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Abstract

Pharmacogenetics is now widely investigated and health institutions acknowl-

edge its place in clinical pharmacokinetics. Our objective is to assess through

a simulation study, the impact of design on the statistical performances of

three different tests used for analysis of pharmacogenetic information with

nonlinear mixed effects models: i) an ANOVA to test the relationship be-

tween the empirical Bayes estimates of the model parameter of interest and

the genetic covariate, ii) a global Wald test to assess whether estimates for

the gene effect are significant, and iii) a likelihood ratio test (LRT) between

the model with and without the genetic covariate. We use the stochastic EM

algorithm (SAEM) implemented in MONOLIX 2.1 software. The simulation

setting is inspired from a real pharmacokinetic study. We investigate four

designs with N the number of subjects and n the number of samples per sub-

ject: i) N=40/n=4, similar to the original study, ii) N=80/n=2 sorted in 4

groups, a design optimized using the PFIM software, iii) a combined design,

N=20/n=4 plus N=80 with only a trough concentration and iv) N=200/n=4,

to approach asymptotic conditions. We find that the ANOVA has a correct

type I error estimate regardless of design, however the sparser design was

optimized. The type I error of the Wald test and LRT are moderatly in-
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flated in the designs far from the asymptotic (<10%). For each design, the

corrected power is analogous for the three tests. Among the three designs

with a total of 160 observations, the design N=80/n=2 optimized with PFIM

provides both the lowest standard error on the effect coefficients and the best

power for the Wald test and the LRT while a high shrinkage decreases the

power of the ANOVA. In conclusion, a correction method should be used

for model-based tests in pharmacogenetic studies with reduced sample size

and/or sparse sampling and, for the same amount of samples, some designs

have better power than others.

Keywords

Pharmacogenetics; Pharmacokinetics; Nonlinear mixed effects models; Test;

Design; Single nucleotid polymorphism; SAEM
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Introduction

Pharmacogenetics (PG) studies the influence of variations in DNA sequence

on drug absorption, disposition and effects (1, 2). This area is now widely

investigated and the European Medicines Agency (EMEA) has published in

2007 a reflection paper acknowledging the place of PG in clinical pharma-

cokinetics (PK) (3).

Pharmacogenetic data are mainly studied using non-compartmental meth-

ods followed by a one-way analysis of variance (ANOVA) on the individual

parameters of interest (4). More sophisticated approaches have also been

used such as NonLinear Mixed Effects Models (NLMEM). These models al-

low to integrate the knowledge accumulated on the drug PK, and they have

the advantage of being applicable with less samples per patient.

Various methods can be used to include pharmacogenetic information in

NLMEM. Preliminary screening is usually performed using ANOVA on the

individual parameters estimates (5) followed by a stepwise model building

approach with the likelihood ratio test (LRT) (6). As an alternative ap-

proach, a global Wald test can assess whether estimates for the genetic effect

are significant (7).

In a previous work (8), we performed a simulation study to assess the
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statistical properties of these different approaches. We used the estimation

algorithms FO and FOCE interaction (FOCE-I) implemented in the NON-

MEM software version V (9). In the present work, to avoid the linearisa-

tion step we use the Stochastic EM algorithm (SAEM), implemented in the

MONOLIX software version 2.1 (10) for the analysis of the simulated data

sets with the same three tests. SAEM computes exact maximum likelihood

estimates of the model parameters using a stochastic version of the EM al-

gorithm including a MCMC procedure.

In (8), we have simulated a design of 40 subjects inspired from a real

pharmacokinetic substudy on indinavir performed during the COPHAR2-

ANRS 111 trial in HIV patients (11, 12). We have also simulated the same

sampling schedule but with a larger sample size of 200 subjects to be closer

to the asymptotic properties of the test. Whereas the estimated type I error

of the ANOVA was found to be close to 5% whatever the design, those of

the Wald test and the LRT showed for the FOCE-I algorithm a slight and

significant increase, respectively, for the first design with 40 subjects. In the

present paper, we aim to further investigate the impact of the design on the

performances of these three tests in terms of type I error and power. The

EMEA has stated that pharmacogenetic studies should include a satisfactory
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number of patients of each geno- or phenotype in order to obtain valid corre-

lation data (3). Therefore, with the SAEM algorithm, we also consider two

other designs with a larger number of subjects but different blood sampling

strategies, as extensive sampling on each patient would no longer be practi-

cal. One of these designs was optimized using the PFIM interface software

version 2.1 (13, 14) and another includes a group with only trough concen-

trations to explore a design that is easily implemented in practice. These two

designs involve the same total number of observations as the original design

with 40 subjects, to allow proper comparisons between designs.

