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Abstract:

The CT uroscan consists of three to four time-spamguisitions of the same patient. After
registration of these acquisitions, the data foamslumein which each voxel contains a vector
of elements corresponding to the information of @ uroscan acquisitionsn this paper we
will present a segmentation tool in order to défgrate the anatomical structures within the
vectorial volume. Because of the partial volumes@ff(PVE), soft segmentation is better
suited because it allows regions or classes tdajpveGaussian mixture model is often used in
statistical classifier to realize soft segmentatmoblems by getting classes probability
distributions. But this model relies only on thdeimsity distributions, which will lead a
misclassification on the boundaries and on inhomegas regions with noise. In order to
solve this problem, a neighborhood weighted Gaosmiature model is proposed in this
paper. Expectation Maximization algorithm is usedaptimization method. The experiments
demonstrate that the proposed method can getex b&issification result and is less affected
by the noise.

Keywords: Gaussian mixture model, vectorial image segmematsoft segmentation,

neighborhood, image classification, 3D/3D regisbrat



1. Introduction

The CT uroscan is the classical preoperative exatmimfor renal surgery. It consists of three
to four time-spaced 3D acquisitions at several resttmedium diffusion stages, which give
complementary information about the kidney anatofiitye integration of this information
within a unique spatial volume gives the surge@khowledge of the patient specific renal
anatomy. The first step in this integration procisst bring the different acquisitions into
spatial alignment which has been done through al lowtual information maximization
registration technique [1]. After registration, thiggned data forma vectorial volumedataset
in which each voxel contains a vectorroélements corresponding to the information of tHe C
uroscan acquisitions1(is equal to the number of acquisitions, threeotar in our case). lorder

to get the material (tissue) distribution informoati of this vectorial volume, a
multi-dimensional segmentation or classificatiortime should be performed.

Due to partial volume effects (PVE), the voxel ing#ies at the object boundaries are
usually the result of the combination of severatamals. Getting the material probabilities by
a soft segmentatiomethod [2] instead of assigning a definite material to the elex
(especially the boundary voxels) will be more confable to the reality

In the range of segmentation methods, clusteriggrthms are termed unsupervised
classification methods which organize unlabeledui®avectors into clusters or “natural
groups” such that samples within a cluster are nwmg@lar to each other than samples
belonging to different clusters. The three most wmmly used clustering methods are the
K-means [3], the fuzzy c-means (FCM) algorithm [#,ahd the Gaussian mixture model

(GMM) [6-8] solved by Expectation Maximization (EM) algbm [9]. Among the three



methods, fuzzy c-meanand Gaussian mixture modehave the ability to perform soft

segmentation by getting class probability distiims. The fuzzy c-means estimates the

parameters which minimize the distance from eacteitm the class centers. It uses only the

distance objective function without any other imhation about the intensity distributions. In

contrast, the method based on Gaussian mixture Inusés the statistical theory to model

each voxel's intensity, which is more reasonablth&real situation. In this paper, we choose

the Gaussian mixture model and estimate the Maxinuikelihood parameters by EM

algorithm.

Unfortunately, the intensity classification methadly only on the intensity distributions

which will lead to misclassification at the objelbbundaries. In addition, the lack of

information during classification will lead to séhgeness to noise in inhomogeneous regions.

In his tutorial [10] G. Kindlmann noted that fortémsity-only classification problems

“histograms/scatter-plots entirely loose spatidbnmation” and he asked if there would be

“any way to keep some of it?”. Many researchersehaalized the importance of spatial

information for imageclassification. As described by Roettger et al],[$patial information is

important, because a feature by definition is dialbya connected region in the volume domain

with a unique position and certain statistical mies. These authors indicated that only using the

statistical information of the scatter-plot willfeétively ignore the most important part of a

features definitionZhang et al. I2] proposed a novel hidden Markov random field (HMRF)

model to integrate spatial information to Gaussiaadel based segmentation methods.

