Genes	SNP	In vitro evidence	Clinical evidence					
			PK effect	Type of patients (n; ethnicity)	Time after transplan tation	Comedication	Reference	
ABCC2	C-24T	none	\uparrow dose-corrected MPA trough levels and AUC _{0-12h}	Renal transplants (n=95; Caucasians)	42, 90, 360 days	Tacrolimus	(1)	
				Renal transplants receiving <u>2g MMF b.i.d</u> ^{<i>a</i>} (n=32; Caucasians)	7 days	Tacrolimus	(3)	
UGT1A9	C- 2152T and/or T-275A	↑ enzyme expression and MPA glucuronidation rates (2)	↓ MPA AUC _{0-12h}	Renal transplants (n=163; 88% Caucasians, 3% Blacks, 4% Asians, 5% unknown)	3 days	Tacrolimus ^b	(4)	
			↓ dose-corrected MPA trough levels	Renal and/or pancreas transplants (n=55; 90% Caucasians, 2% African American, 2% asian, 2% Vietnamese, 4% Indian American)	American, 2% < 30 Cyclo	Cyclosporine ^c	(5)	
	C- 440T/T- 331C	↑ MPA glucuronidation rates (2)	↓ dose-corrected MPA AUC _{0-12h}	Renal transplants (n=40; Caucasians)	6 months	Cyclosporine	(6)	

Supplementary Table 1: In vitro and clinical evidences for association between UGT and ABCC2 SNPs and MMF pharmacokinetics

UGT1A9	<i>T98C</i>	\downarrow enzyme affinity for MPA (7) _	↑ MPA AUC _{0-12h}	Renal transplants ($n=63$; Caucasians ; $n=2$ heterozygous patients for the T98C SNP)	7 days	Tacrolimus	(3)
				Renal transplants (n=338; 88% Caucasians, 3% Blacks, 4% Asians, 5% unknown)	< 1 year	Tacrolimus (n=163); Cyclosporine (n=175)	(4)
			↑ MPA AUC _{0-12h}	Healthy volunteers (n=22; 94% Caucasians, 4% Arabic, 2% Hispanic)	-	-	(8)
UGT1A8	C518G	none	↑ dose-corrected MPA trough levels	Renal and/or pancreas transplants (n=40; 38 Caucasians, 1 African American, 1 Asian)	< 30 days	Tacrolimus ^d	(5)
			↑ MPA AUC _{0-12h}	Renal transplants (n=175; 88% Caucasians, 3% Blacks, 4% Asians, 5% unknown)	< 1 year	Cyclosporine ^e	(4)

^a no association in patients receiving 1g MMF b.i.d. (n=63);
^b no association in patients cotreated with cyclosporine (n=175).
^c no association in patients cotreated with tacrolimus (n=40) or receiving MMF only (n=22);
^d no association in patients cotreated with cyclosporine (n=55) or receiving MMF only (n=22);
^e no association in patients cotreated with tacrolimus (n=163).

References for Supplementary Table 1

1. Naesens, M., Kuypers D. R., Verbeke K., Vanrenterghem Y. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. *Transplantation* **82**, 1074-84 (2006).

2. Girard, H.et al. Identification of common polymorphisms in the promoter of the UGT1A9 gene: evidence that UGT1A9 protein and activity levels are strongly genetically controlled in the liver. *Pharmacogenetics* **14**, 501-15 (2004).

3. Kuypers, D. R., Naesens M., Vermeire S., Vanrenterghem Y. The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. *Clin Pharmacol Ther* **78**, 351-61 (2005).

4. van Schaik, R.et al. UGT1A9 -275T>A/-2152C>T Polymorphisms Correlate With Low MPA Exposure and Acute Rejection in MMF/Tacrolimus-Treated Kidney Transplant Patients. *Clin Pharmacol Ther*, (2009).

5. Johnson, L. A., Oetting W. S., Basu S., Prausa S., Matas A., Jacobson P. A. Pharmacogenetic effect of the UGT polymorphisms on mycophenolate is modified by calcineurin inhibitors. *Eur J Clin Pharmacol* **64**, 1047-56 (2008).

6. Baldelli, S.et al. C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation. *Pharmacogenomics* **8**, 1127-41 (2007).

7. Bernard, O., Guillemette C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. *Drug Metab Dispos* **32**, 775-8 (2004).

8. Levesque, E.et al. The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. *Clin Pharmacol Ther* **81**, 392-400 (2007).