symptoms or chest X-ray), we considered that detected cases

would be treated as soon as they are detected and we modified the

relative proportion of cases entering compartments T, D, Y and R

accordingly. X-ray screenings were simulated by moving cases

from compartments T, D, Y to compartments Y and R. We

considered that X-ray screening allows the detection of 100% of

cases, that all detected cases are treated and that the screening of

smear-positive symptomatic cases at entry point allows the

detection of 21% of bacteriologically positive cases [4]. Other

parameter values are presented in table 1.

For the current scenario and for each simulated strategy, we

performed 600 runs of the model and computed the mean and the

percentiles 5 and 95 of the active TB prevalence at different

dates.

Multivariate uncertainty and sensitivity analyses
Then, to understand how uncertainty on parameters would

affect uncertainty on the results obtained for each strategy

described in table 3, we performed multivariate uncertainty and

sensitivity analyses including all parameters except those defining

each strategy (detection and cure rates). We carried out one

analysis for the current scenario and one for each of the strategies

S1-S7. Using the Latin Hypercube Sampling method (LHS), we

generated a sample of set of parameters using distributions of

parameter described in table 1 [20,24]. The active TB average

prevalence on 600 runs was considered as the model output.

Hence, for each analysis, we computed the average predicted

prevalence of active TB after 10 years with each set of parameters

of the Latin Hypercube Sample. The same sample was used for

the eight analyses.

Then, in order to quantify the impact of the variation of each

parameter on the output of the model, we computed the partial

rank correlation coefficients (PRCC) between each parameter and

the average predicted prevalence of active TB with each strategy

[24].

Results

Simulations with each strategy
Active TB prevalence rates (mean and percentiles 5 and 95)

predicted over a 10 year period under the ongoing scenario and

under the different strategies (S1–S7) are shown in table 3 and in

figure 2.

Assuming that the active TB prevalence would remain stable if

the ongoing scenario was applied, we calibrated the transmission

rate at 11.1023. With this scenario, the average number of new

cases detected during the first year was 1290 [(P5, P95) = (780,

1860)] per 100 000.

When we simulated the implementation of the DOTS strategy

meeting the WHO target (S1), the model predicted a slow

decreasing trend of active TB average prevalence from 4.6 to 3.4%

(2.4, 4.5) at year 3 and 2.2% (1.3, 3.3) at year 10. Adding to this

strategy a systematic TB detection at entry point based on

symptoms (S2) had no additional effect. Results were slightly

improved when mass screening at entry point was based on X-ray

(S3).

Considering the limited and slow decreasing trends observed

with S1, S2 and S3 strategies, we simulated strategies associating

annual mass X-ray plus DOTS and screening at entry point (S4

and S5). When simulating these strategies, we observed a rapid

decrease in active TB average prevalence from 4.6 to 0.7% (0.3,

1.2) at year 3 when the screening at entry point was based on

symptoms (S4). Active TB average prevalence was slightly lower

when the screening at entry point was based on X-ray (S5). In both

instances, at year 10, the active TB average prevalence did not

exceed 0.5% and the active TB prevalence exceeded 1% in less

than 5% of the 600 runs.

We also simulated strategy 5 during 2 years and, then, limited

the intervention to DOTS plus X-ray screening at entry point (S6).

After the rapid reduction in active TB prevalence mentioned

above, the average predicted active TB prevalence remained

below 1% until the 10th year.

When we simulated the same strategy (S6) without screening at

entry point after the 2 first years (S7), the average active TB

prevalence increased faster to reach 1.7% (0.8, 2.7) at year 10.

With this last scenario, more than 90% of the simulated active TB

prevalences exceeded 1%.

Multivariate uncertainty and sensitivity analyses
The empiric distributions of parameters in the LHS are

represented in figure 3. According to our sensitivity analysis, the

uncertainty of our predictions was much lower with S4, S5 and S6

than with other strategies (see figure 4). Indeed, with S1, S2, S3

and S7, the average predicted prevalence of active TB after 10

years could reach 2.5% or more for several of the sets of

parameters generated with the LHS method, whereas the average

predicted prevalence of active TB with S4, S5 and S6 after 10

years was below 0.7, 0.4 and 1.5% respectively for 95% of these

sets of parameters.

The sensitivity analysis showed that, for all strategies, the

parameters whose variations had the greatest impact on our

predictions at 10 years were the proportion of fast progressors, the

death rate of untreated TB, the partial immunity afforded by

previous infection, the transmission rate and the rate at which

detected cases would be detected (see table 4).

The rate at which slow progressors develop TB had also an

important impact on the predicted prevalence of active TB after

10 years for strategies including an annual mass screening during

ten years (S4 and S5) and, in a less marked way, for strategies

including a mass screening limited to 2 years (S6 and S7).

Furthermore, for S5, the average predicted prevalence of active

TB was impacted by the rate of relapse.