In the first section of the article, we introduce the model as well as the

notations, the three tests under study and the four designs. Then, we de-

scribe the simulation study and how we perform the evaluation. Next the

main results of the simulation are exposed. Finally the study results and

perspectives are discussed.
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Methods

Model and notations

In this work, we consider the effect on a pharmacokinetic parameter of one

biallelic Single Nucleotid Polymorphism (SNP), i.e. the existence of 2 vari-

ants for a base at a given locus on the gene. We denote, without loss of

generality, C the wild allele and T the mutant, leading to k=3 possible geno-

types (CC, CT and TT). Let yi,j represents the concentration at time ti,j of

a subject i=1,..,N with genotype Gi at measurement j=1,..,n such as:

yi,j = f (ti,j, Gi, θi) + ǫi,j (1)

with θi the subject specific parameters of the nonlinear model function f

and ǫi,j the residual error normally distributed with zero mean and an het-

eroscedastic variance σ2
i,j, with:

σ2
i,j = σ2(a + bf (ti,j, Gi, θi))

c (2)

This combined error model (additive and proportional) is commonly used in

population pharmacokinetics with c fixed to 2. For identifiability purpose
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σ2 is set to one. We assume that the genetic polymorphism Gi for subject i

affects θp, the pth component of the vector θ through the following relation-

ship:

θp,i = µpe
βGieηp,i (3)

where µp is the population mean for parameter θp and ηp,i follows a Gaussian

distribution with zero mean and variance ω2
p the pth diagonal element of

matrix Ω. βGi
is the effect coefficient corresponding to the genotype of subject

i, we assume βGi
= 0, β1 or β2 for Gi = CC, CT or TT, taking CC as the

reference group.

In the following, we note Mbase the model without a gene effect, where

{β1 = β2 = 0} i.e. {CC = CT = TT}, and Mmult the model with a multi-

plicative effect on the population mean of the parameter of interest, where

{β1 6= β2 6= 0} i.e. {CC 6= CT 6= TT}.

As in NLMEM the integral in the likelihood has no analytical form, spe-

cific algorithms are needed to estimate the model parameters and their stan-

dard error (SE) (15). Since the beginning of the 21st century, EM-like algo-

rithms appear as a potent alternative to the linearisation used in the earlier

approaches. The SAEM algorithm is a stochastic version of EM algorithm

where the individual parameter estimates are considered as the missing val-
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ues (16). The estimation step is decomposed in the simulation of the indi-

vidual parameters using a Monte Carlo Markov Chain (MCMC) approach

followed by the computation of stochastic approximation for some sufficient

statistics of the model. The subsequent maximisation step of the sufficient

statistics provides an update of the estimates. The estimation variance ma-

trix is deduced from the NLMEM after linearisation of the function f around

the conditional expectation of the individual parameters, the gradient of f

being numerically computed.

The loglikelihood is obtained through importance sampling once param-

eter estimation is achieved, as follows. For each subject, s=1,...,T samples

of individual parameters are generated from a Gaussian approximation of

the subject’s individual posterior distribution. These T samples are used

to derive T realizations of the loglikelihood, each weighted by the probabil-

ity of the corresponding sample. The importance sampling estimator is the

empirical average over the weighted T realizations. The variability of this

approximation decreases when increasing the number of samples T (17).
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Tests

Analysis of variance (ANOVA)

The data are analysed with the model not including the gene effect, Mbase.

We used the conditional expectation (mean) of the individual parameters

provided by the MCMC procedure in SAEM as the empirical Bayes estimates

(EBE). Then, the equality of the mean between the three genotypes is tested

with an analysis of variance. The statistic is compared to the critical value

of a Fisher distribution (F-distribution) with 3-1=2 numerator degrees of

freedom and N-3 denominator degrees of freedom, 3 being the number of

genotypes to consider.

In our model, the log-parameters are normally distributed and the natural

parameters, which have a biological meaning, are log-normally distributed.

We apply the ANOVA on both the log-parameters and the natural parame-

ters, but it is usually considered that ANOVA is rather insensitive to depar-

ture from the normal assumption as long as the observations have the same

non-normal parent distribution with possibly different means (18).
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Global Wald test

The data are analysed with the model including the gene effect, Mmult. The

significance of the gene effect coefficient is assessed by the following statistic :

W =
(

β1

β2

)T

V −1
(

β1

β2

)

(4)

where V is the block for β1 and β2 of the estimation variance matrix. The

statistic W is compared to the critical value of a χ2 with 2 degrees of freedom.

Likelihood ratio test (LRT)

The data are analysed with Mbase and Mmult. These two models are nested,

thus the LRT can be used. The test statistic −2×(Lbase−Lmult), where Lbase

and Lmult are the loglikelihood of respectively Mbase and Mmult, is compared

to the critical value of a χ2 with 2 degrees of freedom, corresponding to the

difference in the number of population parameters between the two models.

Study designs

We simulated data according to four designs. The first three have the same

total number of observations and represent different trade-offs between the
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sample size N and the number of samples per patient n. The fourth design

contains more subjects with many observations per patient to be closer to

asymptotic conditions. Fig. 1 illustrates the differences between the four

designs regarding the samples allocation in time and the sampling size. The

graph is composed of four rows (one per design) on top of the pharmacokinetic

profile. Within each design, the sampling times of a group are represented

as linked circles of size proportional to the number of subjects in the group

with this sampling time.

