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Abstract
Summary

The invasiveness of cells is correlated with the presence of dynamic actin-rich membrane structures called invadopodia, which are

membrane protrusions that are associated with localized polymerization of sub-membrane actin filaments. Similar to focal adhesions

and podosomes, invadopodia are cell matrix adhesion sites. Indeed, invadopodia share several features with podosomes, but whether

they are distinct structures is still a matter of debate. Invadopodia are built upon an N-WASP-dependent branched actin network,

and the Rho GTPase Cdc42 is involved in inducing invadopodial-membrane protrusion, which is mediated by actin filaments that are

organized in bundles to form an actin core. Actin-core formation is thought to be an early step in invadopodium assembly, and the

actin core is perpendicular to the extracellular matrix and the plasma membrane; this contrasts with the tangential orientation of

actin stress fibers anchored to focal adhesions. In this Commentary, we attempt to summarize recent insights into the actin dynamics

of invadopodia and podosomes, and the forces that are transmitted through these invasive structures. Although the mechanisms

underlying force-dependent regulation of invadopodia and podosomes are largely unknown compared with those of focal adhesions,

these structures do exhibit mechanosensitivity. Actin dynamics and associated forces might be key elements in discriminating between

invadopodia, podosomes and focal adhesions. Targeting actin regulatory molecules that specifically promote invadopodium formation

is an attractive strategy against cancer-cell invasion.
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Introduction

Tumor-cell invasion across tissue barriers requires degradation of the extracellular matrix (ECM), as well as dynamic interactions

between the ECM and the intracellular actin cytoskeleton that occur through organized adhesive structures. The best-characterized

adhesive structures, named focal adhesions, contain clusters of transmembrane integrin receptors that are tethered at one end to the ECM

and at the other to actin stress fibers, which are responsible for cell traction and ECM reorganization. However, other adhesive structures,

known as podosomes and invadopodia, also exist.

Podosomes are distinct adhesive structures that are found on the ventral side of a wide range of cells, including osteoclasts,

macrophages and endothelial cells. In osteoclasts, podosomes are involved in the formation of a sealing zone that establishes an isolated

compartment in which bone is degraded ( ). It has also been demonstrated that lymphocytes use podosomes: theyGimona et al., 2008

extend invasive podosomes  to palpate the surface of, and ultimately form transcellular pores through, the vascular endothelium (‘ ’ Carman

). Invasive cancer cells and Srctransformed cells display podosome-like actin-rich membrane protrusions called invadopodia,et al., 2007

which are primary sites of rapid actin polymerization and which represent the major sites of matrix degradation in these cells (Weaver,

). Invadopodia of tumor cells appear as irregular dots in the vicinity of the nucleus and in proximity to the Golgi complex. Podosomes2008

in osteoclasts and invadopodia in Src-transformed cells share the feature of selforganizing into a ring (the so-called rosette); in the case of

osteoclasts, this can expand to a belt called the sealing zone. This self-organization is crucial for efficient matrix degradation and cell

invasion ( ; ). These rosettes can be formed after stimulation with potent angiogenic factors such asBadowski et al., 2008 Saltel et al., 2006

vascular endothelial growth factor (VEGF) and tumor necrosis factor-  (TNF ) ( ).α α Osiak et al., 2005

Because of the significant impact of invadopodia in oncological events such as cell invasion and matrix degradation, we need more

insight into the mechanisms that favor the development of invadopodia at the expense of focal adhesions. Invadopodia, podosomes and

focal adhesions are all cell-matrix adhesion sites that connect the actin cytoskeleton within the cytosol to the extracellular matrix, but they

differ in their architecture and dynamics despite sharing most of the same proteins (such as integrin, talin and paxillin) ( )Block et al., 2008

( ,  and ).Figs 1 2 3
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Active actin polymerization, induction of membrane curvature, rapid turnover of cell-matrix adhesions and local modulation of

contractile forces are all likely to play a central role in the promotion of invadopodium formation. In this Commentary, we discuss recent

insights into the actin dynamics of invadopodia and podosomes, and the forces that are transmitted through these invasive structures.

Role of F-actin in the assembly of focal adhesions, podosomes and invadopodia

Various types of directed cell motility are driven by the polymerization of an actin network that pushes the membrane forwards.

During cell motility, the leading edge of the cell exhibits a range of dynamic structures such as lamellipodia, filopodia and membrane

ruffles ( ). Correlative fluorescence and electron microscopy show that the lamellipodium which contains a densePollard and Borisy, 2003

network of branching actin filaments that undergo fast retrograde flow  forms a cohesive, separable layer of actin in front of a less–
dynamic actin network called the lamella. At the rear of the lamellipodium, the motor myosin II pulls lamellipodial actin filaments and

condenses them into lamellar actin bundles, causing periodic edge retraction (as a result of mechanical breakage of the link between focal

adhesions and stress fibers), as well as initiation of new adhesion sites and force generation that is accompanied by assembly of actin into

stress fibers. Live-cell imaging has shown that nascent cell-matrix adhesions arise in the lamellipodium ( ) and growGiannone et al., 2007

and mature during the forward movement of the lamellipodium, forming focal adhesions connected to stress fibers that are tangentially

oriented with respect to the ECM ( ). These focal adhesions are localized at the interface between the lamellipodial and lamellarFig. 1

filamentous (F)-actin networks ( ). Even though the lamellipodial actin structure has been well described, the preciseHu et al., 2007

organization of the actin filaments that emerge from focal adhesions is poorly understood, mostly because of the absence of ultrastructural

studies that show adhesion sites and the cytoskeleton at the same time.