Instead of using Markov random field (MRF) as aegah prior in Gaussian model based

approach as other researchers did],[the authors proposed a Gaussian hidden Markov



random field model and used a Markov Random Fietddiwhum A Posteriori (MRF-MAP)
approach to estimate class labels, while MAP waslus estimate the bias field in MR
images. Because the bias field doesn’t exist inidAges and in addition this model estimates
a definite class label for each pixel without tfensideration of PVE, this method doesn’t
meet our requirement. Tang et dl4] proposed to use a multi-resolution Gaussian mextur
model method for image segmentation in order twesdhe noise sensitivity problem of
Gaussian mixture model based method. This methadreaized by constructing an image
pyramid which is composed of a sequence of imagésreduced resolution. The bottom of
the pyramid is the original image and the higheelemage represents the lower resolution.
According to the pyramid constructing rules, oneepin the high level of the image pyramid
contains larger neighboring information than thatthe lower level so that the spatial
information is implicitly contained in the higheeviel of the pyramid. Chuang et al. [4]
integrated the spatial information to fuzzy c-meafgorithm by incorporating it into the
membership function.

In order to integrate spatial information to theu&sian mixture model based vectorial
data segmentation method, we proposed to involveeighborhood weight within the
classification process. To reach this goal, we neeteighborhood information descriptor.
Lunstrom et al [15] proposed the Partial Rangedgistm (PRH) concept, which is a way to
describe the amount of a tissue within a localaegi his gives us the hint to use this concept
as a neighborhood descriptBased on this idea, a neighborhood weighted Gaussigture

model is proposed in this paper.



2. Gaussian mixture model

If K is the number of tissues (or materials), the Gaossiixture model assumes that each
voxel is composed big component densities mixed together Witimixing coefficients. Each
component density follows a Gaussian distributesed on statistical theory, the parameters
are estimated by maximum likelihood (ML) and expéon maximization (EM) algorithm is
used as an optimization method.

For a vectorial volume withN voxels, the voxel intensity vector is denoted by
x(i=12,--,N). Recall that the goal is to estimate the clasdadrdities on each voxel
according to the intensity vectors. The probabititgtribution of thekth tissue material is
denoted by p, (x|©,), which is governed by a set of paramet@&s. Given the parameters
of all the classes, the probability distributionezfch voxel can be described as a mixture of
probability distributions as follows:

K
p(XI@)=kZ:;akpk x1©y) 1)
where a, denotes the mixture coefficients. The parametér adethis distribution is
o=(a, a0, ,0,) with the constraint thadd *_a, =1.
Typically, p,(x|©,)is modeled by a Gaussian distribution with meapn and

covariance matrixz, . That is:

P.(X]©,)=p, (X[ .Z,)

- 1 @ k)" B (X )12 2

Jdet(2z, )

ML estimation is a common used method to find thebpbility distribution parameters. The

log-likelihood expression for this density from tii&aX is given by:



N
log(L(©[X))= Iogu Pk 1©)
e (3)
= ZIOQ(ZUK Py ()ﬂ |®k )j
i=1 k=1
Finding the ML solution directly from Eq3) is difficult because it contains the log of

the sum. The EM algorithm is a good way to solve fitoblem {6]. The iterative solution

for finding the parameters at the1)th iteration step is as follows (M-step):

l+l 1 > t
ﬁ;: pk|x,0") (4)
> % (k| %.©")
M= )
> p(kx.0")
Zp(klx O )X = A )X = 4
s - (6)
3 bkl ©)

Taking the mixing parametera, as prior probabilities, the probability of eachsd can

be computed using Bayes' rule (E-step):

_a P (% 16)
p(x [©")
__ap(x19)

PINANCRICH

p(k|x.,0")
(7)

3. Proposed neighborhood weighted method

The iteration formula described in sectigandidn’t involve any spatial information about
current voxel. As discussed in section 1, neighbodhinformation is one of the most
important spatial information. If the iteration pealure takes the neighborhood effect into
account, the classification result can be moreomase.

The original model calculates the class probaéditaccording to Bayes’ rule, which is
described by Eq.7§. This calculation is based on intensity distribng without any

neighborhood information. Usually the material @nttnuous, so that it is natural to have the



idea that for each voxel, the probability of #ik class should be affected by the neighbors’
kth class probabilities. According to this beliefe wan integrate the neighborhood effect on
the class distributions of the current voxel by mhodg Eq. (7).
Due to the deducing process of EM algorithm andhtteral continuous properties of the
classes (materials), the class probability shobkydhe two rules:
K

1) ép(klx,@‘ﬁl.

