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Abstract—This paper presents a fast split-radix-(2×2)/(8×8) 

algorithm for computing the two-dimensional (2-D) discrete 
Hartley transform (DHT) of length N×N with N = q*2m, where q is 
an odd integer. The proposed algorithm decomposes an N×N DHT 
into one N/2×N/2 DHT and forty-eight N/8×N/8 DHTs. It achieves 
an efficient reduction on the number of arithmetic operations, 
data transfers and twiddle factors compared to the 
split-radix-(2×2)/(4×4) algorithm. Moreover, the characteristic of 
expression in simple matrices leads to an easy implementation of 
the algorithm. If implementing the above two algorithms with 
fully parallel structure in hardware, it seems that the proposed 
algorithm can decrease the area complexity compared to the 
split-radix-(2×2)/(4×4) algorithm, but requires a little more time 
complexity. An application of the proposed algorithm to 2-D 
medical image compression is also provided.  

Index Terms—Two-dimensional (2-D) discrete Hartley 
transform (DHT), split-radix, fast algorithm 

 

I. INTRODUCTION 
he discrete Hartley transform (DHT) is widely used in 
signal and image processing applications. The advantage 

of the DHT over the discrete Fourier transform (DFT) is that it 
can be used to avoid complex operations when the input 
sequence is real. Moreover, the forward and inverse DHTs 
differ from each other in their form only in the scaling factor. 
Owing to these properties, the DHT is now finding an 
increasing interest in the signal processing community. In the 
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past decades, fast algorithms and implementations of 
one-dimensional (1-D) DHT and DFT have been extensively 
investigated [1]-[21]. Meantime, special attention has also been 
paid on the two-dimensional (2-D) and three-dimensional 
(3-D) DHT [22]-[39], this is due to the growing interest in 
applications involving multi-dimensional (M-D) signals. In this 
paper, fast algorithm means lower computational complexity in 
terms of the number of arithmetic operations, data transfers and 
twiddle factors. 

The algorithms proposed for fast computing the 2-D DHT 
can be classified into four categories: i) the row-column 
method; ii) the vector-radix fast Hartley transform (FHT) 
algorithms [22]-[24]; iii) the split-radix FHT algorithm 
[25]-[31]; and iv) the polynomial transform FHT algorithm 
[32]-[34]. The row-column method computes the 2-D DHT by 
taking the 1-D FHT sequentially along each dimension of the 
input data while in the vector-radix algorithm, the 2-D DHT is 
decomposed into many smaller ones until the trivial sequence 
length is reached. The vector-radix method reduces the number 
of arithmetic operations over the row-column algorithm and 
possesses the desirable properties such as regular structure and 
low implementation cost. This approach was then extended to 
3-D DHT [35]-[37] and M-D DHT [23]. In [39], a 
vector-radix-3×3 algorithm was developed for computing the 
2-D DHT of sequence whose length is 3m×3m. The polynomial 
transform based FHT algorithms for M-D DHT have been 
reported in [32] and [34], which lead to a great reduction of the 
arithmetic operations at the expense of very complicated 
structure. The split-radix 2-D DHT algorithm is more efficient 
than the vector-radix algorithm in terms of arithmetic 
complexity and it is easy to implement. All the split-radix 
algorithms for 2-D DHT reported so far are based on a mixture 
of radix-2×2 and radix-4×4 index maps. 

Huang et al. [25] applied a radix-2×2 decomposition to the 
even-even, even-odd, odd-even indexed samples and a 
radix-4×4 decomposition to the odd-odd indexed samples. 
Thus, an N×N DHT is decomposed into three N/2×N/2 DHTs 
and four N/4×N/4 DHTs. By using a radix-4×4 decomposition 
to even-odd, odd-even and odd-odd indexed terms, an 
improved split-radix algorithm for 2-D DHT was further 
derived [28], which decomposes an N×N 2-D DHT into one 
N/2×N/2 DHT and twelve N/4×N/4 DHTs. The split-radix 
algorithms for the 2-D DHT have been presented using 
decimation-in-frequency (DIF) [29] and decimation-in-time 
(DIT) [30]. It seems that the algorithms reported in [29] and [30] 
are the most efficient ones among all the existing split-radix 
algorithms in terms of the arithmetic complexity.
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Moreover, these two algorithms support various sequence 
lengths. Specifically, the block size can be chosen as 
q*2m×q*2m, where q is an odd integer. In [31], the radix-2/4 
approach has been generalized to the M-D DHT. In particular, 
for the case of 2-D DHT, it has the same arithmetic complexity 
as that of the algorithms presented in [29] and [30]. 

Among all the algorithms mentioned above, the split-radix 
algorithms based on radix-2/4 are the most attractive ones 
because they provide a good comprise between the arithmetic 
and structural complexities. Recently, Bouguezel et al. [3] 
proposed a new split-radix fast algorithm based on a mixture of 
radix-2 and radix-8 index maps for 1-D DHT of sequences 
whose length is q×2m, where q is an odd integer. This algorithm 
is more efficient than the conventional split radix-2/4 FHT 
algorithm in terms of the number of data transfers and twiddle 
factor evaluations, which also contribute significantly to the 
execution time of FHT algorithms. Inspired by the algorithm 
presented in [3], we propose a split-radix-(2×2)/(8×8) 
algorithm for computing the 2-D DHT of sequences with 
length-q*2m×q*2m, which consists of decomposing an N×N 
DHT into one N/2×N/2 DHT and forty-eight N/8×N/8 DHTs. 
Besides, the split radix-2/8 algorithm has been already used for 
computing the 2-D DFT [40], [41]. 

The rest of the paper is organized as follows. Section II 
presents the derivation of the algorithm. In Section III, the 
computational complexity and the hardware area and time 
complexity of the proposed algorithm are analyzed, and the 
comparison with some existing algorithms is also provided. 
Section IV presents the result of software implementation of 
the proposed and some existing algorithms. Section V 
concludes the work. 

II. PROPOSED RADIX-(2×2)/(8×8) ALGORITHM 
The 2-D DHT X(k1, k2) of real valued sequence, x(n1, n2), 

for 0 ≤ n1, n2 ≤ N – 1, is defined by 
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where cas( ) cos( ) sin( ).θ θ θ= +  The sequence length N is 
assumed to be q×2m, where q is an odd integer and m > 0. 

Let us first consider the case when m = 1, that is, N = 2q. 

A. The case m = 1, i.e., N = 2q 

In this case, the radix-2×2 algorithm is used to decompose a 
length-2q×2q DHT. The even-even indexed outputs are 
obtained by 

1 2

1 2

1 1 2

00 1 2 1 2
0 0 1

(2 ,2 )

2( , )cas , 0 , 1.
q q

i i
n n i

X k k

y n n n k k k q
q
π− −

= = =

⎛ ⎞
= ≤ ≤ −⎜ ⎟

⎝ ⎠
∑ ∑ ∑

      (2) 

The even-odd, odd-even, and odd-odd indexed outputs can 
be computed by 
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where 1 2 1 2 1 2, 0, 1, ( , ) (0,0),   0 , 1.p p p p k k q= ≠ ≤ ≤ −  
The sequences

1 2, 1 2( , )p py n n for p1, p2 = 0, 1, in (2) and (3) are 

obtained from the original input sequence as 
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where T denotes the transpose, ⎥
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⎡
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=
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2H , and “ ⊗ ” is 

the Kronecker product [42]. Fig. 1 shows the implementation of 
(4). 
 