1) N=40/n=4

The first design is inspired from a real world example, the PK sub-study

from the group of subjects receiving indinavir boosted with ritonavir b.i.d.

in the COPHAR 2-ANRS 111 study, a multicentre non-comparative pilot

trial of early therapeutic drug monitoring in HIV positive patients näıve

of treatment (11, 12). This design includes 40 subjects with 4 samples at

time 1, 3, 6 and 12 hours after the drug intake, which leads to a total of 160

observations. At the time of the study, these sampling times were empirically

determined.
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2) N=80/n=2

In the second design, we require 80 subjects with two samples per patient and

sampling times within the set of the original design. We used the Federov-

Wynn algorithm that maximizes the determinant of the Fisher information

matrix within a finite set of possible designs and which is implemented in the

PFIM Interface 2.1 software (13). We had to set the regression function f , the

error model and a priori values of the population parameters (see Simulation

study) as well as an initial guess for the population design. Regarding these

constraints, the optimal design consists of 80 subjects sorted in two groups of

30 and two groups of 10 with two samples per subject respectively scheduled

at 1 and 3 hours, 6 and 12 hours, 3 and 12 hours and 1 and 12 hours.

This configuration provides a rather sparse design keeping a total number of

observations of 160.

3) N=100/n=4,1

Third, we consider a pragmatic design with 20 subjects with the original

set of sampling times (1, 3, 6 and 12 hours) and 80 subjects with only a

trough concentration (12 hours) potentially collected in clinical routine. This

combined design also contains a total number of observations of 160.
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4) N=200/n=4

The last design includes 200 subjects having the original set of sampling

times.

Simulation study

The model and parameters used for the pharmacokinetic settings come from a

preliminary analysis without covariates of the indinavir data described above

using the FO algorithm implemented in NONMEM (see details in (8)). The

concentrations are simulated using a one compartment model at steady state

with first order absorption (ka), first order elimination (k), a diagonal matrix

for the random effects and a proportional error model (a fixed to 0). The dose

is set to 400 mg. The fixed effects are ka=1.4 h−1, the apparent volume of

distribution V/F=102 L and k=0.2 h−1, this parameterization was chosen to

have only one parameter linked to the bioavailability, F. The between subjects

variabilities on these parameters are respectively set to 113%, 41.3% and

26.4%. The coefficient of variation for the residual error is set to 20% (a=0,

b=0.2). The first value in a series of simulated concentration below the limit

of quantification (LOQ=0.02 mg/L, according to the indinavir measurement

technique in the COPHAR2 trial) is set to LOQ/2 and the remaining values
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are discarded (19).

The genetic framework is inspired from two SNPs of the ABCB1 gene cod-

ing for the P-glycoprotein, found to have an influence on the PK of protease

inhibitors (20, 21). We simulate a diplotype of SNP1 and SNP2 with C and

G respectively the wild-type allele for the 2 exons and T the mutant allele.

Their distribution mimic that of exon 26 and exon 21 of the ABCB1 gene as

reported by Sakaeda et al. (22) yielding for SNP1 unbalanced frequencies of

24%, 48% and 28% respectively for CC, CT and TT genotypes. As in the

intestine, the P-glycoprotein restricts drug entry into the body we consider

an effect on the drug bioavailability through the volume of distribution V/F,

so that :

V/Fi = V/FeβG1ieδG2ieηV/F,i (5)

where G1i denotes the genotype for SNP1 and G2i the genotype for SNP2,

βG1i
is 0, β1 or β2 if G1i=CC, CT or TT and δG2i

is 0, δ1 or δ2 if G2i=GG,

GT or TT. Under the null hypothesis both eβG1i and eδG2i =1, 1, 1, whereas

under the alternative hypothesis, we set a genetic model of co-dominance

and multiplicative effects: eβG1i =1, 1.2, 1.6 and eδG2i =1, 1.1, 1.3. These

values were chosen to be consistent with results found in the literature for

ABCB1 polymorphisms on drugs disposition (23) and provide clinically rel-
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evant effect, with V/F and CL/F (=k×V/F ) increasing from 105.4 to 200.5

L and 21.1 to 40.1 L/h respectively between wild and mutant homozygotes

for SNP1. In the following, tests focus on the effect of SNP1 even if we

simulated diplotypes.

For the three designs 1), 2) and 3) with the same total number of ob-

servations, 1000 data sets are simulated both under the null (H0) and the

alternative hypothesis (H1). The design 4) with N=200/n=4 is simulated

only under H0, providing evaluation of the type I error on 1000 data sets

in conditions close to asymptotic to verify the convergence of the estimation

algorithm. The technical description of the simulations is given in (8). Fig.

2 represents spaghetti plots of simulated concentrations versus time for the

three designs with a total number of observations of 160, for one simulated

data set respectively under H0 and under H1. According to their genotype

for SNP1=CC, CT or TT, subjects curves are represented in plain, dashed

or dotted lines, respectively, as well as the 12 hours sample with circles,

triangles or plus for subjects of the N=100/n=4,1 design. It is not readily

apparent within each column which of the two data sets includes the gene

effect.
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Evaluation

In this work we use the SAEM algorithm implemented in the MONOLIX

software version 2.1 (10). The number of iterations during the two estimation

phases and the number of Markov chains are set to provide fine convergence

on one representative data set for each design under both hypotheses. Other

parameters of the estimation algorithm are left to the default values.

On a given data set, the same seed is used to estimate parameters from

Mbase and Mmult but two different seeds are used for the importance sam-

pling in the computation of the likelihood. A preliminary work was also

performed to set the number of samples T of this importance sampling for

each design. We considered 6 different values of T = 1000, 3000, 5000, 7000,

10000, 15000, 300000. For each value of T, the log-likelihood was estimated

25 times on one representative data set with both Mbase and Mmult and the

corresponding LRT was computed. The 25 estimations allowed us to dis-

card any bias related to the choice of a seed as we used 5 different seeds for

the random number generator at the estimation step and 5 different seeds

for the random number generator at the importance sampling step. In the

rest of the study, the number of samples T was set to a value that provides

both a relative standard deviation on the 25 LRT estimates below 15% and
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moderate computing times.