2) Current voxel'skth class probability magnifies if the neighbddsi class probabilities
tend to 1; current voxel'&th class probability decreases if the neighbkiis’' class
probabilities tend to 0.

According to the second rule, the neighborhoodsctistribution can be designed as a

weight on the current class distribution, so tha eesigned the neighborhood weighted

probability for the current voxel:

twt . et
p(km,e‘):Zi’ka'fV‘;i“' L ®)
=19 P (% 19])
where
N
Zp(klxni 161)
W, = N 9)

N, is a set of neighborhood of tité voxel. |N,| denotes the number of voxels in a 3¢t
x, denotes theth neighbor’s intensity of thih voxel.

The new class distribution formula is conformalddhe two rules (see the prove in the
appendix) and integrates the neighborhood infomatio the current voxel's class
distribution during iteration. For each iteratidefs the class distribution will be amended by

the neighbors’ class distribution information. Swtt through this weighted formula, the



neighborhood information is taken into accounti® ¢lassification process.
The EM solution formula for the proposed neighbadhaveighted Gaussian mixture

model is summarized as follows:

E-step:
plk | ,0) = e e B (10)
ZJ =1 JVVU pJ()g |ej)
M-step:
l+l 1 N t
= 2 plkIx.0) CED
=
N
> % pk |,
M =4 (12)
> plk]%,0")

i=1

Zp(klx O)IX — 4% — 4

=13 (13)
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i=1
N .
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Based on these equations, the estimation procegsaplemented is described as follows:

2,..,N)

(Input: the vectorial volume’ (=1 , the number of classes K.)

Step 1: Initialization of®”, @° andW. Any classification method could be used, in our

case we choose K-means. Using Btq initialize the neighborhood weight for eachxeb
Step 2: Calculate the prior probability by Ef0)(
Step 3: Compute the new parameter data accordigdg11),(12), (13) and14).
Step 4: Repeat steps 2-3 until reaching the enditon.
For each element vector of the input series, theigito find its class distributions. From

the iteration process, we can see that this aklgoriis not limited neither in applying on



vectorial volume, nor by the spatial dimensiontwd tata. The shape dfi, in Eq. (L4) can
match the spatial dimension of any input seriesaad controls the topology of the spatial
neighborhood information (nearest neighbors or mdree neighborhood shape and topology
could be modified according to the real practidaiagion.

4. Experimentsand discussions

We evaluate our method first on synthetic 2D daich hen applied it on real 3D uroscans.
The only difference between vectorial 2D image &bdvectorial volumes is the shape of
neighborhood accordingly to the data dimensionoider to avoid the local maxima, the
algorithm is initialized as follows: for the syntleedata, we initialize the center points with a
random data near the global maximum; for the pratsituation, this initialization can be

implemented by picking a point in each materialeagnanually.
4.1. Evaluation on synthetic data

We choose to evaluate our method on a three-elewesnbrial image, in which each pixel
contains three intensities. This image is constdiets following (Fig. 1). Each pix&i, j) is
composed by three chanrfeli, j) = [ f.(, j), f(i, ), fs(i, j)] and each channél, f,, f; can be
seen as an image. The first channel imiad€ig. 1, left) is composed by two homogeneous
regions in which we add Gaussian noisg=@3,0 =1.5) and (¢ =10,0 = 1.5) respectively. The
second channel imade (Fig. 1, middle) follows the same scheme witp:=(15,0 = 1.5) and

(x4 =5,0=1.5) respectively. The third channel imafggFig. 1, right) follows also the same
scheme with: f/=2,0=1.5) and (¢ =8,0 = 1.5) respectively.

The combination of these three channels leads vectorial image with six classes.

! The word channel is used by analogy with the RB €hannels of a RGB image.



According to the proposed algorithm described inti®a 3, the input number of classes is
K=6. For the first experiment,N, | is set to the 8 closest neighbors.
The classification on synthetic data is performed the result is shown in Fig. 2. Each
pixel of the result image is formed by this formula
K
C(x) = L.C.p(k|X.©) (15)
Where C(x) is the color assigned to tité pixel and C, is the color we assigned to tkih
class.

