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Abstract: 

The CT uroscan consists of three to four time-spaced acquisitions of the same patient. After 

registration of these acquisitions, the data forms a volume in which each voxel contains a vector 

of elements corresponding to the information of the CT uroscan acquisitions. In this paper we 

will present a segmentation tool in order to differentiate the anatomical structures within the 

vectorial volume. Because of the partial volume effect (PVE), soft segmentation is better 

suited because it allows regions or classes to overlap. Gaussian mixture model is often used in 

statistical classifier to realize soft segmentation problems by getting classes probability 

distributions. But this model relies only on the intensity distributions, which will lead a 

misclassification on the boundaries and on inhomogeneous regions with noise. In order to 

solve this problem, a neighborhood weighted Gaussian mixture model is proposed in this 

paper. Expectation Maximization algorithm is used as optimization method. The experiments 

demonstrate that the proposed method can get a better classification result and is less affected 

by the noise. 

Keywords: Gaussian mixture model, vectorial image segmentation, soft segmentation, 

neighborhood, image classification, 3D/3D registration. 

 



1. Introduction 

The CT uroscan is the classical preoperative examination for renal surgery. It consists of three 

to four time-spaced 3D acquisitions at several contrast medium diffusion stages, which give 

complementary information about the kidney anatomy. The integration of this information 

within a unique spatial volume gives the surgeon the knowledge of the patient specific renal 

anatomy. The first step in this integration process is to bring the different acquisitions into 

spatial alignment which has been done through a local mutual information maximization 

registration technique [1]. After registration, the aligned data forms a vectorial volume dataset 

in which each voxel contains a vector of n elements corresponding to the information of the CT 

uroscan acquisitions (n is equal to the number of acquisitions, three to four in our case). In order 

to get the material (tissue) distribution information of this vectorial volume, a 

multi-dimensional segmentation or classification method should be performed. 

Due to partial volume effects (PVE), the voxel intensities at the object boundaries are 

usually the result of the combination of several materials. Getting the material probabilities by 

a soft segmentation method [2] instead of assigning a definite material to the voxels 

(especially the boundary voxels) will be more conformable to the reality.  

In the range of segmentation methods, clustering algorithms are termed unsupervised 

classification methods which organize unlabeled feature vectors into clusters or “natural 

groups” such that samples within a cluster are more similar to each other than samples 

belonging to different clusters. The three most commonly used clustering methods are the 

K-means [3], the fuzzy c-means (FCM) algorithm [4, 5] and the Gaussian mixture model 

(GMM) [6-8] solved by Expectation Maximization (EM) algorithm [9]. Among the three 



methods, fuzzy c-means and Gaussian mixture model have the ability to perform soft 

segmentation by getting class probability distributions. The fuzzy c-means estimates the 

parameters which minimize the distance from each voxel to the class centers. It uses only the 

distance objective function without any other information about the intensity distributions. In 

contrast, the method based on Gaussian mixture model uses the statistical theory to model 

each voxel’s intensity, which is more reasonable to the real situation. In this paper, we choose 

the Gaussian mixture model and estimate the Maximum Likelihood parameters by EM 

algorithm. 

Unfortunately, the intensity classification methods rely only on the intensity distributions 

which will lead to misclassification at the object boundaries. In addition, the lack of 

information during classification will lead to sensitiveness to noise in inhomogeneous regions. 

In his tutorial [10] G. Kindlmann noted that for intensity-only classification problems 

“histograms/scatter-plots entirely loose spatial information” and he asked if there would be 

“any way to keep some of it?”. Many researchers have realized the importance of spatial 

information for image classification. As described by Roettger et al. [11], spatial information is 

important, because a feature by definition is a spatially connected region in the volume domain 

with a unique position and certain statistical properties. These authors indicated that only using the 

statistical information of the scatter-plot will effectively ignore the most important part of a 

features definition. Zhang et al. [12] proposed a novel hidden Markov random field (HMRF) 

model to integrate spatial information to Gaussian model based segmentation methods. 