Our work aims to evaluate the tests for the different designs dealing with

statistical significance issues, which not necessarily imply clinical relevance

(24). First, the three tests are used to detect an effect of the SNP1 (the effect

of SNP2 is not included in these analyses) on the bioavailability through

the apparent volume of distribution parameter (V/F) in the 1000 data sets

simulated under H0 for the four designs. Then, the type I error of each test

is computed as the percentage of data sets where the corresponding test was

significant. Based on the central limit theorem and with 5% the expectation

for this percentage under H0 the predicted interval around the type I error

estimate is [0.05-/+1.96×
√

0.05×(1−0.05))
1000

]=[3.6 ; 6.4]. To ensure a type I error

of 5%, we define a correction threshold as the 5th percentile of the distribution

of the p-values of the test under H0.

In a second step, for the designs N=40/n=4, N=80/n=2 and N=100/n=4,1

the tests are performed using the 1000 data sets simulated under H1. Then,

the power is defined as the percentage of data sets where the corresponding

test was significant. We use the corrected threshold to compute the cor-

rected powers, to allow comparison of the different tests taking into account

the type I error different from 5%. In a third step, we have computed the
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data sets simulated under H1 where the test was significant and at least one

of the gene effect coefficient estimates (the absolute value) was clinically rel-

evant i.e. greater than 20%. This calculation provided us with an estimate

of each test ability to detect a clinically relevant effect on V/F (and thus

CL/F)(24). For the ANOVA only, one data set under H0 and two data sets

under H1 where the number of subjects with a given SNP1 was less than 2

were discarded from the analysis.

The ANOVA is based on the EBE for the parameter of interest, here

the volume of distribution V/F . To assess the quality of the individual

estimates from Mbase, we compute the extent of the shrinkage on V/F for

the four designs. A measure of the shrinkage of empirical Bayes estimates has

been proposed by Savic et al. as 1 minus the ratio of the empirical standard

deviation of η over the estimated standard deviation of the corresponding

random effect (25). Shrinkage estimators in literature are computed with a

ratio of variances shrinking the observation toward the common mean (26,

27). By analogy with these shrinkage estimators, in the present work, we

define shrinkage on V/F as:

ShηV/F
= 1 −

var
(

ηV/F ,i

)

ω2
V/F

(6)
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where var
(

ηV/F ,i

)

is the empirical variance of η for the volume of distribu-

tion and ω2
V/F is the estimated variance of the corresponding random effect.

A shrinkage, computed on standard deviation, over 30% is considered to po-

tentially impact on covariates testing according to (25), therefore here we

consider a threshold of 50%.

We also compare the empirical SE and the distribution of the SE obtained

with SAEM for β1 and β2 for the different designs under both hypotheses.

The empirical SE is defined as the sample estimate of the standard deviation

from the β1, β2 estimates respectively on the 1000 simulated data sets.

To adress point estimate and bias and how it may impact on the tests

type I error and power, we compute the relative bias and relative root mean

square error (RMSE) for V/F, ω2
V/F and the residual error parameter b from

Mbase on the data sets simulated under H0 and V/F, β1, β2, ω2
V/F and b from

Mmult on the data sets simulated under H1. In addition, we have computed

the relative bias and relative RMSE on the estimates obtained with FOCE-I

in (8) on the N=40/n=4 and N=200/n=4 designs.
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Results

The number of samples for the importance sampling, T, was set to 10000

and 15000 for the designs N=40/n=4 and N=80/n=2 and 20000 for both

designs N=100/n=4,1 and N=200/n=4. SAEM achieves convergence on all

data sets simulated with the four designs and each hypothesis.

Table I reports the estimated type I error for the three tests performed

on the four designs. ANOVA has a correct type I error estimate for all

designs with a value for the design at N=80/n=2 although close to the upper

boundary. The results are analogous whether we consider the log-parameters

or the natural parameters of the apparent volume of distribution (V/F),

5.5% and 5.3% respectively on the original design. The Wald test and the

LRT, which are asymptotic tests, have significantly increased type I error

in the three designs with a total number of observations equal to 160. Yet,

the inflation remains moderate as all the estimates are below 10%. On the

N=200/n=4 design, the Wald test and the LRT type I error returns to the

nominal level of 5%.

The estimates for the power and the corrected power are given in Table

II, for the three designs N=40/n=4, N=80/n=2 and N=100/n=4,1. Before

the correction, the Wald test and the LRT appeared wrongly more powerful

21



than ANOVA. The ability to detect a clinically relevant effect is lower than

the power to detect a statistically significant effect for the ANOVA, but

identical for the Wald test and the LRT. In the following, we consider only

the corrected power for comparisons across tests and designs as it accounts

for the type I error inflation (or reduction for the ANOVA). For each design,

the corrected power is rather analogous for the three tests within each design.

For the three tests, the corrected power is greater for the design optimized

using PFIM, with more subjects and less sample per subjects. In classical

analysis increasing N improves the power and this also applies in longitudinal

data analysis up to a point. Not only must N increase, but n also should

be considered as well as the sampling schedule. This trade-off was achieved

through optimal design and led to a satisfactory sparse design that even

ANOVA, based on EBE, can handle.