B. The case m = 2, i.e., N = 4q 
   

When m = 2, the decomposition of (1) for the even-even 
indexed outputs is given by 
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       The even-odd, odd-even and odd-odd indexed outputs are 
obtained as follows 
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Using the matrix representation, (7) can be expressed as 
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1) Even-odd output terms (p1 = 0, 2; p2 = 1) 
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The decomposition of 
1 2
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done in a similar way. 
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The above equation can be rewritten as 

1 2

1 2

2 / 4 2 / 4 2 / 4
, 2

( 1) / 22 / 4 2 / 42 / 4
2,

2 / 4
2 / 41 1 1
012 / 4

1 2 2

( 1)

               ,

p p eo eo
q

eo eop p
−

⎡ ⎤ ⎡ ⎤− ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤
× ⎢ ⎥

⎣ ⎦

f I 0C S
0 IS Cg

J R J
y

R J J

                (17) 

where 2I  is the identity matrix, and 

1 2 1 2

2 / 4 2 / 4
0,1 1 2 0,1 1 22 / 4 2 / 4

, ,2 / 4 2 / 4
2,1 1 2 2,1 1 2

( , ) ( , )
,   ,

( , )  ( , )p p p p

f n n g n n
f n n g n n

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
f g               (18) 

1

1

012 / 4

01

012 / 4
01 2

01

cos 0
,

0 ( 1) cos

sin 0
,    ( ) 2,

0 ( 1) sin

eo n

eo n n

α
α

α
α π

α

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤
= =⎢ ⎥−⎣ ⎦

C

S
            (19) 

2 / 4
1 2 1

1 0 0 1
,   ,  diag(1, 1),

1 0 0 1
⎡ ⎤ ⎡ ⎤

= = = −⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
J J R             (20) 

2 / 4 2 / 4 2 / 4
01 01 1 2 01 1 2

2 / 4 2 / 4
01 1 2 01 1 2

( ( , ) ( , )

             ( , ) ( , )) .T

y n n y n n q

y n q n y n q n q

= +

+ + +

y
               (21) 

Fig. 2 shows the implementation of (17). 
 
2) Odd-even output terms (p1 = 1; p2 = 0, 2) 
   As for the previous case, the odd-even output terms can be 
obtained as 
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3) Odd-odd output terms (p1 = 1, –1; p2 = 1) 
   We have the following decomposition for the odd-odd output 
terms 

1 2

1 2

2 / 4 2 / 4 2 / 4
, 2 1 2 2 / 4

11( 1) / 2 2 / 4 2 / 42 / 4 2 / 42 / 4
2 1 2 2 1, ( 1)

p p oo oo
q

oo oop p
−

⎡ ⎤ ⎡ ⎤− ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

f I 0 J JC S
y

0 I R J R JS Cg
    

                  (27) 
where 

1 2 1 2

2 / 4 2 / 4
1,1 1 2 1,1 1 22 / 4 2 / 4

, ,2 / 4 2 / 4
1,1 1 2 1,1 1 2

2 / 4
2

( , ) ( , )
, ,  

( , ) ( , )

diag( 1,1),

p p p p

f n n g n n
f n n g n n

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
= −

f g

R

               (28) 

11 112 / 4 2 / 4

11 11

11 2 1 11 1 2

cos 0 sin 0
, ,

0 cos 0 sin
 [( ) ] 2, [( ) ] 2,

oo oo

n n n n

α α
α α

α π α π

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥′ ′⎣ ⎦ ⎣ ⎦

′= − = +

C S
      (29) 

2 / 4 2 / 4 2 / 4
11 11 1 2 11 1 2

2 / 4 2 / 4
11 1 2 11 1 2

( ( , ) ( , )

                  ( , ) ( , )) ,T

y n n y n n q

y n q n y n q n q

= +

+ + +

y
         (30) 

2 / 4
11 1 2 1 2 1 2

1 2 1 2

( , ) [ ( , ) ( , 2 )]
                    [ ( 2 , ) ( 2 , 2 )].
y n n x n n x n n q

x n q n x n q n q
= − +

− + − + +
           (31) 

 
C. The case m ≥ 3 

By introducing a mixture of radix-2×2 and radix-8×8 index 
maps, we propose a novel decomposition of (1). The even-even 
output terms can be computed by 

1 2

1 2

2 1 2 1 2
2 / 8
00 1 2 1 2

0 0 1

(2 , 2 )

2( , )cas , 0 , 2 1,
2

N N

i i
n n i

X k k

y n n n k k k N
N

π− −

= = =

⎛ ⎞
= ≤ ≤ −⎜ ⎟

⎝ ⎠
∑ ∑ ∑

  (32) 

where 
2 / 8
00 1 2 1 2 1 2

1 2 1 2

( , ) [ ( , ) ( , 2)]
 [ ( 2, ) ( 2, 2)].
y n n x n n x n n N

x n N n x n N n N
= + +

+ + + + +
               (33) 

The even-odd, odd-even, and odd-odd output terms can be 
derived as follows. 

1 2

1 2 1 2

1 1 2 2

1 1 2 2

1 2
0 0 1 1

2 / 8 2 / 8
, 1 2 , 1 2 1 2

(8 ,8 )

2 2( , )cas
8

 ( , ) ( , ),  0 , 8 1,

N N

i i i i
n n i i

p p p p

X k p q k p q

x n n n k n p
N N q

F k k G k k k k N

π π− −

= = = =

± ±

⎛ ⎞
= ±⎜ ⎟

⎝ ⎠
= ± ≤ ≤ −

∑ ∑ ∑ ∑          (34) 

where 

1 2

1 2

2 / 8
, 1 2

1 1 2 2

1 2
0 0 1 1

( , )

2 2( , ) cos cas ,
8

p p

N N

i i i i
n n i i

F k k

x n n n p n k
N q N

π π− −

= = = =

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑

  (35) 

1 2

1 2

2 / 8
, 1 2

1 1 2 2

1 2
0 0 1 1

( , )

2 2( , )sin cas .
8

p p

N N

i i i i
n n i i

G k k

x n n n p n k
N q N

π π− −

= = = =

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑

  (36) 

Equation (34) can be written in matrix form as 

1 2

1 2

1 1 2 2

1 1 2 2

2 / 8
, 1 2

2 2 / 8
, 1 2

((8 ) mod , (8 ) mod )
(( 8 ) mod , ( 8 ) mod )

( , )

( , )
p p

p p

X k p q N k p q N
X N k p q N N k p q N

F k k
H

G k k

+ +⎡ ⎤
⎢ ⎥+ − + −⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

        (37) 

The input data sequences 
1 2

2 / 8
, 1 2( , )p pF k k  and 

1 2

2 / 8
, 1 2( , )p pG k k  are 

determined as follows. 
1) Even-odd output terms (p1 = 0, 2, 4, 6; p2 = 1, 3) 
   Equation (35) can be decomposed as 

  

1 2

1 2

1 2
1 2

2 / 8
, 1 2

2 1 2 1 2 2
2 / 8
01 1 2

0 0 1 1

/ 8 1 / 8 1 2
2 / 8

, 1 2
0 0 1

( , )

2 2( , )cos cas
8

2( , )cas ,
8

p p

N N

i i i i
n n i i

N N

p p i i
n n i

F k k

y n n n p n k
N q N

f n n n k
N

π π

π

− −

= = = =

− −

= = =

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑

(38) 

where 
[ ]

[ ]

2/8
01 1 2 1 2 1 2

1 2 1 2

( , ) ( , ) ( , 2)

               ( 2, ) ( 2, 2) ,

y n n x n n x n n N

x n N n x n N n N

= − +

+ + − + +
          (39) 

1 2

1 2

3 3
2 / 8 2 / 8 1 2

, 1 2 01 1 2
0 0

2

1 1 2 2
1

( , ) ,
8 8

2          cos ( ) .
4

p p
l l

i i
i

l N l N
f n n y n n

n p q p l p l
N q

π π
= =

=

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

⎛ ⎞
× + +⎜ ⎟

⎝ ⎠

∑∑

∑
             (40) 

Equation (36) can be decomposed in a similar manner as 
    

1 2 1 2

1 2

/8 1 /8 1 2
2/8 2/8

, 1 2 , 1 2
0 0 1

2( , ) ( , )cas 
8

N N

p p p p i i
n n i

G k k g n n n k
N

π− −

= = =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑ ∑ (41) 

where 

 
1 2

1 2

3 3
2 / 8 2 / 8 1 2

, 1 2 01 1 2
0 0

2

1 1 2 2
1

( , ) ,
8 8

2sin ( ) .
4

p p
l l

i i
i

l N l N
g n n y n n

n p q p l p l
N q

π π
= =

=

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

⎛ ⎞
× + +⎜ ⎟

⎝ ⎠

∑∑

∑
               (42) 

  We need to use the following lemma, which was stated in [3]. 
Lemma 1: Let qcπβ 22))4(cos( =  and 

qsπβ 22))4(sin( = , where β is an odd integer. Then the 

following is true 
i) For qβ = , 2)1()1( −−= q

qq sc . 

ii) For qβ 3= , qq cc −=3 and qq ss =3 . 