Invadopodia and podosomes differ from focal adhesions in the geometry and dynamics of their associated actin cytoskeleton ( ).Fig. 2

Indeed, the formation of invadopodia and podosomes was historically described as a major actin-cytoskeleton reorganization that was

induced by the expression of the oncogene v-Src ( ). Invadopodia and podosomes comprise an actin core containing theTarone et al., 1985

actin-nucleation machinery including Wiskott-Aldrich syndrome protein (WASP), neuronal WASP (N-WASP), WASP-interacting protein[
(WIP), the Arp2/3 complex and cortactin  surrounded by a multimeric protein complex that consists of integrins and integrin-associated]
proteins such as talin, vinculin and paxillin ( ; ). Integrins and their associated proteins constitute anMueller et al., 1992 Desai et al., 2008

adhesive ring that colocalizes with a region of polymerized actin, called the actin cloud , between the multiple actin cores, which form a‘ ’
cluster, ring or belt of invadopodia or podosomes ( ; ).Collin et al., 2006 Destaing et al., 2003

Live-cell imaging of GFP-actin has revealed that podosomes undergo cycles of rapid polymerization and depolymerization, and have a

life-span of 2 to 4 minutes ( ; ). Invadopodia are thought to have a much longer lifespan of ~30Destaing et al., 2003 Ochoa et al., 2000

minutes but, in Src-transformed baby hamster kidney (BHK) cells, inhibition of protein tyrosine phosphatases speeds up invadopodial

dynamics to give half-lives similar to those of podosomes ( ). Moreover, fluorescence recovery after photobleachingBadowski et al., 2008

(FRAP) experiments have shown that the podosome actin core and the actin cloud undergo continuous actin polymerization and

depolymerization, which is maintained throughout the podosome life span ( ). In terms of assembly, invadopodiaDestaing et al., 2003

formation is initiated by the nucleation of F-actin; these filaments are oriented perpendicularly to the substrate ( ; Artym et al., 2006

); by contrast (and as described above), the assembly of focal adhesions starts with occupancy of integrins by ECMBadowski et al., 2008

components and integrin clustering, after which actin stress fibers form ( ; ). BecauseCai and Sheetz, 2009 Vicente-Manzanares et al., 2009

the actin core of invadopodia assembles before the surrounding integrin-containing adhesive ring, and actin disruption is a prerequisite for

invadopodium disassembly ( ), we can hypothesize that invadopodia are maintained by repetitive nucleation of actinBadowki et al., 2008

polymerization at the invadopodium tip, followed by the rearrangement of actin filaments within the shaft.

At the molecular level, high-resolution scanning electron microscopy combined with fluorescence microscopy has resolved the

molecular architecture of arrays of invadopodia and podosomes, revealing that these adhesive structures contain two F-actin networks with

opposite orientations. Podosome cores are composed of bundles of actin cables that lie perpendicular to the substratum, and the cores

communicate through a network of radial actin filaments that lie parallel to the substratum; these correspond to the actin cloud ( ) (Fig. 2

; ). These observations suggest the existence of tangential forces between podosome actin cores.Gavazzi et al., 1989 Luxenburg et al., 2007

The magnitude and direction of the resulting forces probably depends on the collective organization of a group of invadopodia or

podosomes into a cluster, ring or belt.

In conclusion, focal adhesions, invadopodia and podosomes are all strongly associated with actin filaments that link neighboring

structures. However, although fast-polymerizing actin seems to be the scaffold that allows assembly of and stabilizes invadopodia and

podosomes, actin stress fibers with much slower dynamics seem to be required to transmit the tangential forces that are needed for

focaladhesion maturation ( ) ( ).Riveline et al., 2001 Fig. 4

How assembly of invadopodia and podosomes is coupled with actin nucleation

Understanding the structure and properties of invadopodia, podosomes and focal adhesions requires detailed knowledge of the

localization and dynamics of the signaling networks that regulate actin nucleation and polymerization. For example, and as mentioned
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above, fast actin turnover might be important for the extension of podosomes or invadopodia, whereas slow self-renewal of actin stress

fibers might be a feature of the more static focal adhesions ( ). In addition, the balance between activation and stabilization ofFig. 4

WASP-family proteins, capping of actin barbed ends, and Arp2/3-complex-dependent branching of actin filaments seems to govern the

final actin structure and to influence whether adhesive and protrusive structures form ( ). In this section, we discuss thePollard et al., 2000

localization and role of actin-nucleation and -elongation factors and the physical properties of the membrane in invadopodium and

podosome dynamics.

Role of actin-nucleation factors in adhesive structures

Actin nucleation relies on the Arp2/3 complex, which is activated at the membrane by proteins of the WASP family (WASP is found

in leucocytes, whereas N-WASP is more widely expressed). The activation of WASP and N-WASP (via opening of the closed

conformation) is linked to several cooperating factors that facilitate their interaction with the Arp2/3 complex, including WASPinteracting

protein (WIP), which shuttles WASP-family proteins to areas of actin assembly ( ; ; Chabadel et al., 2007 Lafuente et al., 2004 Peterson et

). Cortactin (see below) promotes actin nucleation synergistically with WASP by simultaneously binding to the Arp2/3 complexal., 2007

and actin filaments, which has the dual effect of activating actin nucleation by the Arp2/3 complex and stabilizing the new filament

branches created by the complex ( ; ). WIP binds directly to cortactin, enhancing its ability toWeaver et al., 2002 Weaver et al., 2001

activate the Arp2/3 complex ( ). In addition, the activity of WASP-family proteins is probably controlled by theirKinley et al., 2003

diffusion rate. N-WASP can interact with free barbed ends of growing actin filaments ( ). Recent data have shown thatCo et al., 2007

N-WASP is able to limit actin-filament growth by antagonizing filament-capping proteins at the barbed ends and that it thereby controls

the rate of Arp2/3-complex-dependent actinbased motility of intracellular viruses ( ).Weisswange et al., 2009