Fig. 2(a) is the classification result with thegimal Gaussian mixture model and Fig 2(c)
is the result with the neighborhood weighted ii@emethod. In Fig 2(a) we can notice that
the final regions are not homogeneous as expeetedalise of the noise. The reason is that the
method relies only on the intensity distributionsfbgram). The classification progress is a
direct mapping from intensity to classes so thatrthise areas are assigned an incorrect class
distribution. In Fig. 2(c), it is obvious that thregions are more homogeneous and the
classification process is less affected by the ejoighen we integrate the neighborhood
information into the iteration procedure.

In order to demonstrate that our method is not andymple class decisions smoothness.
We use Eq. (9) to just smooth the class decisidtes alassification with the classical
Gaussian mixture model. The result of the smootisndustrated in Fig. 2(b). We can see
that although the noise is faded, the edges argebluat the same time, which is not
corresponding to the real situation. This demoiedrathe necessity to integrate the

neighborhood information within the iteration prdaee.

The difference between these results comes fromdloelation of p(k|x ,0). Fig. 2(a)



is calculated according to Eq)( that is, without any neighborhood weight. Fi¢h)2and (c)
are both calculated according to E§) (ith the neighborhood weigh,, but the apparent
results are quite different. If in the conditionghwand without neighborhood, the estimated
Gaussian mixture parameters are both close toghlkeparameters (we will demonstrate it
later), the difference between Fig. 2(b) and (®)emp on the weightVy. In Fig. 2(b) it is
calculated according to the final result of thesslparameters estimation process, in contrast,
Wi in Fig. 2(c) is iteratively estimated during th#E&lgorithm, as presented in sectidn
Comparing Fig. 2(b) and (c), we can easily reaah ¢bnclusion that when taking the
estimation of neighborhood weight into the EM aitfon, the classification result is more
conformable to the reality.

The estimated parameters of the Gaussian mixtuehshould be close to the real
parameters which are known for the test data ia paper. In order to demonstrate that
integrating the neighborhood weight doesn’t redilnee parameter estimation precision. We

evaluate the quantitative error of the parametgithé following equation:

1

e = rko

0
[+

ORED) (16)

where r, denotes the estimated parameter afiddenotes the real parameter value.

The estimation parameters in the condition with astiout neighborhood information
are listed in Table 1. The estimation error witighborhood information is a little lower than
that without neighbor so that we can reach thelrabat integrating the neighborhood
information into the classification process willtmeduce the estimation precision. We use the
histogram to visually verify this result becausetdgrams are often considered as an

approximation of the class distribution. The clasdiclass distributions should be fitted with



the histograms. It is difficult to illustrate théstogram and the result intensity distribution
directly because for three-element vectorial im#ge histogram has four axes so that we
show the histograms by calculating the intensistridiution summation along one axis to
reduce the total number of axis. The results amvehin Fig. 3. Fig. 3(a) illustrates the
intensity distribution summation along three axésth® original image. Fig. 3(b) is the
classification result of Gaussian mixture clasaiflen and Fig. 3(c) illustrates the
neighborhood weighted classification results. Frdmse figures, we can see that the
classification fits the original histogram very WweAs the neighborhood weighted method
doesn't change the intensity distributions, the@fof our proposed method is to amend the
class decision by its neighborhood on each pixghdithe iteration procedure, while keeping
the global intensity distribution nature.

We also did some experiments while changing the sfzthe neighborhood in order to
see its effect on the classification results. As tbal class distribution of the test image is
known, we use the misclassification rate to evaltia¢ classification results. While changing
the shape of the neighborhood, the misclassifinatite remains around 0.3% (while without
neighborhood, 9.2%). The visual results accord wlis phenomenon (Fig. 4) so that the
shape of the neighborhood plays a tiny part indlssification procedure for this synthetic

data. In our case, we choose the 8-closest neighbdr
4.2. Application on real data

After the evaluation on synthetic data, we perfairige methods on the real data obtained
after the registration of three CT acquisition@dfuman kidney. Fig. 5 shows one slice of the

vectorial volume, which is composed by three chénn@), acquisition before contrast



medium injection; (b), immediately after injectidie), ten minutes after injection.