Letting  
2

01
1

2
i i

i
n p

N q
πγ

=

= ∑                                               (43) 
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and using Lemma 1, the twiddle factors 

01 1 1 2 2cos ( )
4

q p l p lπγ⎛ ⎞+ +⎜ ⎟
⎝ ⎠

 and 01 1 1 2 2sin ( )
4

q p l p lπγ⎛ ⎞+ +⎜ ⎟
⎝ ⎠

 

appeared in (40) and (42) can be simplified as 
a) 1 1 2 2( ) mod 4 0p l p l+ = . 

   ( )1 1 2 2( ) / 4
01 1 1 2 2 01cos ( ) ( 1) cos ,

4
p l p lq p l p lπγ γ+⎛ ⎞+ + = −⎜ ⎟

⎝ ⎠
     (44a) 

( )1 1 2 2( ) / 4
01 1 1 2 2 01sin ( ) ( 1) sin .

4
p l p lq p l p lπγ γ+⎛ ⎞+ + = −⎜ ⎟

⎝ ⎠
      (44b) 

b) 1 1 2 2( ) mod 4 1p l p l+ =  

( ) ( )

1 1 2 2

1 1 2 2

01 1 1 2 2

( ) / 4
01

( ) / 4 ( 1) 2
01 01

cos ( )
4

( 1) cos
4

( 1) cos ( 1) sin ,
2

p l p l

qp l p l q

q p l p l

q

c

πγ

πγ

γ γ

+⎢ ⎥⎣ ⎦

+⎢ ⎥ −⎣ ⎦

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎡ ⎤= − − −⎣ ⎦

      (45a) 

( ) ( )

1 1 2 2

1 1 2 2

01 1 1 2 2

( ) / 4
01

( ) / 4 ( 1) 2
01 01

sin ( )
4

( 1) sin
4

( 1) sin ( 1) cos ,
2

p l p l

qp l p l q

q p l p l

q

c

πγ

πγ

γ γ

+⎢ ⎥⎣ ⎦

+⎢ ⎥ −⎣ ⎦

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎡ ⎤= − + −⎣ ⎦

      (45b) 

 where x⎢ ⎥⎣ ⎦  denotes the integer part of x. 
c) 1 1 2 2( ) mod 4 2p l p l+ =  

( )1 1 2 2

01 1 1 2 2

( ) / 4 ( 1) / 2
01

cos ( )
4

( 1) sin ,p l p l q

q p l p lπγ

γ+ + −⎢ ⎥⎣ ⎦

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

= −

                                      (46a) 

( )1 1 2 2

01 1 1 2 2

( ) / 4 ( 1) / 2
01

sin ( )
4

( 1) cos .p l p l q

q p l p lπγ

γ+ + −⎢ ⎥⎣ ⎦

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

= −

                                      (46b) 

d) 1 1 2 2( ) mod 4 3p l p l+ =  

( ) ( )

1 1 2 2

1 1 2 2

01 1 1 2 2

( ) / 4
01

( ) / 4 1 ( 1) 2
01 01

cos ( )
4

3( 1) cos
4

( 1) cos ( 1) sin ,
2

p l p l

qp l p l q

q p l p l

q

c

πγ

πγ

γ γ

+⎢ ⎥⎣ ⎦

+ +⎢ ⎥ −⎣ ⎦

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎡ ⎤= − + −⎣ ⎦

    (47a) 

( ) ( )

1 1 2 2

1 1 2 2

01 1 1 2 2

( ) / 4
01

( ) / 4 1 ( 1) 2
01 01

sin ( )
4

3( 1) sin
4

( 1) sin ( 1) cos .
2

p l p l

qp l p l q

q p l p l

q

c

πγ

πγ

γ γ

+⎢ ⎥⎣ ⎦

+ +⎢ ⎥ +⎣ ⎦

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎡ ⎤= − + −⎣ ⎦

    (47b) 

Using the above results, 
1 2

2 / 8
, 1 2( , )p pf n n  and 

1 2

2 / 8
, 1 2( , )p pg n n  

defined by (40) and (42) can be expressed in matrix form as 

1 2

1 2

2 / 8 2 / 8 2 / 8
, 8

( 1) / 22 / 8 2 / 82 / 8
8,

2 / 8 2 / 8
2 / 81

2 1 012 / 8 2 / 8
1

0
0 ( 1)

( ) ,

p p eo eo
q

eo eop p

eo eo

eo eo

−

⎡ ⎤ ⎡ ⎤− ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

⎡ ⎤
× ⊗⎢ ⎥

⎣ ⎦

f IC S
IS Cg

A R A
I Q y

B R B

               (48) 

where LI  is an identity matrix of order L, the pth component of 

the vectors 8/2
, 21 ppf  and 8/2

, 21 ppg is related to the input sequences 

of (40) and (42) by 

    1 2 1 2

1 2 1 2

2 / 8 2 / 8
, , 1 2

2 / 8 2 / 8
, , 1 2 1 2

( ) ( , ),

( )  ( , ),    ( 1) / 2.
p p p p

p p p p

f p f n n

g p g n n p p p

=

= = + −
                (49) 

The matrices 8/2
eoC  and 8/2

eoS  are composed by twiddle factors 
whose components are given by 

( ) ( )2 / 8 2 / 8
01 01( , ) cos , ( , ) sin . eo eop p p pγ γ= =C S                (50) 

The new input sequences 2/8
01y  is related to the original 

sequences as 
2 / 8 2 / 8
01 01 1 1 2 2

1 2

( ) ( 8, 8),
0,1,...,15, / 4 , mod 4,

y r y n r N n r N
r r r r r

= + +

= = =⎢ ⎥⎣ ⎦
                        (51) 

  
01 10

2 / 8 01 10
01 10

1 1 0 1 1 1 0 1
1 1 0 1 1 1 0 1
1 1 0 1 0 1 1 1
1 1 0 1 0 1 1 1

eo eo
eo eo eo

eo eo

− −⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥− −= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −−⎣ ⎦ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

A AA A A
A A

  (52) 

                  

01 10
2 / 8 01 10

01 10

0 1 1 1 0 1 1 1
0 1 11 0 1 1 1 0 1 1 1 1 1 0 1
0 1 11 1 1 0 1

eo eo
eo eo eo

eo eo

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥− −= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−−⎣ ⎦ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

B BB B B
B B

     (53) 

 1 diag(1,1, 1, 1,1,1, 1, 1),= − − − −R                                         (54) 

 1
2 2 2 21, ,1, ,1, ,1, .

2 2 2 2q q q qdiag c c c c
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

Q                  (55) 

Fig. 3 shows the implementation of (48). 
 