Actin nucleators at focal adhesions

In focal adhesions, the relationship between integrins and the actinnucleation machinery is not well understood, even though

actin-polymerization activity has been reconstituted from integrin receptors and associated proteins isolated from non-adherent

hematopoietic cells ( ). The focal-adhesion protein vinculin can associate transiently with the Arp2/3 complex upon cellButler et al., 2006

adhesion to the ECM protein fibronectin ( ), but neither Arp2/3 nor WASP has been identified in mature focalDeMali et al., 2002

adhesions. However, the recruitment of actin into stress fibers is impaired when focal adhesion kinase (FAK), another focal-adhesion

protein, is missing or cannot be phosphorylated on Tyr397 ( ). Recently, it has been established that the FERM (bandSerrels et al., 2007

4.1, ezrin, radixin, moesin) domain of FAK interacts with the Arp2/3 complex and WASP, providing a link between integrin engagement,

formation of nascent spreading adhesions and actin polymerization ( ). Arp2/3 might interact with FAK at earlySerrels et al., 2007

spreading adhesions at the cell periphery and then be released from maturing adhesion structures in nascent lamellipodia (Serrels et al.,

). Autophosphorylation of FAK at Tyr397 destabilizes the Arp2/3-WASP-FAK complex, inhibits Arp2/3-dependent lamellipodium2007

extension and prevents or delays stress-fiber assembly ( ; ).Serrels et al., 2007 Wu et al., 2004

Actin nucleators at podosomes and invadopodia

In contrast to the situation at focal adhesions, the Arp2/3 complex is enriched at the core of podosomes or invadopodia and throughout

the length of the actin core ( ; ; ). Knocking down the Arp2/3 complex inBaldassarre et al., 2006 Linder et al., 2000 Yamaguchi et al., 2005

osteoclasts impairs podosome formation ( ). Arp2/3-complex-dependent and N-WASP-regulated actin polymerization isHurst et al., 2004

essential in the early phase of podosome and invadopodium formation. Additionally, it is tempting to speculate that

Arp2/3-complex-controlled actin branching has a crucial role in the fission of podosomes to generate new daughter podosomes (Evans et

). RNA interference and dominant-negativemutant expression analyses have revealed that N-WASP, the Arp2/3 complex and theiral., 2003

upstream regulators Nck1, Cdc42 and WIP are needed for invadopodium formation ( ). Additionally, dendritic cellsYamaguchi et al., 2005

and macrophages in which WASP expression is decreased or deficient (as observed in knockdown experiments, knockout mice or

individuals with Wiskott-Aldrich syndrome) fail to make functional podosomes ( ), whereas WASP rescue results in theOlivier et al., 2006

recovery of normal podosome organization ( ). Within these cell types, N-WASP is not able to compensate for WASPBurns et al., 2001

deficiency. The reason is not fully understood, but a total rescue by N-WASP requires an additional stimulus stimulation of protein kinase[
C (PKC) with phorbol myristate acetate (TPA), for instance  to form podosomes ( ). As in focal adhesions, it seems that] Tatin et al., 2006

actin polymerization is also regulated by a FAK-family member in podosomes, as revealed by the decrease of the actin net flux in

Pyk2knockout osteoclasts ( ).Gil-Henn et al., 2007

The role of cortactin

Another way to regulate actin cytoskeleton remodeling is the activation of Arp2/3 by cortactin, which has emerged as a key protein in

the coordination of membrane dynamics. Cortactin is one of the few cytoskeletal proteins that is specifically required for the assembly of

invadopodia in carcinoma cells ( ). It does not accumulate into focal adhesions but rather at the edge of lamellipodia,Artym et al., 2006

where the polymerized actin-filament meshwork pushes the membrane of migrating cells ( ). Many studies haveBryce et al., 2005

suggested that cortactin overexpression increases tumor aggressiveness, possibly by promoting invasion, metastasis and invadopodium
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formation ( ; ). Deacetylation of cortactin by HDAC6 alters its association with actin, thus modulatingArtym et al., 2006 Clark et al., 2007

cell motility ( ). Cortactin is also a Src-kinase substrate that is frequently overexpressed in cancer. CortactinZhang et al., 2003

phosphorylation by Src enhances actin assembly and increases binding of cortactin to Nck and WIP, and might therefore favor the

appearance of new podosomes ( ). Phosphorylation of cortactin seems to be involved in its turnover and stability,Tehrani et al., 2007

possibly through its interaction with WIP, but does not trigger its localization to invadopodia. Finally, supervillin, an F-actin- and

myosin-II-binding protein, was recently reported to reorganize the actin cytoskeleton and potentiate invadopodial function by acting as a

mediator of cortactin ( ).Crowley et al., 2009

Our knowledge on the role of actin-nucleation factors at adhesive structures can be summarized as follows: actin-nucleation factors

seem to localize stably at the heart of invadopodial and podosome structure, but not at mature focal adhesions (although they are

transiently involved in nascent adhesions).