Instead of using Markov random field (MRF) as a general prior in Gaussian model based 

approach as other researchers did [13], the authors proposed a Gaussian hidden Markov 



random field model and used a Markov Random Field-Maximum A Posteriori (MRF-MAP) 

approach to estimate class labels, while MAP was used to estimate the bias field in MR 

images. Because the bias field doesn’t exist in CT images and in addition this model estimates 

a definite class label for each pixel without the consideration of PVE, this method doesn’t 

meet our requirement. Tang et al. [14] proposed to use a multi-resolution Gaussian mixture 

model method for image segmentation in order to solve the noise sensitivity problem of 

Gaussian mixture model based method. This method was realized by constructing an image 

pyramid which is composed of a sequence of images with reduced resolution. The bottom of 

the pyramid is the original image and the higher level image represents the lower resolution. 

According to the pyramid constructing rules, one pixel in the high level of the image pyramid 

contains larger neighboring information than that in the lower level so that the spatial 

information is implicitly contained in the higher level of the pyramid. Chuang et al. [4] 

integrated the spatial information to fuzzy c-means algorithm by incorporating it into the 

membership function. 

In order to integrate spatial information to the Gaussian mixture model based vectorial 

data segmentation method, we proposed to involve a neighborhood weight within the 

classification process. To reach this goal, we need a neighborhood information descriptor. 

Lunstrom et al [15] proposed the Partial Range Histogram (PRH) concept, which is a way to 

describe the amount of a tissue within a local region. This gives us the hint to use this concept 

as a neighborhood descriptor. Based on this idea, a neighborhood weighted Gaussian mixture 

model is proposed in this paper. 



2. Gaussian mixture model 

If K is the number of tissues (or materials), the Gaussian mixture model assumes that each 

voxel is composed by K component densities mixed together with K mixing coefficients. Each 

component density follows a Gaussian distribution. Based on statistical theory, the parameters 

are estimated by maximum likelihood (ML) and expectation maximization (EM) algorithm is 

used as an optimization method. 

For a vectorial volume with N voxels, the voxel intensity vector is denoted by 

( 1,2, , )ix i N= ⋯ . Recall that the goal is to estimate the class probabilities on each voxel 

according to the intensity vectors. The probability distribution of the kth tissue material is 

denoted by ( | )k kp x Θ , which is governed by a set of parameters kΘ . Given the parameters 

of all the classes, the probability distribution of each voxel can be described as a mixture of 

probability distributions as follows: 
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where kα  denotes the mixture coefficients. The parameter set of this distribution is 
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Typically, ( | )k kp x Θ is modeled by a Gaussian distribution with mean kµ  and 

covariance matrix kΣ . That is： 
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ML estimation is a common used method to find the probability distribution parameters. The 

log-likelihood expression for this density from the data X is given by: 
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Finding the ML solution directly from Eq. (3) is difficult because it contains the log of 

the sum. The EM algorithm is a good way to solve this problem [16]. The iterative solution 

for finding the parameters at the (t+1)th iteration step is as follows (M-step): 
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Taking the mixing parameters kα  as prior probabilities, the probability of each class can 

be computed using Bayes’ rule (E-step): 
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3. Proposed neighborhood weighted method 

The iteration formula described in section 2 didn’t involve any spatial information about 

current voxel. As discussed in section 1, neighborhood information is one of the most 

important spatial information. If the iteration procedure takes the neighborhood effect into 

account, the classification result can be more reasonable.  

The original model calculates the class probabilities according to Bayes’ rule, which is 

described by Eq. (7). This calculation is based on intensity distributions without any 

neighborhood information. Usually the material is continuous, so that it is natural to have the 



idea that for each voxel, the probability of the kth class should be affected by the neighbors’ 

kth class probabilities. According to this belief, we can integrate the neighborhood effect on 

the class distributions of the current voxel by modifying Eq. (7). 

Due to the deducing process of EM algorithm and the natural continuous properties of the 

classes (materials), the class probability should obey the two rules: 

1) 
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2) Current voxel’s kth class probability magnifies if the neighbors’ kth class probabilities 

tend to 1; current voxel’s kth class probability decreases if the neighbors’ kth class 

probabilities tend to 0. 

According to the second rule, the neighborhood class distribution can be designed as a 

weight on the current class distribution, so that we designed the neighborhood weighted 

probability for the current voxel: 
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iN  is a set of neighborhood of the ith voxel. iN  denotes the number of voxels in a set iN . 

nix  denotes the nth neighbor’s intensity of the ith voxel.  