2) Odd-even output terms (p1 = 1, 3; p2 = 0, 2, 4, 6) 

   We have 

1 2

1 2

2 / 8 2 / 8 2 / 8
, 8

( 1) / 22 / 8 2 / 82 / 8
8,

2 / 8 2 / 8
2 / 83

2 2 102 / 8 2 / 8
2

0
0 ( 1)

( )

p p oe oe
q

oe oep p

oe oe

oe oe

−

⎡ ⎤ ⎡ ⎤− ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦
⎡ ⎤

× ⊗⎢ ⎥
⎣ ⎦

f IC S
IS Cg

A R B
I Q y

B R A

            (56) 

where the pth component of the vectors 8/2
, 21 ppf  and 8/2

, 21 ppg is 

related to the input sequences of (40) and (42) by 

1 2 1 2

1 2 1 2

2 / 8 2 / 8
, , 1 2

2 / 8 2 / 8
, , 1 2 2 1

( ) ( , ),   

( )  ( , ),   ( 1) / 2.
p p p p

p p p p

f p f n n

g p g n n p p p

=

= = + −
              (57) 

The elements of the matrices 8/2
oeC and 8/2

oeS  are given by 
 ( ) ( )01 01( , ) cos , ( , ) sin .oe oep p p pγ γ= =C S                    (58) 

The new input sequences 8/2
10y  is related to the original 

sequences as 
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2 / 8 2 / 8
10 10 1 1 2 2

1 2

( ) ( 8, 8),
0,1,...,15, / 4 , mod 4,

y r y n r N n r N
r r r r r

= + +

= = =⎢ ⎥⎣ ⎦
                        (59

) 
2 /8
10 1 2 1 2 1 2

1 2 1 2

( , ) [ ( , ) ( , / 2)]
           [ ( / 2, ) ( / 2, / 2)],
y n n x n n x n n N

x n N n x n N n N
= + +

− + + + +
              (60) 

01 10 01 10
2/8 2 /8

01 11 01 11,         ,oe oe oe oe
oe oe

oe oe oe oe

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

A A B B
A B

A A B B
          (61) 

01 10 11

1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 1 1 1 1 1 1 1 1

oe oe oe

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A A A  (62) 

01 10 11

0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1 1 1 1 1

oe oe oe

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
− − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

B B B   (63) 

2

3

diag(1, 1, 1, 1, 1, 1, 1, 1),
diag( 1, 1, 1, 1, 1, 1, 1, 1),

= − − − −
= − − − −

R
R

                                    (64) 

2
2 2 2 21, 1, 1, 1, , , , .

2 2 2 2q q q qdiag c c c c
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

Q             (65) 

 
3) Odd-odd output terms (p1 = –3, –1, 1, 3; p2 = 1, 3) 

We have 

1 2

1 2

2 / 8 2 / 8 2 / 8
, 8

( 1) / 22 / 8 2 / 82 / 8
8,

2 / 8 2 / 8
2 / 84

2 3 112 / 8 2 / 8
1

0
0 ( 1)

( )

p p oo oo
q

oo oop p

oo oo

oo oo

−

⎡ ⎤ ⎡ ⎤− ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦
⎡ ⎤

× ⊗⎢ ⎥
⎣ ⎦

f IC S
IS Cg

A R B
I Q y

B R A

                  (66) 

where the pth component of the vectors 8/2
, 21 ppf and 8/2

, 21 ppg is 

related to the input sequences of (40) and (42) by 

1 2 1 2

1 2 1 2

2 / 8 2 / 8
, , 1 2

2 / 8 2 / 8
, , 1 2 1 2

( ) ( , ),  

( ) ( , ), ( 3) ( 1) / 2.
p p p p

p p p p

f p f n n

g p g n n p p p

=

= = + + −
        (67) 

The (p, p)th components of the matrices 8/2
ooC and 8/2

ooS are 
respectively given by 

( ) ( )01 01( , ) cos , ( , ) sin .oo oop p p pγ γ= =C S                      (68) 

The new input sequences 8/2
11y  is defined as 

2 / 8 2 / 8
11 11 1 1 2 2

1 2

( ) ( 8, 8),
0,1,...,15, / 4 , mod 4,

y r y n r N n r N
r r r r r

= + +

= = =⎢ ⎥⎣ ⎦
                      (69) 

( )
( ) ( )

2/8
11 1 2 1 2 1 2

1 2 1 2

( , ) ( , ) , / 2

/ 2, / 2, / 2 ,

y n n x n n x n n N

x n N n x n N n N

= − +⎡ ⎤⎣ ⎦
− + − + +⎡ ⎤⎣ ⎦

                (70) 

01 10
2 / 8 01 10

01 10

1 1 0 1 1 0 1 1
1 1 0 1 1 1 1 0
1 1 0 1 1 1 1 0
1 1 0 1 1 0 1 1

oo oo
oo oo oo

oo oo

− −⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥− − −= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−−⎣ ⎦ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

A AA A A
A A

  (71) 

01 10
2 / 8 01 10

01 10

0 1 1 1 1 1 1 0
0 1 11 1 0 1 1 0 1 1 1 1 0 1 1
0 1 11 1 1 1 0

oo oo
oo oo oo

oo oo

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥− − −= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

B BB B B
B B

   (72) 

4 diag( 1, 1,1,1, 1, 1,1,1),= − − − −R                            (73) 

3
2 2 2 21, ,1, , ,1, ,1 .

2 2 2 2q q q qdiag c c c c
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

Q              (74) 

III. COMPUTATIONAL COMPLEXITY AND HARDWARE AREA 
AND TIME ANALYSIS 

    In this section, we analyze the performance of the proposed 
2-D split-radix-(2×2)/(8×8) algorithm and compare it with 
some existing algorithms. The analysis and comparison will not 
only include the arithmetic operations, but also the operations 
such as data transfers and twiddle factor evaluations since they 
contribute significantly to the execution time of the algorithm. 
The analysis of the area and time complexities is also provided.  
 
A. Arithmetic complexity 

It is assumed that the butterfly computations are 
implemented by four multiplications and two additions. 
1) When N = 2q, from (2) and (3), the number of 

multiplications and additions is given by 
2

2 2 2 24 ,  4 8 .q q q q q q q qM M A A q× × × ×= = +                            (75) 
2) When N = 4q, the twiddle factors in (17), (22) and (27) 

become trivial. Therefore 
2

4 4 2 2 4 4 2 212 , 12 56 .q q q q q q q q q q q qM M M A A A q× × × × × ×= + = + + (76) 
3) When N ≥ 8q 
a) The computation of the input data sequences 2 / 8

00 1 2( , ),y n n  
2 / 8
01 1 2( , )y n n , 2 / 8

10 1 2( , )y n n  and 2 / 8
11 1 2( , )y n n defined by (33), 

(39), (60) and (70) requires 2N2 additions. 
b) In (47), for each given pair (n1, n2), the matrix 

⎥
⎦

⎤
⎢
⎣

⎡
8/2

1
8/2

8/2
1

8/2

eoeo

eoeo

BRB
ARA

 requires 56 additions since the 

elements of the matrices are either 1 or –1, so that 7N2/8 
additions are needed for 0 ≤ n1, n2 ≤ N/8–1. 

c) In equation (48), the computation of the matrix 

⎥
⎦

⎤
⎢
⎣

⎡ −
8/28/2

8/28/2

eoeo

eoeo

CS
SC

, which is composed by twiddle factors, 

requires N2/4–As additions and N2/2–Ms multiplications, 
where As and Ms are the savings from the special cases of 
twiddle factors such as 0, ±1, 22± , cos(π/8), sin(π/8), 
cos(3π/8) and sin(3π/8). Specifically, we can obtain the 
number of additions and multiplications saved from the 
special cases of twiddle factors as follows: When p1 = 0 
and p2 = 1, 3 for a given value of n1  and 0 ≤ n2 ≤ N/8–1, this 
case can be taken as an 1-D DHT for the special twiddle 
factors. The saved number of additions and multiplications 
can be derived in a way similar to the one presented in [3], 
they are respectively 6q and 10q. So that the total saved 
number of additions and multiplications in the case of p1 = 
0, p2 = 1, 3, for 0 ≤n1, n2 ≤ N/8–1 is 3qN/4 and 5qN/4. Thus, 
for all the combination of (p1, p2) in (48), we can obtain As 
= 3qN and Ms = 5qN. 

d) The computation of the matrix 12 QI ⊗ requires N2/8 
multiplications. 
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e) The analysis described from (b) to (d) shows that the 
computation of

1 2

2 / 8
, 1 2( , )p pF k k  and 

1 2

2 / 8
, 1 2( , )p pG k k  for 

even-odd output terms needs 9N2/8–3qN additions and 
5N2/8–5qN multiplications. The same number of arithmetic 
operation is required for odd-even and odd-odd cases. 

f)  The computation of equation (34) requires 3N2/4 additions 
for even-odd, odd-even and odd-odd output terms. 