Membrane curvature controls actin polymerization

In contrast to focal adhesions, which are found in flat areas of the cell s ventral face, invadopodia and podosomes are protrusive’
structures, suggesting that they are formed through a mechanism that couples actin polymerization and membrane deformation. This

process is likely to involve proteins that deform membranes, such as BAR- and F-BAR-family proteins. For instance, the F-BAR protein

Toca-1 has membrane-binding and membrane-deformation activities, and generates tubular membrane structures of defined diameters (20–
50 nm) by bending the membrane towards the cytosol to form positive curvature ( ; ). TheCory and Cullen, 2007 Takano et al., 2008

N-WASP WIP complex is known to be activated by Toca-1 and the GTPase Cdc42, and thereby to promote localized actin polymerization–
at sites of membrane curvature ( ). Recently, podosome formation in macrophages was shown to require theHo et al., 2004

F-BAR-domain-containing formin-binding protein 17 (FBP17). This protein recruits WASP, WIP and dynamin-2 to the plasma membrane,

probably by facilitating membrane deformation ( ). Similarly, in NIH3T3 cells, ASAP1 a BARdomain protein and ArfTsuboi et al., 2009 [
GTPase-activating protein (ArfGAP)  was found to be a Src substrate that controls invadopodium assembly ( ). All these] Bharti et al., 2007

results show that actin polymerization can be stimulated by membrane curvature, which is triggered by spatially appropriate interactions of

F-BAR proteins and the N-WASP WIP complex ( ). ASAP3, which is closely related to ASAP1, is associated with– Takano et al., 2008

focal adhesions and circular dorsal ruffles but does not localize to invadopodia or podosomes ( ). Reduction of ASAP3Ha et al., 2008

expression results in fewer actin stress fibers, reduced levels of phosphomyosin, and slower cell migration and invasion. Conversely,

downregulation of ASAP1 has no effect on migration or invasion. Given these new findings, it is worth noting that membrane invagination

has been observed at the center of podosome actin cores ( ; ).Kaverina et al., 2003 Ochoa et al., 2000

Of equal biological importance to the generation of positive membrane curvature is the topologically opposite process  the generation–
of negative curvature, in which the membrane is deformed away from the cytosolic environment. The IRSp53- and MIM (missing in

metastasis)-homology domain (IMD) constitutes a structural module that generates negative membrane curvature, giving rise to tubules of

80 nm diameter ( ). Whereas BAR domains stabilize membrane tubules by coating the outside of the tubules, the MIMMattila et al., 2007

domain binds the inside of the forming tube ( ). IRSp53 generates protrusions from the plasma membrane that lookSuetsugu et al., 2006

like actin containing filopodia ( ). IRSp53 contains various Rac-binding domains, suggesting that it might also beYamagishi et al., 2004

involved in lamellipodial extension ( ). Indeed, IRSp53 is required, in association with the WAVE2-Abi1 complex, forSuetsugu et al., 2006

some actin-mediated processes such as lamellipodium formation, but not for the formation of filopodia and podosomes (Abou-Kheir et al.,

). However, IRSp53 also contains a Cdc42-binding motif and seems to be required for the Cdc42-induced formation of filopodia (2008 Lim

). This latter activity seems to depend on the stage of its association with another cytoskeletal modulator, epidermal growthet al., 2008

factor receptor kinase substrate 8 (Eps8), which is known to be an actin-capping and -bundling protein ( ). Eps8 is notDisanza et al., 2006

found in focal adhesions but is localized in podosomes ( ). All these results indicate that F-BAR proteins might haveGoicoechea et al., 2006

a major role in podosome formation, as might IRSp53 in lamellipodia or filopodia. An attractive hypothesis is that, depending on its

partner, IRSp53 specifically induces distinct types of membrane protrusions.

Actin-elongation factors in adhesive structures

In addition to actin-nucleation factors and inducers of membrane curvature, actin-elongation factors also seem to have a role in

invadopodium formation. Both Ena/VASP-family proteins and formins  which act as elongation factors  promote actin polymerization at– –
the barbed ends of actin filaments. The emerging idea is that different formins and Ena/VASP proteins support highly variable rates of

actin-filament elongation, thus optimizing the assembly and architecture of specific actin structures. Ena/VASP proteins localize at focal

adhesions, the leading edge of lamellipodia and the tips of filopodia ( ). Ena/VASP activity regulates the geometry ofGertler et al., 1996

assembling actin-filament networks by capturing filament barbed ends and antagonizing capping proteins; this anti-capping activity

involves direct binding to profilin-actin complexes and to globular (G)- and F-actin ( ; ; Barzik et al., 2005 Bear et al., 2000 Ferron et al.,

; ). Ena/VASP proteins also bundle actin filaments ( ; ), and are thought to2007 Pasic et al., 2008 Bachmann et al., 1999 Barzik et al., 2005

cluster filament barbed ends during filopodium formation and elongation ( ; ).Applewhite et al., 2007 Svitkina et al., 2003
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Mena, a member of the Ena/VASP family, is involved in cell motility, and its upregulation in several human cancers is correlated with

increased invasiveness ( ; ; ; ). It has been recently shownDi Modugno et al., 2004 Krause et al., 2003 Wang et al., 2004 Wang et al., 2007

that Mena is differentially spliced in vivo in invasive tumor cells as compared with non-motile resident tumor cells. Both Mena and its

invasive isoform (Mena ) promote actin polymerization in a cofilin-dependent manner, but the Mena  isoform seems to favorINV INV

invasiveness by promoting invadopodium stabilization and enhancing the matrix-degradation activity of invadopodia (Philippar et al.,

).2008

Src is a key mediator of actin dynamics in podosomes and invadopodia

The non-receptor tyrosine kinase Src, which initiates podosome formation and regulates podosome structure, is a member of a family

of nine closely related tyrosine kinases that is defined by a common domain structure, including a myristoylated N-terminal domain that

targets Src to membranes, two Src-homology-protein-binding domains (SH2 and SH3) and the tyrosine-kinase catalytic domain.