The new class distribution formula is conformable to the two rules (see the prove in the 

appendix) and integrates the neighborhood information to the current voxel’s class 

distribution during iteration. For each iteration step, the class distribution will be amended by 

the neighbors’ class distribution information. So that through this weighted formula, the 



neighborhood information is taken into account to the classification process. 

The EM solution formula for the proposed neighborhood weighted Gaussian mixture 

model is summarized as follows: 

E-step: 

1

( | )
( | , )

( | )

t t t
t k ik k i k

i K t t t
j ij j i jj

W p x
p k x

W p x

α
α

=

Θ
Θ =

Θ∑
                   (10) 

M-step: 
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Based on these equations, the estimation process we implemented is described as follows: 

(Input: the vectorial volume ( 1,2, , )ix i N= ⋯ , the number of classes K.) 

Step 1: Initialization of 
0Θ , 

0α  and W0. Any classification method could be used, in our 

case we choose K-means. Using Eq. (9) to initialize the neighborhood weight for each voxel. 

Step 2: Calculate the prior probability by Eq. (10). 

Step 3: Compute the new parameter data according to Eqs. (11), (12), (13) and (14). 

Step 4: Repeat steps 2-3 until reaching the end condition. 

For each element vector of the input series, the aim is to find its class distributions. From 

the iteration process, we can see that this algorithm is not limited neither in applying on 



vectorial volume, nor by the spatial dimension of the data. The shape of iN  in Eq. (14) can 

match the spatial dimension of any input series and also controls the topology of the spatial 

neighborhood information (nearest neighbors or more). The neighborhood shape and topology 

could be modified according to the real practical situation. 

4. Experiments and discussions 

We evaluate our method first on synthetic 2D data and then applied it on real 3D uroscans. 

The only difference between vectorial 2D image and 3D vectorial volumes is the shape of 

neighborhood accordingly to the data dimension. In order to avoid the local maxima, the 

algorithm is initialized as follows: for the synthetic data, we initialize the center points with a 

random data near the global maximum; for the practical situation, this initialization can be 

implemented by picking a point in each material region manually. 

4.1. Evaluation on synthetic data 

We choose to evaluate our method on a three-element vectorial image, in which each pixel 

contains three intensities. This image is constructed as following (Fig. 1). Each pixel f(i, j) is 

composed by three channels1: f(i, j) = [ f1(i, j), f2(i, j), f3(i, j)] and each channel f1, f2, f3 can be 

seen as an image. The first channel image f1 (Fig. 1, left) is composed by two homogeneous 

regions in which we add Gaussian noise: (3, 1.5µ σ= = ) and ( 10, 1.5µ σ= = ) respectively. The 

second channel image f2 (Fig. 1, middle) follows the same scheme with: (15, 1.5µ σ= = ) and 

( 5, 1.5µ σ= = ) respectively. The third channel image f3 (Fig. 1, right) follows also the same 

scheme with: ( 2, 1.5µ σ= = ) and ( 8, 1.5µ σ= = ) respectively. 

The combination of these three channels leads to a vectorial image with six classes. 
                                                      

1 The word channel is used by analogy with the R, G, B channels of a RGB image. 



According to the proposed algorithm described in Section 3, the input number of classes is 

K=6. For the first experiment, | |iN  is set to the 8 closest neighbors. 

The classification on synthetic data is performed and the result is shown in Fig. 2. Each 

pixel of the result image is formed by this formula: 
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Where ( )iC x  is the color assigned to the ith pixel and kC  is the color we assigned to the kth 

class.  

Fig. 2(a) is the classification result with the original Gaussian mixture model and Fig 2(c) 

is the result with the neighborhood weighted iterative method. In Fig 2(a) we can notice that 

the final regions are not homogeneous as expected because of the noise. The reason is that the 

method relies only on the intensity distribution (histogram). The classification progress is a 

direct mapping from intensity to classes so that the noise areas are assigned an incorrect class 

distribution. In Fig. 2(c), it is obvious that the regions are more homogeneous and the 

classification process is less affected by the noise, when we integrate the neighborhood 

information into the iteration procedure. 