Fig. 3a displays the shrinkage for the apparent volume of distribution

estimated using Mbase on data sets simulated under H0 and H1 for the four

designs under study. In Fig. 3b and 3c, the type I error of the ANOVA

on the log-parameters is plotted versus the median shrinkage for V/F under

H0 and the power of ANOVA on the log-parameters is plotted versus the

median shrinkage for V/F under H1. The median shrinkage is lower than
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40% for the design N=200/n=4 under H0 and for the designs N=40/n=4

and N=80/n=2 under both hypotheses. Only the design with N=100/n=4,1

subjects shows shrinkage with a potential impact on covariates testing, i.e.

greater than 50%. This high value of shrinkage is essentially due to the 80

subjects with one sample (median value of shrinkage around 75% for these

subjects versus 21% for the other subjects with 4 samples in this design).

Under the alternative hypothesis, we simulated a mixture of normals with

similar variance but three different means for the individual parameters of

V/F. Under both hypothesis, the shrinkage is computed using the estimates

from Mbase. Under H1, both the empirical variance of ηV/F,i and the ω2
V/F

estimates are larger compared to the estimates under H0. However, the

empirical variance of ηV/F,i increased more than ω2
V/F , thus the shrinkage

estimates appeared to be consistently lower under H1. For all designs under

study, the type I error estimates of ANOVA remain within the prediction

interval around 5% whereas the shrinkage estimates range from 19 to 64%.

We do not observe a clear relationship between the power of ANOVA and

the shrinkage on V/F, but the power decreases between the sparse and the

combined design. Indeed, the ANOVA obtains a corrected power of 58%

when performed only on the 80 subjects with one sample from the combined
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design, while on the optimized design with the same N but n=2 its power

was of 92.5%.

The relative Bias and RMSE for the estimated parameters are displayed

in table III. SAEM and FOCE-I obtained unbiased estimates on both designs

and similar relative RMSE except for V/F on the N=200/n=4 design where

the expected improvement was observed only with SAEM. As the bias were

null the discrepancies in RMSE across the designs arised only from the preci-

sion of estimation and the SE predicted by PFIM matched the lowest RMSE.

Regarding the precision of estimation on β1 and β2 under both hypotheses

for the designs under study in Fig. 4a, the SAEM algorithm shows good sta-

tistical properties: as expected, lower SE are observed for the design closer

to asymptotic and the SE obtained with SAEM are close to their empirical

value, albeit lightly under-estimated. Among the three designs with a total

of 160 observations, the design N=80/n=2 provided the best performances;

i.e., its empirical SE for estimates of the gene effect coefficients are the low-

est. In Fig. 4b, the type I error of the Wald test is plotted versus the ratio

of the median SE over the empirical SE for β2 estimated under H0. The

under-estimation of the SE appears to be related to the type I error inflation

of the Wald test as the three designs with a ratio below 0.98 have type I er-
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ror estimates significantly above the nominal level. In Fig. 4c, the corrected

power of the Wald test is plotted versus the empirical SE for β2 estimated

under H1. The SE appears to be related to the power of the Wald test as

it decreases as the SE increases with the highest power for the N=80/n=2

design.

Fig. 5 represents the density function of a χ2 with 2 degrees of free-

dom along with a focus on the values above 5.99 (the theoretical threshold)

overlaid on a histogram of the LRT statistics obtained with the four designs

simulated under H0. For the first three designs, the density curve is slightly

shifted to the left compared to the histogram obtained under H0 while for

the N=200/n=4 design the superposition is complete.

Here, the corrected power of the Wald test is about 70% for the design

N=40/n=4. In our previous work, we used the FOCE-I algorithm imple-

mented in NONMEM version V (9) and we observed, for this design, a much

lower corrected power of the Wald test (25%). Fig. 6 displays, the standard

errors of the gene effect coefficients β1 (left) and β2 (right) versus their es-

timates when using FOCE-I (top) or SAEM (bottom). With the FOCE-I

algorithm, we observe a correlation between the estimate of the gene effect

coefficients and its estimation error, that we do not observe with the SAEM
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algorithm. Such relationship leads to decreased values of the Wald statistic

and therefore reduces the power to detect a gene effect.

Discussion

In the present study, we describe the impact of four designs on the perfor-

mances of three tests for a pharmacogenetic effect in NLMEM using an exact

maximum likelihood approach, the SAEM algorithm.

This work follows a previous study (8) which evaluated those three tests

on two designs (N=40/n=4 and N=200/n=4) using the estimation algo-

rithms FO and FOCE-I in NONMEM version V (9). Type I error and power

of Table 1 and 2 in (8) can be compared to those in Table I and II of the

present paper respectively for the designs N=40/n=4 and N=200/n=4. The

ANOVA in (8) was performed on the natural parameters. That simulation

study has shown poor performances with the FO algorithm. The results

obtained here with SAEM, in terms of type I error and power are rather

similar to those obtained previously using FOCE-I, except for the Wald test.