Activation of Src occurs either when Tyr527 is dephosphorylated, allowing the opening  of the molecule, or when the intramolecular‘ ’
interactions of the SH2 or SH3 domains are disrupted by intermolecular interactions with other Src-binding partners. Activation of Src

leads to the autophosphorylation of Tyr416 in the activation loop of the kinase domain, which is essential for the full tyrosine-kinase

activity of Src ( ).Roskoski, 2004

As mentioned previously, expression of v-Src, the oncogenic and constitutively active form of Src, induces a rearrangement of the

actin cytoskeleton that is characterized by a switch from stress fibers to invadopodia in BHK cells ( ). Even though Src isTarone et al., 1985

ubiquitous, the specific link between Src and podosomes has been confirmed by the targeted disruption of the  gene in mice, whichSrc

leads to osteopetrosis as a result of nonfunctional osteoclasts that are unable to form a sealing zone from podosomes ( ).Soriano et al., 1991

Indeed, bone matrix resorption by osteoclasts is known to depend on a specific organization of their cytoskeleton into a peripheral belt of

podosomes. This phenotype is mostly Srcdependent because the disruption of any other Src-kinase family member failed to reproduce

such a phenotype ( ; ; ; ). Src tyrosine-kinase activation is bothHorne et al., 1992 Lowell et al., 1996 Sanjay et al., 2001 Soriano et al., 1991

necessary and sufficient for podosome and invadopodium formation. Because actin-core polymerization is a prerequisite for the assembly

of podosomes and invadopodia, Src has the capacity to regulate (through phosphorylation) and/or recruit (through interactions with its SH2

and SH3 domains) specific substrates that regulate actin polymerization and architecture. Re-expression of Src mutants in -nullSrc

osteoclasts has shown that its tyrosine-kinase activity is essential for podosome regulation and is not compensated for by its adaptor

function; however, Src needs to be properly localized by either its SH2 or SH3 domains, as its membrane localization is not sufficient (

). In osteoclasts, Src regulates rearrangements in the actin cytoskeleton by stimulating Rac1 GTPase via a proteinDestaing et al., 2008

complex that also includes the Syk kinase, v 3 integrin and the Rac guanine-nucleotide exchange factor Vav3 ( ). Src alsoα β Zou et al., 2007

downregulates the activity of the GTPase ARF6, via the GTPase-activating protein GIT2, to maintain sealing zones and osteoclast polarity

during bone degradation ( ).Heckel et al., 2009

Among the identified substrates of Src is Tks5 (Fish), a scaffold protein that binds to members of the ADAM family of membrane

spanning proteases, to WASP-family proteins and to cortactin ( ; ; ). In theAbram et al., 2003 Seals et al., 2005 Seals and Courtneidge, 2003

initial stages of podosome formation, phosphatidylinositol (3,4)-bisphosphate PtdIns(3,4) 2  plays an important role in anchoring Tks5 to[ P ]
the plasma membrane ( ). Tks5, which is essential for podosome formation, forms a complex with Grb2 at adhesionOikawa et al., 2008

sites in a Src-dependent manner. Furthermore, N-WASP binds to all SH3 domains of Tks5, which facilitates the formation of podosome

rings. Podosome precursors are formed around focal-adhesion-related adhesions, and this might be in response to a change in the

phosphorylation status of proteins (such as Tks5) and in the composition of phosphoinositides on the plasma membrane (Oikawa et al.,

). Thus, the N-WASP Arp2/3complex signal might accumulate on the platform of the Tks5Grb2 complex at focal adhesions, which is2008 –
stabilized by PtdIns(3,4) 2. These data provide the molecular basis for the transformation of focal adhesions into podosomes and/orP

invadopodia.

AFAP-110 is another Src-associated protein with a role in podosome formation. In response to activation of PKC , Src is activated inα
an AFAP-110-dependent fashion, and this signaling pathway is responsible for PKC -induced podosome formation; by contrast,α
AFAP-110 colocalizes with actin stress fibers in quiescent cells ( ; ). AFAP-110 contributes to theFlynn et al., 1993 Gatesman et al., 2004

aggressiveness and growth of tumors ( ). This protein might have an important role in the regulation of podosomeZhang et al., 2007

stability and lifespan as an actin-filament cross-linking protein and as an adaptor protein that relays PKC  signals to activate Src (α
). It is also possible that AFAP-110 controls podosome half-life through its ability to regulate cell contractility andDorfleutner et al., 2008

cross-link stress fibers ( ).Burgstaller and Gimona, 2004

Activation of the endoprotease calpain-2 by extracellular-signal regulated kinases 1 and 2 (Erk1/2) ( ) might resultGlading et al., 2004

from the Src-dependent phosphorylation of paxillin ( ; ). Previous studies have established a role forBadowski et al., 2008 Petit et al., 2000

calpain-2 in the turnover of the focal adhesions of migrating cells; calpain-2 is thought to mediate talin proteolysis in focal adhesions and

thereby to trigger disassembly ( ). Another study revealed that calpain-mediated cleavage of the integrin chain 3 atFranco et al., 2004 β



J Cell Sci. Author manuscript

Page /6 16

Tyr759 switches the functional outcome of integrin signaling from cell spreading to retraction ( ). Calpain-2 is alsoFlevaris et al., 2007

thought to increase invadopodium dynamics by acting both downstream and upstream of Src, through the proteolysis of specific Src

effectors such as cortactin (to promote invadopodium disassembly) and through proteolysis and activation of the Src activator PTP1B (to

promote invadopodium assembly) ( ). The protein tyrosine phosphatase PTP1B can promote Src activation through theCortesio et al., 2008

direct dephosphorylation of the inhibitory phosphotyrosine 529 ( ; ; ).Bjorge et al., 2000 Cortesio et al., 2008 Liang et al., 2005

In conclusion, Src is a major player in the assembly and dynamics of invadopodia and podosomes, acting at multiple levels from actin

nucleation to the activity of integrin-associated complexes. High Src activity seems to be essential for its role at invadopodia, but leads to

diminished focal-adhesion assembly.