In order to demonstrate that our method is not only a simple class decisions smoothness. 

We use Eq. (9) to just smooth the class decisions after classification with the classical 

Gaussian mixture model. The result of the smoothing is illustrated in Fig. 2(b). We can see 

that although the noise is faded, the edges are blurred at the same time, which is not 

corresponding to the real situation. This demonstrates the necessity to integrate the 

neighborhood information within the iteration procedure. 

The difference between these results comes from the calculation of ( | , )ip k x Θ . Fig. 2(a) 



is calculated according to Eq. (7), that is, without any neighborhood weight. Fig. 2(b) and (c) 

are both calculated according to Eq. (8) with the neighborhood weight Wik, but the apparent 

results are quite different. If in the conditions with and without neighborhood, the estimated 

Gaussian mixture parameters are both close to the real parameters (we will demonstrate it 

later), the difference between Fig. 2(b) and (c) appear on the weight Wik. In Fig. 2(b) it is 

calculated according to the final result of the class parameters estimation process, in contrast, 

Wik in Fig. 2(c) is iteratively estimated during the EM algorithm, as presented in section 3. 

Comparing Fig. 2(b) and (c), we can easily reach the conclusion that when taking the 

estimation of neighborhood weight into the EM algorithm, the classification result is more 

conformable to the reality. 

The estimated parameters of the Gaussian mixture model should be close to the real 

parameters which are known for the test data in this paper. In order to demonstrate that 

integrating the neighborhood weight doesn’t reduce the parameter estimation precision. We 

evaluate the quantitative error of the parameters by the following equation: 
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where kr ′  denotes the estimated parameter and 0
kr  denotes the real parameter value.  

The estimation parameters in the condition with and without neighborhood information 

are listed in Table 1. The estimation error with neighborhood information is a little lower than 

that without neighbor so that we can reach the result that integrating the neighborhood 

information into the classification process will not reduce the estimation precision. We use the 

histogram to visually verify this result because histograms are often considered as an 

approximation of the class distribution. The classified class distributions should be fitted with 



the histograms. It is difficult to illustrate the histogram and the result intensity distribution 

directly because for three-element vectorial image the histogram has four axes so that we 

show the histograms by calculating the intensity distribution summation along one axis to 

reduce the total number of axis. The results are shown in Fig. 3. Fig. 3(a) illustrates the 

intensity distribution summation along three axes of the original image. Fig. 3(b) is the 

classification result of Gaussian mixture classification and Fig. 3(c) illustrates the 

neighborhood weighted classification results. From these figures, we can see that the 

classification fits the original histogram very well. As the neighborhood weighted method 

doesn’t change the intensity distributions, the effect of our proposed method is to amend the 

class decision by its neighborhood on each pixel during the iteration procedure, while keeping 

the global intensity distribution nature.  

We also did some experiments while changing the size of the neighborhood in order to 

see its effect on the classification results. As the real class distribution of the test image is 

known, we use the misclassification rate to evaluate the classification results. While changing 

the shape of the neighborhood, the misclassification rate remains around 0.3% (while without 

neighborhood, 9.2%). The visual results accord with this phenomenon (Fig. 4) so that the 

shape of the neighborhood plays a tiny part in the classification procedure for this synthetic 

data. In our case, we choose the 8-closest neighborhood.  

4.2. Application on real data 

After the evaluation on synthetic data, we performed the methods on the real data obtained 

after the registration of three CT acquisitions of a human kidney. Fig. 5 shows one slice of the 

vectorial volume, which is composed by three channels: (a), acquisition before contrast 



medium injection; (b), immediately after injection; (c), ten minutes after injection. 

We expect to classify the vectorial volume into four classes: fat, renal cortex, renal 

medulla and collecting system. According to the conclusion of the previous section, we set 

| |iN  to the 26 closest neighbors. With K=4, the classification result formed by Eq. (15) is 

shown in Fig. 6. It effectively demonstrates our conjecture. While taking the neighborhood 

information into classification procedure (Fig. 6(c)), the anatomical structures are better 

delineated into homogeneous regions: fat (red), renal cortex (green), renal medulla (blue) and 

collecting system (white).  