Indeed, with FOCE-I the type I error of the Wald test was still inflated on

the design N=200/n=4 and the power was much lower. We hypothesised
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that the reduced power of the Wald approach could result partly from a

poor estimation of the estimation variance matrix of the fixed effects due to

the log-likelihood function linearisation, as we observed with FOCE-I a high

correlation between the estimate and its estimation error. We did not meet

this problem with SAEM. Besides, both algorithms obtained unbiased esti-

mates with a similar improvement in relative RMSE on design N=200/n=4

except for V/F with FOCE-I. Moreover, FOCE-I had convergence problems

for several data sets or did not provide the estimation variance matrix on

design N=40/n=4 under H1, while SAEM achieved convergence on all data

sets whatever the design with the estimation variance matrix always pro-

vided. In the evaluation of model selection strategies in (8), we underlined

the very poor performance of the Akaike criteria (AIC). This finding remains

with SAEM (data not shown).

Other studies have evaluated by simulation the performance of tests for

discrete covariate on continuous responses using NLMEM with various de-

signs and estimation methods. The articles reporting these studies are sum-

marized and sorted by year of publication in Table IV. Linearization based

algorithms were mostly used with the exception of two recent works also using

SAEM (17, 28). Furthermore, categorical covariates were always simulated
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in two classes, apart from one study where it was up to three classes (29)

and one study with continous covariate (30).

In the present study, the ANOVA obtains the best performances with

respect to type I error as no inflation is observed on the four designs, so

there is no need in practice to correct the threshold for the test based on the

EBE. This finding is in accordance with the results from Bonate et al. (31).

Considering t-tests on individual estimates, Comets et al. observed no infla-

tion either (32). Panhard et al. (33) obtained inflated type I error for t-tests

for small n, however they studied cross-over trials where the model is fitted

for each treatment separately and then the EBE are derived. With small n,

the individual parameters estimates are thus shrunk toward the mean within

each group, artificially increasing the statistic of the test. Analysing the

whole data set, we thought that the ANOVA would be conservative in pres-

ence of sparse data, because shrinkage leads to regression of the individual

parameters estimates towards the mean. Indeed, this phenomenon appears

likely to reduce the test ability to discriminate means between the genotypes.

In our study, the shrinkage may not have been strong enough as the sparse

design was an optimal design and the one with more shrinkage had some

subjects with rich design. Another advantage of ANOVA is that it requires
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only the model with no covariate to converge. It is noteworthy though that

with unequal sample size within groups ANOVA is sensitive to heterogeneity

of variances (34), this feature has not been studied in this simulation setting.

We explain the type I error inflation observed for the Wald test and

the LRT by the designs with a total of 160 observations being far from the

asymptotic. This result differ from those of Panhard et al. (33), Gobburu et

al. (30) and Wählby et al. (29) which had similar trade-off in N an n given

the number of model parameters with less that 160 observations (Table III)

as well as similar interindividual variability for the parameter of interest

(≈30%) and residual error variability (20-10%). Besides, Samson et al. (17)

and Panhard et al. (28) observed no inflation of the type I error for these tests

using SAEM for a covariate simulated in two classes with equivalent group

size and at least n=6. We hypothese therefore that the departure from the

asymptotic found here is related to the covariate distribution, with only 11

mutant homozygotes in average for the design N=40/n=4. Distribution of

genetic covariate (from a biallelic SNP with C and T, the wild and the mutant

allele) is indeed very specific; the Hardy-Weinberg proportions (35) lead to

proportions of 1/4, 1/2, 1/4 for CC, CT, TT being the less unbalanced of

the possible distributions. Thus, we recommend to correct the type I error
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of asymptotic tests for genetic polymorphism with unbalanced genotypes

including small number of subjects. Furthermore, such recommendation is

relevant for any other covariate with several classes and very unbalanced

distribution, such as disease status or tumor classes.

For the Wald test, we relate this inflation to the under-estimation of the

SE of the gene effect coefficients. Indeed, when we performed the Wald test

using the empirical SE rather than the estimated SE, we observed that the

type I error was then no longer significantly different from the nominal level

for all designs. Panhard et al. (36) observe this relationship with FOCE-I

as well and show that modelling interoccasion variability in cross-over tri-

als leads to a better estimation of the SE of the covariate effect coefficients

providing type I errors of the Wald test and the LRT close to the nominal

level. Here, the SE are obtained by MONOLIX after the estimation with

SAEM using a linearization of the model around the conditional expecta-

tion of the individual parameters, yet Dartois et al. (37) have also observed

under-estimated SE when using the computation approach based on Louis’

principle (38). With SAEM, as expected, the inflation did not worsen when

increasing the number of samples per subjects as reported for FO, FOCE-I

in NONMEM (39, 29, 31, 30, 32) or FOCE-I in nlme (40, 33, 36). This slight
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inflation can be handled using randomisation tests (41), computing the true

distribution of the statistic for the data set under study and deriving a P-

value. Approximate tests could also be used with degrees of freedom derived

from the information in the design i.e. accounting for k, n and N (42), al-

though there is no real consensus on how to do it for nonlinear mixed effect

models. An additional advantage of the Wald test is that only the model

including the covariate is required and, assuming symmetric confidence in-

tervals, it is not a problem to test if the gene effect coefficients equal 0.