Invadopodia, podosomes and focal adhesions are mechanosensitive structures with distinct
characteristics
Adhesive structures and environment sensing

A cell can sense and respond to a wide range of external chemical and physical signals. It can integrate this information through its

adhesive structures and, as a consequence, can change its morphology, dynamics and behavior. In addition, cells can adapt their adhesive

structures to external constraints such as the rigidity, density or topography of the substrates ( ). Several physical parametersFig. 5A, B

might contribute to the strength of adhesion between a cell and its environment, including ligand surface density, number of adhesion

receptors, affinity of integrins for their respective ligands, strength of receptor linkages and organization of the receptors at the cell surface

( ; ; ; ). The more rigid the matrix, theGallant et al., 2005 Gupton and Waterman-Storer, 2006 Huttenlocher et al., 1996 Palecek et al., 1998

higher the intracellular-tension and cell-traction forces ( ; ). In terms of cell sensitivity to extracellularPaszek et al., 2005 Wang et al., 2000

stiffness, experiments and theory have shown the role of two important parameters: adhesionsite dynamics and cytoskeleton tension (

). Augmented surface density of matrix ligands induces faster focaladhesion assembly. It has been recently shown thatFereol et al., 2009

matrix-density sensing depends on the focal-adhesion regulator ICAP-1 ( ). Matrix topography is alsoMillon-Fremillon et al., 2008

important, because the distance between individual integrin molecules modulates adhesion: the distance between individual integrins must

be no more than 55 nm to reinforce adhesion ( ; ) and allow recruitment of vinculin toArnold et al., 2004 Selhuber-Unkel et al., 2008

adhesions ( ).Cavalcanti-Adam et al., 2006

An emerging concept is that the functions of some proteins can be up- or downregulated by stretching; thus, the proteins act as

mechanosensors to convert mechanical cues into chemical signals, in a process called mechanotransduction. This property has been

demonstrated for extracellular proteins such as fibronectin and intracellular proteins such as zyxin, talin and p130Cas a Src-family kinase[
substrate that is involved in various cellular events such as migration, survival, transformation and invasion ( ) . ForDefilippi et al., 2006 ]
instance, direct application of a piconewton force stimulates the mechanical extension of p130Cas, unmasking a Src substrate domain and

thereby allowing its phosphorylation by Srcfamily kinases ( ). Force-induced conformational changes in talin lead to theSawada et al., 2006

exposure of a binding site for vinculin ( ), and force can also modify extracellular fibronectin to alter integrin adhesion (del Rio et al., 2009

; ; ). The forces generated by cellular adhesion not only stretch but also partiallyHirata et al., 2008 Hoffman et al., 2006 Yoshigi et al., 2005

unfold fibrillar fibronectin ( ; ). The stretching of matrix fibers not only increases their rigidityBaneyx and Vogel, 1999 Smith et al., 2007

but is also thought to make new binding sites available. Below, we discuss the role of mechanosensing in focal-adhesion assembly and

maturation, and describe new data that indicate a mechanosensing role for podosomes and invadopodia.

Interplay between actin polymerization and myosin in focal-adhesion assembly and maturation

Mechanical forces are required for the assembly and maturation of focal adhesions. Nascent adhesions form at the base of the

lamellipodium in a myosin-II-independent manner, and their assembly rate is proportional to the rate of lamellipodial protrusion. Nascent

adhesions seem to be different from other adhesive sites known as focal complexes (the precursors of focal adhesions), which are two

times larger, induced by active Rac1, dependent on myosin II and appear mainly at the lamellipodium-lamellum interface (Choi et al.,

; ). At the rear of the lamellipodium, nascent adhesions either disassemble or mature through a sequential2008 Nobes and Hall, 1995

mechanism that is coupled to myosin-II-induced tension. At focal adhesions, there is active polymerization of actin filaments that can be

crosslinked by -actinin. Myosin II incorporates into the -actinin-crosslinked actin-filament bundles and displaces -actinin. This allowsα α α
the contraction of actin bundles, generating tension. The overall process is extremely dynamic ( ; Cai and Sheetz, 2009 Vogel and Sheetz,

).2009

Stress fibers are anchored to focal adhesions, which grow in response to contractile force. Traction forces generated by stress fibers are

in the order of several hundred nanonewtons (nN). Analyses of actin dynamics in stress fibers indicate that preformed actin filaments are

added to the adhesion sites and enable the rapid turnover of actin in stress fibers ( ). Maturation of focalHotulainen and Lappalainen, 2006

adhesions from nascent adhesions can occur along an -actinin actin template that elongates centripetally from nascent adhesions (α – Choi et

). Maturation and growth of focal adhesions involve force reinforcement that is dependent on talin ( ) (al., 2008 Zhang et al., 2008 Fig. 5A, B

). These internal tensions can be mimicked by application of external forces ( ). Maturation into focal adhesions isRiveline et al., 2001
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mediated by Rho kinase and mDia1, both of which are effectors of the small GTPase RhoA ( ; );Kimura et al., 1996 Watanabe et al., 1999

Rho kinase stimulates myosin-IIdependent contractility by inactivating myosin-light-chain phosphatase ( ), whereasKatoh et al., 2001

mDia1 is involved in actin nucleation and in the elongation of parallel arrays of actin filaments (Burridge and Chrzanowska-Wodnicka,

; ). Myosin II exerts a force of 5.2 nN/ m  on focal adhesions ( ). Maturation of focal1996 Rottner et al., 1999 μ 2 Schwarz et al., 2002

adhesions is a slow process that can take up to 60 minutes ( ) and corresponds to a sevenfold force reinforcement (Zamir et al., 1999 Gallant

).et al., 2005

Mechanics of podosomes and invadopodia

Whereas mechanosensing is well documented for focal adhesions, little has been known about whether this occurs in invadopodia and

podosomes. However, recent reports provide compelling evidence that invadopodia and podosomes are also major sites through which

cells sense mechanical forces ( ). It seems that, in contrast to focal adhesions, intracellular tensions are not required forCollin et al., 2008

podosome assembly. However, podosome lifespan, the mean distance between podosomes, their collective organization into a rosette, and

expansion of the rosette all depend on the flexibility of the substrate ( ). These findings suggest that intracellularCollin et al., 2006

constraints have a role in the collective dynamics of these podosome rings. Recent data have demonstrated that a rosette of invadopodia in

Src-transformed BHK cells can exert traction forces with a magnitude of 200 Pa, which is comparable to that generated underneath focal

adhesions ( ). Therefore, rosettes can be thought of as mechanosensory structures that can sense and transmit mechanicalCollin et al., 2008

forces.