For all strategies, the transmission rate, the proportion of fast

progressors and the rate at which slow progressors develop active

TB were positively correlated with the average predicted

prevalence of active TB; thus overestimating one of these

parameters would lead to underestimate the efficacy of the

simulated strategies. On the contrary, for all simulated strategies,

the level of partial immunity afforded by previous infection, the

death rate of untreated TB and the rate at which TB cases would

be detected and treated were negatively correlated with the

average predicted prevalence of active TB.
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Discussion

According to the predictions of our model applied to a prison

with features similar to other prisons in RJ, the association of the

DOTS strategy with annual X-ray mass screenings would allow to

obtain a rapid and sustained decline in active TB prevalence.

Furthermore, after reducing the TB burden by implementing

three annual X-ray mass screenings, the sole association of X-ray

screening at entry point and DOTS could be sufficient to maintain

a low active TB prevalence level during several years. The better

performance of strategies including annual X-ray screening can be

explained by the assumption that X-ray screenings allow the rapid
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Figure 2. Predicted prevalence (%) of active TB. Simulations are performed over a 10 years period for the seven strategies (black lines) and for
the current scenario (grey lines). The continuous line represents the mean of the prevalence on 600 simulations and the vertical line extremities
represent percentiles 5 and 95.
doi:10.1371/journal.pone.0002100.g002

Modeling TB Control in Prisons

PLoS ONE | www.plosone.org 6 May 2008 | Volume 3 | Issue 5 | e2100



diagnosis of all active TB cases, including asymptomatic and not

yet infectious cases which are not detected by the DOTS strategy.

By this way, the pool of active TB cases decreases drastically

although it is then increased by the development of TB among

infected individuals, treatment failure, relapse from treatment and

by active TB cases entering the prison for strategies which do not

include X-ray screening at entry. The limited performance of

DOTS on its own in this highly endemic setting can be explained

by the fact that it does not decrease rapidly the pool of active TB

cases.

We have shown that the uncertainty of our predictions was less

important for strategies which included an annual mass screening

(S4, S5). For these strategies, the rate at which slow progressors

develop TB was one of the parameters whose variations had the

greatest impact on the predicted active TB prevalences. Indeed,

these strategies would decrease rapidly the prevalence of infectious
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Figure 3. Histograms of the twelve parameters in the sample generated with LHS method.
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cases in the prison; as a consequence, the role of exogenous

infections in TB transmission would be reduced, and the relative

contribution of endogenous reactivation to the incidence of active

TB would be larger.

The value of the transmission rate had also an important impact

on our predictions. It was calibrated so that, with the current

scenario, the active TB prevalence would remain roughly stable

over 10 years. The average incidence we predicted was in line with

the annual incidences observed during the years prior to our

prevalence survey in the prison we investigated [2]. This value of

the transmission rate is in the high range of values used in

previously published models concerning general populations

[12,25], a finding consistent with results of previous studies [26]

showing the strong relationship of overcrowding with TB

transmission in a highly endemic prison. However, for various

reasons including a greater transmission rate or a larger

proportion of recent infections, the active TB prevalence may

increase rather than being stable in some prisons. Under this

circumstance, all strategies may be less effective. Nonetheless, the

performance of strategies including X-ray screening should remain

more effective as all active TB cases would be detected each year.

In our multivariate sensitivity analysis, we did not include the

sensitivity of X-ray as a screening method, considering it was

100% in agreement with results of previous studies which

evaluated at 0.97 (0.90; 1.0) the sensitivity of any chest X-ray

abnormality for detecting bacteriologically positive TB cases [22].

If the sensitivity was smaller, our predictions could have

overestimated the relative impact of strategies including X-ray

screening. Furthermore, in the present study, we limited our

simulations of mass screening to X-ray based screening. Indeed,

mass screening based on symptoms, commonly used in prevalence

surveys [8,27,28] and recommended in prison’s TB control

program [7], performed poorly when compared with X-ray based

screening [4,22,29–31].

The need for longitudinal studies concerning the impact of TB

screening at entry point has been recently underlined [11]. Using

our model, the comparison of predicted active TB prevalence

trends observed under strategy 7 versus strategy 6 shows that, in

the highly endemic prison we investigated, X-ray screening at

entry point would have a greater impact when active TB

prevalence is reduced after three annual X-Ray mass screenings.

In the case of high active TB prevalence, given the heavy

circulation of Mycobacterium tuberculosis (MTB) within the

prison, the contribution of infectious TB cases among inmates at

entry to this overall MTB circulation is relatively limited, even if

the active TB prevalence at entry is high as observed in the prison

we studied (1.5%). In our study, we considered that the prevalence

of TB infection and active TB among inmates at entry point is

constant during the whole ten year study period. The high active

TB prevalence at entry point could be decreased in RJ state

Figure 4. Results of the uncertainty analysis. Boxplots of the
average prevalence after 10 years (%). For each set of parameters of the
sample generated by the Latin Hypercube Sampling method and each
strategy, we performed 600 runs of the model and computed the
average prevalence after 10 years. Each boxplot represents the median,
the first and third quartiles (Q1 and Q3), the mean and the maximum
and minimum values which are in the range [Q121.5 IQR, Q3+1.5 IQR]
with IQR equal to the inter-quartile range (Q3-Q1).
doi:10.1371/journal.pone.0002100.g004

Table 4. Partial rank correlation coefficient (PRCC) between each parameter and the average predicted prevalence after 10 years,
for the current scenario and TB control strategies S1–S7.