From the above discussion, it can be seen that the total 
number of additions and multiplications involved in the 
proposed algorithm for N > 8q is as follows 

2
/ 2 / 2 / 8 / 8

2
/ 2 / 2 / 8 / 8

48 49 /8 9 ,

48 15 / 8 15 .
N N N N N N

N N N N N N

A A A N qN

M M M N qN
× × ×

× × ×

= + + −

= + + −
        (77) 

For N = 8q, the twiddle factors are given by 
2 2

1 2
1 1

2cos cos , 0  , 1.
4i i i i

i i
n p n p n n q

N q
π π

= =

⎛ ⎞ ⎛ ⎞
= ≤ ≤ −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ In this 

case, only (3/8)×(8q)2 =24q2 multiplications are needed in the 
computation of even-odd, odd-even and odd-odd output terms. 
Thus, the arithmetic complexity when N = 8q, is given by 

2
8 8 4 4

2
8 8 4 4

48 344 ,

48 24 .
q q q q q q

q q q q q q

A A A q

M M M q
× × ×

× × ×

= + +

= + +
                            (78) 

The initial values for q = 1 are given by 
1 1 2 2 4 4 8 8

1 1 2 2 4 4 8 8

0, 8, 64, 384,
0, 0, 0, 24.

A A A A
M M M M

× × × ×

× × × ×

= = = =

= = = =
                       (79) 

Similarly, for q = 3 
3 3 6 6 12 12 24 24

3 3 6 6 12 12 24 24

47, 260, 1328, 6680,
4, 16, 64, 472.

A A A A
M M M M

× × × ×

× × × ×

= = = =

= = = =
          (80) 

The flowgraph of length-3×3 DHT is shown in Fig. 4. 
Tables I and II show respectively the arithmetic 

complexities for q = 1 and q = 3 of the proposed algorithm, the 
radix-(2×2)/(4×4) algorithms in [29] and [30], and the 
row-column method based on the 1-D algorithm in [3]. It can 
be seen from these tables that the proposed algorithm can save 
almost 10% multiplications and has lower total number of 
additions and multiplications than that of the algorithms in [29] 
and [30], and saves about 60% multiplications and 40% 
additions compared to the row-column method. 

 
B. Data transfers 

Based on the fact that the on-chip memory can be accessed 
faster than external memory (off-chip memory), an appropriate 
use of the internal registers (on-chip memory) is becoming an 
important strategy. It is assumed that sufficient registers are 
available in the processor without using any intermediate 
transfer operation. The implementation scheme of the proposed 
algorithm is shown in Fig. 5. The implementation of the 
butterfly for a given value of n1, n2, consists of reading two 
points from the external memory of the processor and 
performing the operations of addition and subtraction using 
these two points. The result of addition is returned to the 
external memory whereas that of the subtraction is kept in an 
internal register. The points kept in the processor are grouped to 
form 8/2

01y , 8/2
10y  and 8/2

11y  in (48), (56), (66) and to compute 
the outputs of (48), (56), (66), which are the inputs of the 

N/8×N/8 DHT in (40) and (42). The number of data transfers is 
analyzed as follows: 
1) Reading all the input terms x(n1, n2), x(n1, n2+N/2), x(n1+N/2, 
n2), and x(n1+N/2, n2+N/2) for 0 ≤n1, n2 ≤ N/2–1from external 
memory, which requires N2/2 data transfers. 
2) Writing 2 / 8

00 1 2( , )y n n for 0 ≤ n1, n2 ≤ N/2–1, into external 
memory to form the input sequences of (32). It needs N2/8 data 
transfers. 
3)  Writing  2 / 8

01 1 2( , )y n n , 2 / 8
10 1 2( , )y n n and 2 / 8

11 1 2( , )y n n for  0 ≤ 
n1, n2 ≤ N/2–1, into the external memory to form the input 
sequences of forty-eight N/8×N/8 DHTs in (48), (56) and (66). 
It requires 3N2/8 data transfers. 
4) Computation of (37) needs 3N2/4 data transfers. 
Thus, the data transfers of the proposed algorithm are given by 

2 / 8 2 / 8 2 / 8 2
/ 2 / 2 / 8 / 848 +7 / 4,   8,N N N N N ND D D N N× × ×= + >        (81) 

with 
2 / 8 2 / 8 2 / 8

1 1 2 2 4 4
2 / 8 2 2 / 8 2 / 8
8 8 4 4 1 1

0,      4,     20,

48 84.  

D D D

D N D D
× × ×

× × ×

= = =

= + + =
                                 (82) 

Similarly, the data transfers of the radix-(2×2)/(4×4) 
algorithm in [29] and [30] are given by 

2 / 4 2 / 4 2 / 4 2
/ 2 / 2 / 4 / 412 +7 / 4,    8,N N N N N ND D D N N× × ×= + ≥        (83) 

with 
2 / 4 2 / 4 2 / 4
1 1 2 2 4 40,       4,      20.  D D D× × ×= = =                             (84) 
Tables III and IV show respectively the number of data 

transfers for q = 1 and q = 3 of the different methods for certain 
value of N. The proposed algorithm leads to a reduction of data 
transfers over 20% compared to radix-(2×2)/(4×4) algorithm in 
[29] and [30] and approximately 60% compared to the 
row-column algorithm.  
 
C. Twiddle factors 

It is assumed that the coefficients required by the special 
butterflies, such as 22 , cos(π/8) and sin(π/8) are initialized 
and kept in the internal registers of the processor during the 
processing time. Firstly, equations (48), (56) and (66) require 
3×16× (N/8)×(N/8) =3N2/4 twiddle factors. Secondly, we can 
obtain the number of twiddle factors for  the special cases as 
follows: When p1 = 0 and p2 = 1, 3, for a given value of n1  and 0 
≤ n2 ≤ N/8–1, the number of the twiddle factors required in this 
case can be derived in a way similar to the one presented in [3], 
it is 8q. So that the total number of the twiddle factors for the 
case where p1 = 0, p2 = 1, 3, for 0 ≤ n1, n2 ≤ N/8–1 is qN.  Thus, 
for all the combinations of (p1, p2) in (48), (56) and (66), the 
number of the twiddle factors is 12qN. Therefore, the twiddle 
factors of the proposed algorithm are given by 

2 / 8 2 / 8 2 / 8 2
2 2 8 848 3 / 4 12 ,  8 .N N N N N NTF TF TF N qN N q× × ×= + + − >  (85) 

For q = 1, we have 
2 /8 2 /8 2/8 2/8

1 1 2 2 4 4 8 80      0     0        0TF TF TF TF× × × ×= = = = .   (86) 
For q = 3, we have 

2 /8 2 /8 2/8 2/8
3 3 6 6 12 12 24 240     0    0       0TF TF TF TF× × × ×= = = = .   (87) 
Analyzing the twiddle factors required in the 

radix-(2×2)/(4×4) algorithm in [29] in a similar way, we have 
2 / 4 2 / 4 2 / 4 2

2 2 4 412 3 / 4 6 ,   4 .N N N N N NTF TF TF N qN N q× × ×= + + − >   (88) 
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For q = 1 
2 /8 2/8 2 /8

1 1 2 2 4 40      0     0.TF TF TF× × ×= = =                      (89) 
For q = 3 

2 /8 2 /8 2 /8
3 3 6 6 12 120      0     0.TF TF TF× × ×= = =                     (90) 

Tables V and VI show respectively the comparison of 
twiddle factors for q = 1 and q = 3 for different methods. It can 
be seen that, in most cases, our algorithm saves approximately 
35% compared to the algorithm in [29] and [30], and 
approximately 40% compared to the row-column method. 
 
D. Area complexity and time complexity analysis 

In this subsection, we compare the area complexity and 
time complexity of the proposed split-radix-(2×2)/(8×8) 
algorithm with the split-radix-(2×2)/(4×4) algorithm presented 
in [29] and the row-column method using [3] based on single 
multipliers, multiplier/accumulators and butterfly processors. 
The algorithm presented in [30] has the same area and time 
complexity as that of [29]. 