A striking correlation has also been observed between the increase in the matrix-degrading activity of invadopodia in breast carcinoma

cells and the increase in rigidity of the ECM ( ). This proteolytic activity is linked to the phosphorylated form ofAlexander et al., 2008

mechanosensing proteins such as p130Cas and FAK ( ). It has also been shown that, in Srctransformed BHK cells,Alexander et al., 2008

rosette formation is required for efficient ECM degradation and transmigration through a HeLa-cell monolayer ( ; Badowski et al., 2008

; ). A tempting conclusion is that the birth of podosomes or invadopodia does not require tensile forces,Saltel et al., 2008 Saltel et al., 2006

whereas collective organization of invadopodia or podosomes into rosettes is controlled by applied external-force anisotropy, which is not

yet well characterized.

Indeed, in contrast to what is observed with focal adhesions, podosomes or invadopodia seem to be promoted by a decrease in local

cellular contractility ( ). In line with this idea, it is noteworthy that assembly of individual invadopodia oftenBurgstaller and Gimona, 2004

occurs in the center of the ventral surface of cancer cells, where traction forces are lower than at the cell periphery ( ; Cai et al., 2006 Cai

; ; ; ; ). Indeed, podosomeand Sheetz, 2009 Dembo and Wang, 1999 Dubin-Thaler et al., 2008 Pelham and Wang, 1999 Tan et al., 2003

assembly is correlated with the local dispersal of contractile proteins, including myosin, tropomyosin and calponin, and the recruitment of

p190RhoGAP to podosome sites ( ). Also, the adhesion-associated ion channel TRPM7 plays a role in relaxing cellularLener et al., 2006

contractility in response to mechanical forces, through phosphorylation of myosin-II heavy chain ( ). Activation ofClark et al., 2006

TRPM7 induces the transformation of focal adhesions into podosomes through a kinase-dependent mechanism, an effect that can be

mimicked by pharmacological inhibition of myosin II. Inhibition of RhoA or Cdc42 abolishes invadopodium formation (Sakurai-Yageta et

; ); however, this effect might not be because of a diminution of contractility, but rather because of theal., 2008 Yamaguchi et al., 2005

requirement for other Rho effectors such as DRF/mDia1 (human/mouse) formins for the formation and activity of invadopodia in two- and

three-dimensional systems ( ).Lizarraga et al., 2009

Recent data show that podosome rosettes develop torsional tractions that can deform the underlying matrix underneath podosome rings

( ). Short-term treatment with the myosin inhibitors ML7 or blebbistatin, or with the ROCK inhibitor Y27632 (which allCollin et al., 2008

decrease contractility) leads to transient dissipation of podosome rosettes, but the supramolecular structures are still present in cells

subjected to these inhibitors for longer treatment periods (M.R.B. and C.A.-R., unpublished). Some myosin II has been observed at the

periphery of the core domain of podosomes in Src-transformed cells, and also in association with the sealing zone on osteoclasts (Saltel et

; ), but myosin II is noticeably absent in invadopodia or podosomes so contractility does not seem to occural., 2008 Tanaka et al., 1993

within these individual structures.

The dynamic assembly of invadopodia or podosomes is still not well understood and the molecular motors associated with this process

remain to be identified. All published observations indicate that actin polymerization might be sufficient to promote podosomal or

invadopodial protrusion, which in turn would trigger tangential forces through actin radial arrays around podosomal or invadopodial actin

cores. Indeed, N-WASP activation has been visualized at the base of invadopodia, suggesting that Arp2/3complex-mediated actin

nucleation is confined to this area ( ). Subsequently, DRF/mDia1 might act on the branched array induced by N-WASP,Lorenz et al., 2004

the Arp2/3 complex and cortactin, and elongate actin filaments to trigger invadopodial protrusion. This process, combined with the

tangential forces developed through actin radial arrays around invadopodial actin cores, should permit podosome rosettes to protrude from

the cell if the surrounding environment is sufficiently flexible ( ). Undoubtedly, the spatiotemporal measurements of force-fieldFig. 5

displacements of podosome rosettes will resolve this point, and will add a mechanical element to our understanding of the fast invasion of

cells expressing podosomes or invadopodia. Future research will also include investigating how the physical ECM environment affects
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cellular invasiveness, because cancer-associated breast tissue is much stiffer than normal tissue ( ; ).Boyd et al., 2005 Samani et al., 2007

Some reports already suggest a role for tissue rigidity in promoting both the formation and invasiveness of tumors, possibly by increasing

invadopodial activity ( ; ).Alexander et al., 2008 Parekh and Weaver, 2009

Conclusions and perspectives

Our increasing knowledge of invadopodial involvement in tumorcell invasion and metastasis makes these structures very attractive

targets for cancer therapy ( ). The mode of invasion that is induced by invadopodial structures requires fast assembly ofStylli et al., 2008

adhesions, ECM proteolysis and a dynamic actin cytoskeleton (to allow fast changes in supramolecular structures and the development of

traction forces). Tissue invasion is most efficient when these cellular processes are combined. This Commentary emphasizes the role of

many actin-cytoskeleton-associated proteins as major players in the Src-mediated organization of adhesive interactions such as podosomes

and invadopodia. The combination of actin nucleators and elongation factors, each with distinct mechanisms and modes of regulation,

allows the versatility that is required to construct actin networks with specialized architectures and functions. Moreover, there is growing

evidence that actinbinding proteins have multiple roles in tumorigenic and metastatic processes of various human tumors. Indeed, the

balance between actin regulators might determine the type of adhesive structure that is formed and eventually account for the differences

in shape and dynamics of invadopodia and podosomes.