From the above results, we can reach the conclusion that the Gaussian mixture model 

based method has the ability to classify vectorial image with the aim of delineating the 

anatomical structures. Because of the inhomogeneity of the acquisitions and the partial 

volume effects, the result of the intensity-only method has some misclassification area, 

especially the renal cortex and the renal medulla because of their close intensity range, which 

is shown in Fig. 6(a). In order to show this phenomenon more clearly, the corresponding first 

order derivate of the result probabilities along one cut line (represented in white) is drawn in 

Fig. 7. Because of the white background color, the collecting system (represented in white 

originally) is represented in black line in the probabilities derivate figure (Fig. 7), the other 

materials are represented according to the colors originally assigned to them.  

In Fig. 7(a), according to the probabilities first order derivate, we can clearly see that the 

regions are not separated because there are some inhomogeneous regions, e.g. in the renal 

medulla (between index [30, 40] on the line) or partial volume effect on tiny object, e.g. the 

collecting system (between index [70, 80] on the line). While taking the neighborhood 



information into the iteration process, the results are improved significantly, as shown in Fig. 

7(b). We can see that inside one material region, the proposed method gives a more 

homogeneous decision. The proposed method considers the intensity and the position of one 

pixel simultaneously so that it can give a more reasonable classification result. While 

comparing Fig. 7(a) and (b), we can see that the proposed method has the effect to be less 

sensitive to inhomogeneities, while giving a better class distribution. 

5. Conclusions 

In this paper we present a soft segmentation method adapted to classify the information 

contained in vectorial images or volumes. This method is based on modeling the voxels’ 

intensity vectors distribution by a mixture of Gaussians. We add spatial information on this 

classical statistical classifier by proposing neighborhood weighted method. In this new model, 

the voxels’ intensity vectors follow still the Gaussian mixture distribution but the classes 

distributions on each voxel are affected by its neighbors’ class probability distributions. The 

neighborhood information is integrated into the classification process by amending the 

voxel’s class distributions at each iteration step. 

Experiments on synthetic and real data have been performed. The results show that this 

improvement on Gaussian mixture model is less affected by noise and gives better 

classification results. We also evaluate the impact of the neighborhood. A nearest 

neighborhood is generally enough in practical use moreover the experiments also prove that 

the expansion of the neighborhood range makes tiny effect on the estimated Gaussian mixture 

model parameters. The experimental results demonstrate also that the proposed method gives 

more reasonable class distributions for each pixel while keeping the global intensity 



distribution. 
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Appendix 

Now we briefly prove that the designed formula Eq. (8) can satisfy the two rules: 

1) 
1
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t
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2) Current voxel’s kth class probability magnifies if the neighbors’ kth class probabilities 

tend to 1; current voxel’s kth class probability decreases if the neighbors’ kth class 

probabilities tend to 0. 

When taking Eq. (8) into the left side of the first rule, it equals to 1 so that Eq. (8) can rule 1) 

naturally.  

In order to prove rule 2), we assume that for the kth class of the ith voxel, there exist two 
neighborhood weights W1 and W2 with: 1 2 0W W> > , the corresponding probabilities 

calculated by Eq. (8) are denoted by p1 and p2 respectively. If we can prove that 1 2p p> , the 

second rule can be satisfied. We denote ( | )t t
k k i kM p xα= Θ , 

1 ,

( | )t t t
j ij j i j

j K j k

N W p xα
= ≠

= Θ∑
⋯

. 

When the variable is the neighborhood weight, M and N are constant and 0M ≥ , 0N ≥ . We 

can rewrite Eq. (8) for W1 and W2 respectively: 
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MW N
=

+
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p
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+
 

so that 

1 2
1 2

1 2

( )

( )( )

MN W W
p p

MW N MW N

−
− =

+ +
 

When M and N are constant and positive, we can deduce that if 1 2 0W W> > , then 1 2p p> . 

When the condition is 0ikW = , the probability ( | , ) 0t
ip k x Θ = . That is to say, the weighted 

probability according to Eq. (8) is a monotonously increasing function to the neighborhood 

weight Wik. With this property, the rule 2) can also be satisfied. 