1) Systems Using Multiplier or Multiplier/Accumulator 
Primitives 

As described in [9], in systems using software in 
conjunction with a hardware adder to accomplish 
multiplications, such as general-purpose microcomputers 
without coprocessors, the computation time of the algorithm is 
determined primarily by the number of multiplications. In 
systems using a single hardware multiplier, such as DSP 
microcomputers, both multiplies and additions contribute 
heavily in determining the run time. In both cases, the area 
complexity (the area of one multiplier or 
multiplier/accumulator) of three algorithms is the same. 
Therefore, the area-time complexity is determined by the 
computational time. As can be seen from Tables I and II, the 
proposed split-radix-(2×2)/(8×8) is clearly preferable to the 
split-radix-(2×2)/(4×4) presented in [29] and row-column 
method based on [3] in terms of computational time. 

2) Multiprocessor Implementations Based on Butterflies 
In this subsection, for simplicity, we implement strictly the 

algorithms according to the flowgraph. That is to say, we 
dedicate one multiplier (or one adder) to implement one 
multiplicative (or additive) operation. Let TM and TA be 
respectively the computational time of one multiplication and 
one addition.  The designed modules of the three algorithms are 
described as follows. 
 
a) Implementation of the split-radix-(2×2)/(8×8) algorithm 

with 5 modules 
    The first module is used to implement (33), (39), (60) and 
(70) to obtain 2 / 8

00 1 2( , ),y n n 2 / 8
01 1 2( , ),y n n 2 / 8

10 1 2( , )y n n and 
2 / 8
11 1 2( , )y n n for 0 ≤ n1, n2 ≤ N/2–1. We design the butterfly 

shown in Fig. 1 as type-I butterfly, which consists of four 
radix-2 butterflies. Totally, (N×N)/4 type-I butterflies are 
required. The computational time of the first module is 2TA.  

The second module is designed to obtain the even-even 
output terms, that is, to implement one (N/2)×(N/2) DHT. The 
computational time of the second module is 2/8

/ 2 / 2N NT × .  

The third module is used to obtain the even-odd output terms, 
including (48) and 16 parallel (N/8)×(N/8) DHTs and one third 
data processing of (37). We divide further this module into 3 
smaller modules. The module 3-1 is used to implement (48). 
We design the butterfly shown in Fig. 3 as the type-II butterfly, 
which can be decomposed into five stages. The first stage 
consists of four radix-2 butterflies and four modified 
multiplier-adder butterflies. The second stage, the third stage 
and the fourth stage consist of six, six and eight radix-2 
butterflies, respectively. The last stage consists of eight 
multiplier-adder butterflies. Note that for the last stage, we 
assume that some special twiddle factors, such as 22 , 
cos(π/8) and sin(π/8), are implemented by the special 
butterflies. Therefore, (N/8)×(N/8) type-III butterflies are 
required. The computational time is 2TM+5TA. The module 3-2 
is used to implement 16 parallel (N/8)×(N/8) DHTs. The 
computational time is 2/8

/8 /8N NT × . The module 3-3 is used to 
implement one third data of (37). This module is implemented 
by 8×(N/8)×(N/8) radix-2 butterflies. The computational time is 
TA.  Totally, The computational time of the third module is 

2/8
/ 2 / 22 5M A N N AT T T T×+ + + .  

The fourth module is used to obtain the odd-even output 
terms, including (56) and 16 parallel (N/8)×(N/8) DHTs and 
one third data processing of (37).  

The fifth module is used to obtain the odd-odd output 
terms, including (66) and 16 parallel (N/8)×(N/8) DHTs and 
one third data processing of (37).  

The design of the fourth and the fifth module is similar to 
the third one. We assume that when the first module is finished, 
the second module, the third module, the fourth module and the 
fifth module are working in parallel. Under this assumption, the 
total computational time for the proposed algorithm is given by  

{ }2/8 2/8 2/8
/ 2 / 2 /8 /82 max ,2 6 .N N A N N M A N NT T T T T T× × ×= + + +     (91) 

For q = 1, the initial values of (91) are  
2/8

2 2
2/8 2/8

4 4 2 2

2 ,

2 4 .
A

A A

T T

T T T T
×

× ×

=

= + =
                                               (92) 

For q = 3, as can be seen in Fig. 4, the initial values of (91) are 

   

2 /8
3 3
2/8 2/8

6 6 3 3
2/8 2/8

12 12 3 3

9 ,

2 11

5 2 14 .

M A

A M A

M A M A

T T T

T T T T T

T T T T T T

×

× ×

× ×

= +

= + = +

= + + = +

                        (93) 

Substituting the above initial values into 2/8
/ 2 / 2N NT ×  and 

2 /8
/8 /82 6M A N NT T T ×+ + , we find that the former is always 

smaller than the latter. Thus, (91) becomes 
2 /8 2/8

/8 /82 8 .N N M A N NT T T T× ×= + +                                         (94) 
Since the multiplication by (1/2) in Fig. 4 is simply a 

right-shift operation, hence, the computational time is not taken 
into account in this analysis. 

 
b) Implementation of the split-radix-(2×2)/(4×4) algorithm 

with 5 modules 
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The first module is used to implement (6), (12), (26) and (31) 
to obtain 2 / 4

00 1 2( , ),y n n  2 / 4
01 1 2( , ),y n n  2 / 4

10 1 2( , ),y n n  and 
2 / 4
11 1 2( , )y n n for 0 ≤ n1, n2 ≤ N/2–1. The computational time is 

2TA. 
The second module is used to obtain the even-even output 

terms. The computational time is 2/ 4
/ 2 / 2N NT × . 

The third module is used to obtain the even-odd output terms, 
including (17), 4 parallel (N/4)×(N/4) DHTs and one third data 
processing of (10). The implementation is similar to that of the 
split-radix-(2×2)/(8×8) algorithm. The computational time of 
the third module is 2/ 4

/ 2 / 22M A N N AT T T T×+ + + . 
The fourth module and the fifth module are used to obtain the 

odd-even and odd-odd output terms, respectively. Their design 
is similar to the third module.  

The total computational time for the split-radix-(2×2)/(4×4) 
algorithm in [29] is given by  

{ }2 / 4 2/ 4 2/ 4
/ 2 / 2 / 4 / 4

2 / 4
/ 4 / 4

2 max , 3

         5

N N A N N M A N N

M A N N

T T T T T T

T T T

× × ×

×

= + + +

= + +
       (95) 

The initial values of (95) for q = 1 and q = 3 are the same as 
those of  (92) and (93). 
 
c) Implementation of the row-column method 

Using the similar implemental scheme as the aforementioned 
two algorithms, we can easily obtain the computational time for 
the 1-D split-radix-2/8 DHT algorithm [3] as follows: 

{ }2/8 2/8 2 /8
/ 2 /82 max ,2 3N A N M A NT T T T T T= + + +                    (96) 

For q = 1, the initial values of (96) are  
2/8

2
2/8 2/8

4 2

,

2 .
A

A A

T T

T T T T

=

= + =
                                               (97) 

For q = 3, the initial values of (96) are 

     

2 /8
3
2/8 2/8

6 3
2/8 2 /8

12 3

2 ,

3 ,

3 2 5 .

M A

A M A

M A M A

T T T

T T T T T

T T T T T T

= +

= + = +

= + + = +

                               (98) 

Therefore, the total computational time for the row-column 
method is given by: 

{ }
2/8

2/8 2/8
/ 2 /8

2 2

      6 2max ,2 3

RC
N A N

A N M A N

T T T

T T T T T

= +

= + + +
                (99) 

The initial values of (99) for q = 1 and q = 3 are the same as 
those of  (97) and (98). 
Table VII shows the comparison of computational time for q = 
1 and q = 3. As can be seen from this table, the proposed 
algorithm requires less computational time than row-column 
method based on [3] but a little more computational time than 
that of the algorithm in [29] and [30]. The additional time 
complexity will be discussed in the following. 

When using the parallel implementation structure described 
above, the required multipliers and adders are the same as the 
number of multiplications and additions given in Tables I and II. 
Therefore, the area complexity can be directly evaluated from 
these two tables. It can be seen that the proposed algorithm 

requires less area complexity than that of the algorithm 
presented in [29] and [30] and the row-column method based 
on [3]. 