We expect to classify the vectorial volume into rfalasses: fat, renal cortex, renal
medulla and collecting system. According to theabasion of the previous section, we set
IN, | to the 26 closest neighborgVith K=4, the classification result formed by Eqg. (15) is
shown in Fig. 6. It effectively demonstrates ounjecture. While taking the neighborhood
information into classification procedure (Fig. J(cthe anatomical structures are better
delineated into homogeneous regions: fat (redplreortex (green), renal medulla (blue) and
collecting system (white).

From the above results, we can reach the conclubianthe Gaussian mixture model
based method has the ability to classify vectomnage with the aim of delineating the
anatomical structures. Because of the inhomogerdityhe acquisitions and the partial
volume effects, the result of the intensity-only thuel has some misclassification area,
especially the renal cortex and the renal medwdzbse of their close intensity range, which
is shown in Fig6(a). In order tshowthis phenomenon more clearly, the correspondisy fi
order derivate of the result probabilities along @ut line (represented in white)dsawn in
Fig. 7. Because of the white background color, the catlgcsystem (represented in white
originally) is represented in black line in the Ipabilities derivate figure (Figr), the other
materials are represented according to the colgggally assigned to them.

In Fig. 7(a), according to the probabilities first orderidate, we can clearly see that the
regions are not separated because there are sbomdgeneous regions, e.g. in the renal
medulla (between index [30, 40] on the line) ortiphrvolume effect on tiny object, e.g. the

collecting system (between index [70, 80] on thee)i While taking the neighborhood



information into the iteration process, the resalts improved significantly, as shown in Fig.
7(b). We can see that inside one material regior, phoposed method gives a more
homogeneous decision. The proposed method congfieiatensity and the position of one
pixel simultaneously so that it can give a moresoaable classification result. While

comparing Fig.7(a) and (b), we can see that the proposed methedheaeffect to be less

sensitive to inhomogeneities, while giving a betfass distribution.

5. Conclusions

In this paper we present a soft segmentation metiuapted to classify the information
contained in vectorial images or volumes. This mdtis based on modeling the voxels’
intensity vectors distribution by a mixture of Galasis. We add spatial information on this
classical statistical classifier by proposing néigithood weighted method. In this new model,
the voxels’ intensity vectors follow still the Gaisn mixture distribution but the classes
distributions on each voxel are affected by itgghbors’ class probability distributions. The
neighborhood information is integrated into thesslfication process by amending the
voxel's class distributions at each iteration step.

Experiments on synthetic and real data have bedarped. The results show that this
improvement on Gaussian mixture model is less #ftedy noise and gives better
classification results. We also evaluate the impattthe neighborhood. A nearest
neighborhood is generally enough in practical useemver the experiments also prove that
the expansion of the neighborhood range makesfiiegt on the estimated Gaussian mixture
model parameters. The experimental results denaiasitso that the proposed method gives

more reasonable class distributions for each pixblle keeping the global intensity



distribution.
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Appendix

Now we briefly prove that the designed formula B).can satisfy the two rules:
K
1) > pk|x.,0)=1,
k=1

2) Current voxel'skth class probability magnifies if the neighbddsi class probabilities
tend to 1; current voxel'&th class probability decreases if the neighbkiis’ class
probabilities tend to 0.

When taking Eq.8) into the left side of the first rule, it equats1 so that Eq.8) can rule 1)
naturally.

In order to prove rule 2), we assume that forktheclass of théth voxel, there exist two
neighborhood weights; and W, with: W, >W, >0, the corresponding probabilities
calculated by Eq.8]) are denoted by, andp, respectively. If we can prove thai, > p,, the

second rule can be satisfied. We dendte=a,p (x[0,), N= > aWp(x]6)).

it
j=1-K,jzk

When the variable is the neighborhood weightandN are constant andM =0, N=0. We
can rewrite EQ.8) for W, andW, respectively:

MW, MW,
pl = , p2 = <
MW, + N MW, + N
so that
p-p,= MN(VV:L _Wz)
27 (MW, +N)(MW, +N)

WhenM andN are constant and positive, we can deduce th& W, >0, then p, > p,.
When the condition isn, =0, the probability p(k|x,0')= 0. That is to say, the weighted

probability according to Eq8) is a monotonously increasing function to the hbarhood
weightW,.. With this property, the rule 2) can also be $atis