To assess the power, we have simulated a 60% increase in V/F which

leads to a relevant adjustement in the dose in the TT genotypes for SNP1; a

40% increase. There was no or slight changes in the proportion of data sets

simulated under H1 where the three tests were significant when considering

for a clinically relevant genetic effect, with the exception of the ANOVA on

the design N=100/n=4,1. We show the impact of the shrinkage due to the

subjects with only one sample in the design N=100/n=4,1 on the ANOVA

performance. In our simulation setting, the reduction in the test ability to

discriminate means between the genotypes is more pronounced under the

alternative hypothesis. For the N=40/n=4 design the median shrinkage was

14.2% for V/F (Fig. 3) and 30.5% and 36.2% for ka and k respectively, thus
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the shrinkage should not have impacted on the power of the ANOVA had

the effect been assessed on those parameters. Besides, the shrinkage was also

found to be lower under the alternative hypothesis, further research on this

trend would be interesting. For the Wald test, we show a direct relationship

between the design, the precision of estimation for the covariate effect and

the power. Indeed the design N=80/n=2 optimised using PFIM has both the

lowest SE on the gene effect coefficients (β1 and β2) and the highest power.

Our previous results with FOCE-I also underline that unbiased SE estimates

are required to perform the Wald test. We should note however that we used

the population model without covariate for design optimisation. Our results

are in accordance with the work performed by Retout et al. (14). Indeed, they

studied design optimization to improve the power of the Wald test using a

model including the covariate and also found that the power increases when

the number of subjects increases and the number of samples per subject

decreases. For this work, Retout et al. developped the Fisher information

matrix for population model with covariate. But this developpement has

not yet been implemented in the available version of the PFIM software.

One extension of the present work would be to investigate other criteria

such as DS-optimality criterion to design pharmacogenetic studies specifically
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focusing on gene effect coefficients.

In the choice of the two additional designs compared to (8) used for this

simulation study, we account for practical considerations. Basically, we in-

creased the number of subjects to fit the requirements of the EMEA (3).

However, increasing the number of subjects can lead to practical issues in

terms of blood sampling, as extensive sampling can not be performed in all

subjects for practical reasons. Therefore, we consider two designs. First, an

exploratory study where we use PFIM to define different groups with two

samples per subjects within a predefined set of sampling times. This ap-

proach could be used in studies with pharmacogenetics as primary endpoint

when the population pharmacokinetic model is already known; for instance,

studies on pharmacokinetic evaluation of a chemical entity when the genetic

variation is likely to translate into important differences in the systemic expo-

sure. Second, a more practical study in which we use trough concentrations

collected during routine monitoring as well as a small group of subjects with

more extensive sampling. The latter could be a phase III or IV clinical study

where genotyping will support recommendations for use in genetic subpopu-

lations (43).

In this work, we assume that the gene effect only acts on a single param-
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eter, the bioavailability, so we use k (the elimination constant rate) rather

than CL/F in order to have only one parameter related to F, the oral vol-

ume of distribution V/F. However, population models are more commonly

parameterized using CL/F, thus another perspective of this work would be to

consider a gene effect on several parameters : CL/F and V/F. Besides, more

than one exon control the complex pathway leading from DNA to metabolic

activity. Thus, it would be interesting to investigate how model-based tests

handle haplotypes(44) which lead to a larger number of unbalanced classes.

Here, we could hardly consider haplotypes due to the small sample sizes.

Finally, investigating genes not on the same chromosome will also raise the

issue of multiple covariates.

In conclusion, the ANOVA can be applied easily and performs satisfacto-

rily as long as the design provides low shrinkage on the parameter of interest.

Whereas for asymptotic tests, a correction has to be performed on designs

with unbalanced genotypes including small number of subjects. Design opti-

mization algorithms for models with covariate are well suited and offer per-

spectives to handle pharmacogenetic studies but have still to be implemented

in the available softwares.
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Interface 2.1. UMR738, INSERM, Université Paris 7, Paris, France,
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15. GC Pillai, F Mentré F, and JL Steimer. Non-linear mixed effects model-

ing - from methodology and software development to driving implemen-

tation in drug development science. J. Pharmacokinet. Pharmacodyn.,

32:161–183, 2005.

16. B Deylon, M Lavielle, and E Moulines. Convergence of a stochastic

approximation version of EM algorithm. Ann. Stat., 27:94–128, 1999.

17. A Samson, M Lavielle, and F Mentré. The SAEM algorithm for group
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Table I. Type I error estimates (for 5% level test) on the N=40/n=4,

N=80/n=2, N=100/n=4,1 and N=200/n=4 designs for each of the three

tests using 1000 replicated data sets

N=40/n=4 N=80/n=2 N=100/n=4,1 N=200/n=4

ANOVA
Log-parameters 5.5 6.2 3.8 4.2

Natural parameters 5.3 6.4 4.3 5.0

Wald 8.9* 8.7* 8.4* 5.1

LRT 7.6* 7.8* 6.8* 5.9

*Outside the prediction interval for 5% = [3.6 − 6.4]
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Table II. Power estimates without and with (Powercorr) correction for

the type I error inflation under H0 on the N=40/n=4, N=80/n=2 and

N=100/n=4,1 designs for each of the three tests using 1000 replicated data

sets

N=40/n=4 N=80/n=2 N=100/n=4,1

Power Powercorr Power Powercorr Power Powercorr

ANOVA
Log-parameters 75.6 74.2 93.6 92.5 80.8 82.2

Natural parameters 71.1 70.9 93.4 91.5 78.3 79.5

Wald 81.8 73.0 95.5 92.5 85.7 81.8

LRT 78.6 73.3 94.6 92.2 82.9 79.7

46



Table III. Relative Bias and root mean square error (RMSE) in % evaluated

from 1000 simulated data sets with Mbase under H0 for the volume of distri-

bution (V/F), its interindividual variance (ω2
V/F ) and the residual error pa-

rameter (b) for the N=40/n=4, N=80/n=2, N=100/n=4,1 and N=200/n=4

designs and from 1000 simulated data sets with Mmult under H1 for V/F, β1,

β2, ω2
V/F and b for the N=40/n=4, N=80/n=2 and N=100/n=4,1 designs,

using estimates from SAEM and FOCE-I when available in (8)