As a conclusion of this section, we explain why the proposed 
algorithm achieves the above attractive results (reductions in 
arithmetic complexity, data transfers and twiddle factors) 
compared to the algorithms in [29] and [30]. There are mainly 
three reasons. Firstly, the pair of special angles (π/8) and (3π/8), 
just like the 1-D split-radix-2/8 algorithm in [3], is taken into 
consideration in the proposed algorithm to reduce both the 
arithmetic complexity and the twiddle factors. However, these 
cases have not been considered in [29] and [30]. Secondly, the 
proposed approach, decomposing an N×N DHT into one 
N/2×N/2 DHT and forty-eight N/8×N/8 DHTs, can save the 
data transfer. Meanwhile, the new scheme decreases the 
number of multiplications at the cost of a little more additions, 
as can be seen in Tables I and II. Finally, the computation 
process is recursive, the savings in arithmetic complexity, data 
transfers and twiddle factors of initial values (or relative 
smaller transform length) are accumulated with the increases of 
the value of transform length N. However, for the hardware 
time complexity analysis, the additional time complexity of the 
proposed algorithm is mainly caused by the spread of cosine 
and sine functions in (40) and (42). This can be observed from 
the first stage of Fig. 3. When implementing the proposed 
algorithm, we have to dedicate an additional group of 
multipliers compared to the algorithm in [29] and [30]. 

IV. SOFTWARE IMPLEMENTATION OF THE PROPOSED AND 
SOME EXISTING 2-D DHT ALGORITHMS 

In this section, just like [43], we compare the proposed 
algorithm with some existing algorithms for the 2-D DHT in 
terms of computer run times, which include fetch instruction 
time, decoding time and write back time. These algorithms 
have been implemented with “C” programming language and 
carried out on a PC machine, which has an Intel Core2 Duo 
CPU with speed of 2200MHz and 3072 MB RAM. The 
run-time of these algorithms has been calculated using Visual 
C++ (VC++) Version (9). 
 
A. Comparison of the proposed algorithm with some existing 

2-D DHT algorithms in terms of computer run times 
 We compare the proposed algorithm with the algorithms 
presented in [29] and [30] and the row-column method based 
on [3] in terms of computer run-times. Tables VIII and IX show 
respectively the run times required in these algorithms for q = 1 
and q = 3. The times in Table VIII and IX represent the average 
obtained by repeating the execution of the algorithm. As it can 
be seen from these tables, the proposed algorithm 
approximately saves average 11% compared to the algorithms 
in [29] and [30] and 60% compared to the row-column method 
based on [3]. Since we use the recursive structure to implement 
the algorithms, the C codes are still far from optimal and there 
is much room for performance improvement. 
   
B. Comparison of the proposed algorithm with some existing 

2-D DHT algorithms in terms of the image compression  
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 As stated in [44] and [45], the DHT outperforms the discrete 
cosine transform (DCT) in terms of the compression 
performance when applying to the magnetic resonance (MR) 
images and positron emission tomography (PET) images. 
Therefore, we have designed a compression scheme to evaluate 
the computer run time of the above noted algorithms on MR 
image compression and decompression. The encoder consists 
of applying the 2-D DHT to an MR image, and then using the 
set partitioning in hierarchical trees (SPIHT) algorithm [46] to 
encode the DHT coefficients to obtain the binary output. The 
decoder executes the inverse process: decoding the binary code 
using the inverse SPIHT algorithm, and then applying the 
inverse 2-D DHT, rounding the decompressed pixel values into 
integer. The steps of the scheme are shown in Fig. 6, where the 
2-D DHT and IDHT have been calculated by the proposed 
algorithm and the algorithms presented in [3], [29] and [30], 
respectively. Fig. 7 shows an example of a 512×512 MR image 
compression using the aforementioned scheme. The related 
errors between the original image and the decompressed 
images, subtracted by 64 in order to be visible, are shown in the 
last row of Fig. 7. For this example, the compression ratio is 
restricted to 16:1, 32:1 and 64:1, and the computer run times 
and the peak signal to noise ratio (PSNR) values have been 
calculated. The results are shown in Table X.  It can be seen that, 
to obtain the same PSNR values, the proposed algorithm 
requires less computer run time than that of the algorithms in 
[3], [29] and [30]. 

V. CONCLUSION 
In this paper, we have proposed a split radix-(2×2)/(8×8) 

algorithm for 2-D DHT. Compared to the existing best 
algorithm presented in [29] and [30], the proposed algorithm 
not only preserves the good properties such as providing a 
wider choice on sequence lengths, having a regular 
computational structure and in-place computation, but also has 
a lower arithmetic complexity and reduces around 30% data 
transfers and 35% twiddle factors, which contribute 
significantly to the execution time of FHT algorithms. The 
algorithm is expressed in a simple matrix form, which 
facilitates the implementation of the algorithm in both software 
and hardware systems. 
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Fig. 4. Flowgraph of a length-3×3 DHT 
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Fig. 5. The implementation scheme of the proposed algorithm 
 

 
Fig. 6. Scheme of encoding and decoding process for MRI image compression 

 
Fig. 7. Compression a 512×512 MRI image using FHT and SPIHT scheme 
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Table I Comparison of Arithmetic Complexities for q = 1 (Saving denotes the saving of arithmetic complexity compared to the algorithm in [29] and [30]). 
 Algorithms in [29] and [30] Row-column method based on [3] Proposed Algorithm 

N×N 
(N) Muls Adds Total Muls Adds Total Muls Savin

g(%) Adds Savin
g(%) Total Saving(

%) 
8 24 408 432 32 608 640 24 0 408 0 432 0 
16 264 2216 2480 384 3072 3456 264 0 2216 0 2480 0 
32 1800 11368 13168 2688 14976 17664 1704 5.33 11272 0.84 12976 1.46 
64 10536 55176 65712 15360 71168 86528 9576 9.11 55368 -0.35 64944 1.17 

128 55560 260840 316400 81408 329216 410624 51048 8.12 260936 -0.04 311984 1.40 
256 277992 1200712 1478704 407552 1495040 1902592 251880 9.39 1201096 -0.03 1452976 1.74 
512 1333320 5443368 6776688 1951744 6703104 8654848 1195368 10.35 5459784 -0.30 6655152 1.79 
1024 6232872 24305288 30538160 9109504 29696000 38805504 5596392 10.21 24398024 -0.38 29994416 1.78 

 
Table II Comparison of Arithmetic Complexities for q = 3 (Saving denotes the saving of arithmetic complexity compared to the algorithm in [29] and [30]). 

 Algorithms in [29] and [30] Row-column method based on [3] Proposed Algorithm 
N×N 
(N) Muls Adds Total Muls Adds Total Muls Savin

g(%) Adds Savin
g(%) Total Saving(

%) 
24 472 6680 7152 576 7776 8352 472 0 6680 0 7152 0 
48 3400 31976 35376 4800 36864 41664 3400 0 31976 0 35376 0 
96 20296 150440 170736 29952 171648 201600 19432 4.26 149576 0.57 169008 1.01 

192 111208 689096 800304 158976 787968 946944 102568 7.77 690824 -0.25 793392 0.86 
384 565576 3117608 3683184 817152 3552768 4369920 524968 7.18 3118472 -0.03 3643440 1.08 
768 2764072 13886600 16650672 4021248 15814656 19835904 2529064 8.50 13890056 -0.02 16419120 1.39 
1536 13048456 61311080 74359536 18935808 69765120 88700928 11806888 9.52 61458824 -0.24 73265712 1.47 
3072 60290152 268030664 328320816 87429120 305012736 392441856 54561832 9.50 268865288 -0.31 323427120 1.49 

 
 

Table III  Comparison of Data Transfers for q = 1 (Saving1 and Saving2 denote respectively the saving of data transfers compared to the algorithm in [29] and [30], 
and the row-column algorithm based on [3]). 