Force and membrane tension generated by intracellular motors (such as myosin) and regulated by substrate viscoelasticity might affect

actin polymerization, and in turn the formation of invadopodia or podosomes and their collective organization into rosettes. The urgency of

defining these mechanisms is particularly obvious as growing evidence indicates that alterations in cellular mechanoresponses are involved

in many diseases. Theoretical physical models also need to be developed to address the physical mechanisms that underlie the formation of

invadopodia and podosomes, and the maintenance of their collective organization.
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Fig. 1
Schematic view of signaling pathways that lead to actin organization at focal adhesions. (A) At the initial stage of adhesion formation,

integrins or other unidentified receptors bind to components of the ECM (grey), leading to clustering of receptors into PtdIns(4,5)  -enrichedP 2

areas of plasma membrane. (B) In early spreading adhesions at the cell periphery, the Arp2/3 complex and WASP are targeted to adhesions by

FAK. Blue arrows represent the spatiotemporal sequence of structure assembly. Pink arrows indicate protein recruitment. (C)

Autophosphorylation of FAK at Tyr397 destabilizes the Arp2/3-WASP-FAK complex. Talin is recruited to adhesions, allowing integrin-ECM

linkages to be functionally coupled to actomyosin; this enables actomyosin contractility to affect adhesion reinforcement and subsequent

maturation. Actin filaments can be crosslinked by -actinin. Myosin II incorporates into the -actinin-crosslinked actin-filament bundles. (D)α α
The collective dynamics of focal adhesions can be imaged by the actin-stress-fiber-mediated connection of focal adhesions. Connections can

be observed between focal adhesions at the front of the cell with sliding trailing adhesions at the rear of the cell.
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Fig. 2
Schematic view of signaling pathways that lead to actin organization at invadopodia or podosomes. (A) At the initial stage of adhesion

formation, integrins or other unidentified receptors bind to components of the ECM (grey), leading to clustering of receptors into PtdIns(4,5)P

-enriched areas of plasma membrane. (B) Recruitment of Src to adhesion sites leads to phosphorylation of several proteins such as cortactin,2

WASP, FAK and regulators of small GTPases. Continuous actin nucleation relies on the continuous and strong activation of the Arp2/3

complex at the membrane through the synergistic action of cortactin and WASP-family proteins. (C) DRF/mDia1 elongates actin filaments

into columnar structures from the branched actin network that was previously induced by N-WASP, the Arp2/3 complex and cortactin. (D)

Podosomes or invadopodia are mechanically connected through a network of radial actin filaments that lie parallel to the substratum.
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Fig. 3
Three-dimensional (3D) reconstruction of F-actin structure in a BHKRSV cell. (A) A 3D reconstruction was derived by combining images

from confocal planes viewed from the side of the basal (adherent) face. F-actin staining was carried out after fixation in 4  paraformaldehyde%
with TRITCphalloidin. 3D reconstruction and rendering of the actin cytoskeleton was carried out through EDIT3D software, using grey-level

images of each confocal -stack (developed by Yves Usson and Franck Parazza, UMR CNRS 5525, Grenoble, France). Actin stress fibers arez

indicated by arrowheads, and the collective organization of podosomes and invadopodia by arrows. (B) A color scale was added, purely to

indicate the relative position of the -plane. The most basal plane was colored blue. Scale bars: 5 m.z μ
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Fig. 4
Actin dynamics in stress fibers and invadopodia rosettes in mouse embryonic fibroblasts transformed with Src. (A) Recovery of GFP-actin

after photobleaching (green rectangles) is faster in invadopodial rosettes than in stress fibers. Images were extracted from a time series in

which mouse embryonic fibroblasts expressing Src and GFP-actin were shown to form both invadopodial rosettes and stress fibers. Imaging

and photobleaching conditions were exactly the same in both conditions. (B) Analysis of normalized fluorescence intensity shows that the net

flux of actin, which is determined by the tangent at the origin of the recovery curve (black arrows), is faster in podosomes than in stress fibers.

The plateau of the recovery curve does not reach the same level as before photobleaching, allowing the determination of the immobile fraction

in each structure. From this analysis, it seems that stress fibers are composed mostly of poorly dynamic F-actin.
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Fig. 5
Visualization of actin structure and paxillin in mRFP-actin-transfected BHK-RSV cells. (A, B) Rigid (A) and flexible (B) substrates were

coated with vitronectin. Staining for paxillin (green) was carried out after fixation in 4  paraformaldehyde with anti-paxillin antibodies. 3D%
reconstruction (right-most images) was carried out using EDIT3D software as in . (A) On the left is an image from a single confocalFig. 3

plane of a BHK-RSV cell adherent on glass (rigid) substrate. The right image shows a 3D reconstruction. Arrowheads indicate focal

adhesions. (B) Left and middle panels show images from two confocal planes of a BHK-RSV cell adherent on hydrogel made of

polyacrylamide (flexible) substrate. Confocal planes were from the top of the gel (left) and inside the gel (middle). Note that focal adhesions

(arrowheads) are smaller in size on the flexible substrate (B) than on the rigid one (A). (B) The 3D reconstruction (right) shows that collective

organizations of podosomes or invadopodia (arrow) seem to push  the gel, hauling the whole cell body.‘ ’