Parameter
N=40/n=4 N=80/n=2 N=100/n=4,1 N=200/n=4

SAEM FOCE-I SAEM SAEM SAEM FOCE-I

Mbase under H0

Biais (%) V/F 0.23 2.9 0.04 0.62 0.08 1.4

ω2

V/F
-2.8 -0.6 0.2 -4.2 -0.8 0.7

b -0.3 -1.9 -3.8 -0.9 0.008 -1.8

RMSE (%) V/F 8.6 9.5 8.5 11.8 3.8 11.1

ωV/F 28.1 28.9 27.8 38.5 13.4 13.3

b 8.8 10.3 15.8 12.4 4.0 4.8

Mmult under H1

Biais (%) V/F 4.1 6.7 3.9 5.1

β1 -1.0 -0.8 -2.5 -1.4

β2 -1.0 -1.0 -1.8 -1.3

ωV/F -7.5 -5.2 -1.3 -7.1

b -0.6 -2.2 -3.5 -0.02

RMSE (%) V/F 17.9 19.2 15.0 19.9

β1 19.9 20.0 15.3 18.1

β2 21.7 21.7 16.5 21.3

ωV/F 29.7 29.6 26.7 39.1

b 9.22 10.1 16.8 13.0

With FOCE-I, convergence was achieved and thus estimates were obtained from 969 and 950 data sets

under H0 and H1respectively for N=40/n=4 and 978 data sets under H0 for N=200/n=4
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure captions

Fig 1. Mean simulated concentration-time curve and allocation of the sam-

pling times within each of the designs N=40/n=4, N=80/n=2, N=100/n=4,1

and N=200/n=4 (separated by solid horizontal lines): the vertical lines de-

note the four possible sampling times, the dashed horizontal lines join samples

within the same group and the circles size is proportional to the sample size

within each elementary design.

Fig 2. Concentrations (ng/mL) simulated for the designs N=40/n=4 (left),

N=80/n=2 (center) and N=100/n=4,1 (right) for a representative data set

under H0 (top) and a representative one under H1 (bottom). Solid lines

represent the subjects CC while dashed and dotted lines represent the sub-

jects CT and TT for the exon SNP1, respectively. For the N=100/n=4,1

design, circles represent the subjects CC while triangles and plus represent

the subjects CT and TT for the exon SNP1, respectively.

Fig 3. (a) Boxplot of shrinkage on V/F from Mbase obtained with SAEM

on the 1000 data sets simulated under H0 (grey) and H1 (black) for the

designs N=40/n=4, N=80/n=2, N=100/n=4,1 and N=200/n=4, (b) type I

error for the ANOVA on the log-parameters versus the empirical shrinkage on

V/F for the designs N=40/n=4 (◦), N=80/n=2 (△), N=100/n=4,1 (+) and
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N=200/n=4 (×) simulated under H0, (c) Corrected power of the ANOVA

on the log-parameters versus the empirical shrinkage on V/F for the designs

N=40/n=4 (◦), N=80/n=2 (△) and N=100/n=4,1 (+) simulated under H1.

Fig 4. (a) Boxplot of the estimated standard errors (SE) and corresponding

empirical SE (dotted line) obtained with SAEM for β1 and β2 on the 1000

data sets simulated under both H0 (grey) and H1 (black) for the N=40/n=4,

N=80/n=2, N=100/n=4,1 and N=200/n=4 designs, (b) Wald test type I

error versus the ratio of the median SE over the empirical SE for β2 for the

designs N=40/n=4 (◦), N=80/n=2 (△), N=100/n=4,1 (+) and N=200/n=4

(×) simulated under H0, (c) Wald test corrected power versus the empirical

SE for β2 for the designs N=40/n=4 (◦), N=80/n=2 (△) and N=100/n=4,1

(+) simulated under H1.

Fig 5. Histograms of the likelihood ratio test (LRT) statistics above the the-

oretical threshold (5.99) obtained with SAEM under H0 for the N=40/n=4,

N=80/n=2, N=100/n=4,1 and N=200/n=4 designs. The dotted curve cor-

responds to the density of a χ2 with 2 degrees of freedom.

Fig 6. Standard errors versus the estimates for β1 and β2 obtained with

FOCE-I in NONMEM version V (a) and (b) and SAEM in MONOLIX ver-

sion 2.1 (c) and (d) for the design N=40/n=4 simulated under H1. Note
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that βFOCE−I1 and βFOCE−I2 correspond respectively to eβSAEM1 and eβSAEM2 ,

therefore the scales are different.
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