N×N 
(N) 

Algorithms in 
[29] and [30] 

Row-column 
method based on [3] 

Proposed 
algorithm 

Saving1 
(%) 

Saving2 
(%) 

8 180 448 84 53.33 81.25 
16 868 2432 724 16.59 70.23 
32 4820 9984 3476 27.88 65.18 
64 22404 44544 14676 34.49 67.05 
128 108916 207872 78100 28.29 62.43 
256 492452 931840 359636 26.97 61.41 
512 2258196 4075520 1522836 32.56 62.63 
1024 10002628 17948672 7106644 28.95 60.41 

 
Table IV Comparison of Data Transfers for q = 3(Saving1 and Saving2 denote respectively the saving of data transfers compared to the algorithm in [29] and [30], 

and the row-column algorithm based on [3]). 
N×N 
(N) 

Algorithms in 
[29] and [30] 

Row-column 
method based on [3] 

Proposed 
algorithm 

Saving1 
(%) 

Saving2 
(%) 

24 2368 6144 1936 18.24 68.49 
48 11776 28032 10048 14.67 64.16 
96 56320 128256 47680 15.34 62.82 
192 262144 563712 205120 21.75 63.61 
384 1196032 2466816 945472 20.95 61.67 
768 5373952 10807296 4266304 20.61 60.52 

1536 23855100 46731264 18240830 23.53 60.97 
3072 104857600 200712192 80138560 23.57 60.07 

 
Table  V   Comparison of  Twiddle Factors for q = 1 (Saving1 and Saving2 denote respectively the saving of twiddle factors compared to radix algorithm in [29] and 

[30], and the row-column algorithm based on [3]) 
N×N 
(N) 

Algorithms in 
[29] and [30] 

Row-column 
method based on [3] 

Proposed 
algorithm 

Saving1 
(%) 

Saving2 
(%) 

8 0 0 0 0 0 
16 96 0 0 100 0 
32 672 512 384 42.86 25.00 
64 4512 4096 2688 40.43 34.38 
128 24096 22528 13440 44.22 40.34 
256 125856 122880 77952 38.06 36.56 
512 608544 630784 397440 34.69 36.99 
1024 2899104 3014656 1816704 37.34 39.74 
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Table VI  Comparison of Twiddle Factors for q = 3 (Saving1 and Saving2 denote respectively the saving of twiddle factors compared to radix algorithm in [29] and 
[30], and the row-column algorithm based on [3]) 

N×N 
(N) 

Algorithms in 
[29] and [30] 

Row-column 
method based on [3] 

Proposed 
algorithm 

Saving1 
(%) 

Saving2 
(%) 

24 0 0 0 0 0 
48 864 0 0 100 0 
96 6048 4608 3456 42.86 25.00 
192 40608 36864 24192 40.42 34.38 
384 216864 202752 120960 44.22 40.34 
768 1132704 1105920 701568 38.06 36.56 

1536 5476896 5677056 3576960 34.69 36.99 
3072 26091936 27131904 16350336 37.34 39.74 

 
Table VII   Comparison of Computational Time (based on hardware implementation analysis) for q = 1 and q = 3. TM and TA are the computational time of one 

multiplication and one addition, respectively. 
q=1 q=3 

N×N 
(N) 

 Algorithms in 
[29] and [30] 

Row-column 
method based on [3] 

Proposed 
algorithm 

N×N 
(N) 

Algorithms in 
[29] and [30] 

Row-column 
method based on [3] 

Proposed 
algorithm 

8 TM+7TA 4TM+12TA 2TM+8TA 24 2TM+16TA 6TM+16TA 3TM+17TA 
16 TM+9TA 4TM+16TA 2TM+10TA 48 3TM+19TA 6TM+20TA 3TM+19TA 
32 2TM+12TA 4TM+20TA 2TM+12TA 96 3TM+21TA 8TM+22TA 4TM+22TA 
64 2TM+14TA 8TM+22TA 4TM+16TA 192 4TM+24TA 10TM+26TA 5TM+25TA 

128 3TM+17TA 8TM+26TA 4TM+18TA 384 4TM+26TA 10TM+30TA 5TM+27TA 
256 3TM+19TA 8TM+30TA 4TM+20TA 768 5TM+29TA 12TM+32TA 6TM+30TA 
512 4TM+22TA 12TM+32TA 6TM+24TA 1536 5TM+31TA 14TM+36TA 7TM+33TA 
1024 4TM+24TA 12TM+36TA 6TM+26TA 3072 6TM+34TA 14TM+40TA 7TM+35TA 

 
 
Table VIII Comparison of Computer Run Time for q = 1 on an Intel Core2 Duo CPU using the VC++ compiler (Saving1, Saving2 and Saving3 denote respectively 

the saving of Computer run time compared to algorithm in [29], [30], and row-column algorithm based on [3]) 
 Computer run time (s) Saving (%) 

N×N 
(N) 

Algorithm 
 in [29] 

Algorithm 
 in [30] 

Row-column 
method based on [3] 

Proposed 
 Algorithm 

Saving1 Saving2 Saving3 

8 0.000197 0.000198 0.000453 0.0001489 24.42 24.80 67.13 
16 0.000721 0.000715 0.002090 0.0006562 8.99 8.22 68.60 
32 0.003163 0.003196 0.008625 0.0028138 11.04 11.96 67.38 
64 0.012201 0.012277 0.032723 0.0102803 15.74 16.26 68.58 

128 0.051230 0.052806 0.135540 0.0481164 6.08 8.88 65.50 
256 0.203512 0.206572 0.556896 0.1897476 6.76 8.14 65.93 
512 0.843680 0.863356 2.202470 0.7184260 14.85 16.79 67.38 
1024 3.355970 3.4331520 8.798221 3.1265798 6.84 8.93 64.46 

 
Table IX Comparison of Computer Run Time for q = 3 on an Intel Core2 Duo CPU using the VC++ compiler(Saving1, Saving2 and Saving3 denote respectively the 

saving of Computer run time compared to algorithm in [29], [30], and row-column algorithm based on [3]) 
 Computer run time (s) Saving (%) 

N×N 
(N) 

Algorithm 
 in [29] 

Algorithm 
 in [30] 

Row-column 
method based on [3] 

Proposed 
 Algorithm 

Saving1 Saving2 Saving3 

24 0.000855 0.000862 0.001668 0.000683 20.12 20.77 59.05 
48 0.003731 0.003739 0.007536 0.003112 16.59 16.77 58.70 
96 0.012270 0.012965 0.032201 0.011669 4.90 7.13 63.76 
192 0.056782 0.055875 0.121261 0.050535 11.00 9.56 58.33 
384 0.234900 0.234696 0.493468 0.213239 9.22 9.14 56.79 
768 0.918632 0.939634 2.082430 0.840478 8.51 10.55 59.64 

1536 3.843278 3.788372 8.141732 3.543753 7.79 6.46 56.47 
3072 18.152742 18.214835 46.228839 16.788220 7.52 7.83 63.68 

 
Table X Comparison of running time and PSNR for MRI image compression 

 Algorithm 
 in [29] 

Algorithm 
 in [30] 

Row-column 
method based on [3] 

Proposed 
 Algorithm 

Compress(DHT/Total) 0.8388/15.3988 0.8527/15.4127 2.1720/16.7320 0.7042/15.264 
Decompress(DHT/Total) 0.8407/12.6707 0.8542/12.6842 2.1900/14.0200 0.7067/12.5367 

1:16 

PSNR(dB) 26.81 26.81 26.81 26.81 
Compress (DHT/Total) 0.8388/5.4888 0.8527/5.5027 2.1720/6.8220 0.7042/5.3542 

Decompress (DHT/Total) 0.8481/4.5981 0.8482/4.5982 2.1951/5.9451 0.7075/4.4575 
1:32 

PSNR(dB) 25.88 25.88 25.88 25.88 
Compress (DHT/Total) 0.8388/2.9588 0.8527/2.9727 2.1720/4.2920 0.7042/2.8242 

Decompress (DHT/Total) 0.8479/1.9479 0.8563/1.9563 2.2005/3.3005 0.7100/1.8100 
1:64 

PSNR(dB) 24.76 24.76 24.76 24.76  