Definition parameter Partial rank correlation coefficient

C S1 S2 S3 S4 S5 S6 S7

b Transmission rate 0. 75 0. 75 0. 74 0. 77 0. 67 0. 62 0. 76 0. 76

p Proportion of fast progressors 0. 93 0. 92 0. 92 0. 93 0. 85 0. 82 0. 92 0. 92

m Partial immunity afforded by previous infection 20. 91 20. 85 20. 85 20. 85 20. 63 20. 57 20. 79 20. 81

t1 Rate at which slow progressors develop TB 0. 31 0. 48 0. 49 0. 58 0. 85 0. 92 0. 76 0. 61

t2 Rate at which fast progressors develop TB 0. 25 0. 22 0. 21 0. 22 0. 22 0. 27 0. 26 0. 28

h Proportion of TB cases who become infectious 0. 59 0. 18 0. 10 0. 33 20. 55 0. 04 0. 32 0. 14

v Rate of smear conversion 0. 09 0. 15 0. 14 0. 15 0. 04 0. 07 0. 13 0. 12

d Rate of relapse 0. 17 0. 26 0. 28 0. 36 0. 58 0. 72 0. 52 0. 35

s1 Rate of self cure for non treated infectious cases 20. 34 20. 41 20. 40 20. 39 20. 16 20. 11 20. 34 20. 39

Q Death rate of untreated TB 20. 91 20. 94 20. 94 20. 93 20. 68 20. 52 20. 91 20. 93

k Rate at which detected cases are detected and treated 20. 31 20. 62 20. 59 20. 57 20. 86 20. 79 20. 66 20. 70

Se Sensitivity of the detection of smear+symptomatic cases at entry point 0. 02 0. 02 20. 17 0. 02 20. 46 0. 00 0. 03 0. 02

PRCC over 0.6 in absolute values are in bold.
doi:10.1371/journal.pone.0002100.t004
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prisons by reducing the major overcrowding and introducing

health care in the police remand where the convicts are

incarcerated for periods of time which can last for more than 6

months before they are transferred to prison units. The effect of

this strategy could be evaluated by using our model.

Aimed at providing evidences to guide decision makers, the

model we propose concerning a Brazilian prison can be applied to

other overcrowded institutions with different level of TB

prevalence at entry point and inside the institution. Available

incidence and prevalence data suggest that a similar TB situation

prevails in most RJ state prisons [2,5] where our strategic

conclusions may apply as well as to other highly endemic prisons

and institutions worldwide. However, we must keep in mind that

an underlying assumption of our model is the homogeneous

mixing of the population investigated. Due to overcrowding

conditions in collective cells, this assumption is probably

appropriate for the prison we studied, but may not be valid for

units where the number of inmates per cell and the circulation of

inmates are limited, such as high security units.

Given the relatively low level of HIV seroprevalence in our

study population (2.1%), we did not take into account in our

model the effect of HIV-infection on TB [4]. In many prisons

worldwide, the HIV seroprevalence is much higher [32,33] and

HIV infection should be considered given its interactions with TB

[34]. Further, the drug resistance was not a major problem in the

prison we studied [4] and in other prisons we subsequently studied

in RJ State [5]. Therefore, we did not consider this issue and our

model should be modified on the basis of previously published

studies [13,14,17–19] when applied to prisons where drug

resistance is a major problem.

The predictions based on our model show that the impact of the

DOTS strategy alone, even if it reaches the WHO objectives of

70% of bacteriologically positive cases detected and 85% of

detected cases cured, is too slow to face the urgent situation of high

TB endemicity in the prison we investigated and in similar settings.

Indeed, the DOTS strategy should remain the basic tool to control

TB in prison but, given its limited impact in the case of high active

TB prevalence, active detection, preferentially based on X-ray,

should be considered at entry in prison and among inmates

already incarcerated.

Several surveys performed in RJ prisons [4,5] and elsewhere

[30] demonstrated the feasibility of X-ray screening and its

excellent acceptance by inmates. Finally, our model may provide

the elements for cost-effectiveness analysis of tuberculosis control

approaches which need to be explored in further research.

Acknowledgments

The authors thank Pr John Murray, Pr Donald Enarson, Dr Pierre

Chauvin and Dr Veronique Massari for interesting suggestions and

Mahinda Siriwardana for editorial revision.

Author Contributions

Conceived and designed the experiments: JL AS FL LC BL. Performed the

experiments: JL. Analyzed the data: JL AS FL LC BL. Contributed

reagents/materials/analysis tools: JL AS FL BL. Wrote the paper: JL AS

LC BL.

References

1. Coninx R, Maher D, Reyes H, Grzemska M (2000) Tuberculosis in prisons in

countries with high prevalence. Bmj 320: 440–442.

2. Secretaria de Estado de Administração Penitenciária do Rio de Janeiro (2006)
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